Less Noisy Domination by Symmetric Channels

Anuran Makur and Yury Polyanskiy

EECS Department, Massachusetts Institute of Technology

ISIT 2017

Outline

- Introduction
 - Preliminaries
 - Main Results
 - Motivation: Strong Data Processing Inequality
 - Main Question
 - Less Noisy Channels in Networks
- 2 Equivalent Characterizations of Less Noisy Preorder
- 3 Conditions for Less Noisy Domination by Symmetric Channels
- Consequences of Less Noisy Domination by Symmetric Channels

• probability distributions – row vectors

- probability distributions row vectors
- channels (conditional distributions) row stochastic matrices

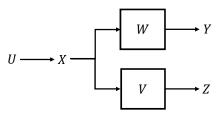
- probability distributions row vectors
- channels (conditional distributions) row stochastic matrices

Definition (Less Noisy Preorder [Körner-Marton 1977])

 $P_{Y|X} = W$ is less noisy than $P_{Z|X} = V$, denoted $W \succeq_{ln} V$, if and only if

$$I(U; Y) \geq I(U; Z)$$

for every joint distribution $P_{U,X}$ such that $U \to X \to (Y,Z)$.



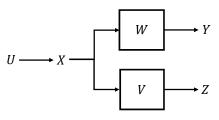
- probability distributions row vectors
- channels (conditional distributions) row stochastic matrices

Definition (Less Noisy Preorder [Körner-Marton 1977])

 $P_{Y|X} = W$ is less noisy than $P_{Z|X} = V$, denoted $W \succeq_{ln} V$, if and only if

$$D(P_XW||Q_XW) \geq D(P_XV||Q_XV)$$

for every pair of input distributions P_X and Q_X .



◆ Test \(\sum_{ln} \) using different divergence measure?

Test ∑_{In} using different divergence measure? Yes, χ²-divergence

- Test ∑_{In} using different divergence measure?
 Yes, χ²-divergence
- **2** Sufficient conditions for \succeq_{ln} domination by symmetric channels?

- Test ∑_{In} using different divergence measure?
 Yes, χ²-divergence
- **2** Sufficient conditions for \succeq_{ln} domination by symmetric channels? **Yes**
 - degradation criterion for general channels
 - stronger criterion for additive noise channels

- Test ∑_{In} using different divergence measure? Yes, χ²-divergence
- **2** Sufficient conditions for \succeq_{ln} domination by symmetric channels? **Yes**
 - degradation criterion for general channels
 - stronger criterion for additive noise channels
- **1** Why \succeq_{ln} domination by symmetric channels?

- Test ∑_{In} using different divergence measure?
 Yes, χ²-divergence
- **2** Sufficient conditions for \succeq_{ln} domination by symmetric channels? **Yes**
 - degradation criterion for general channels
 - stronger criterion for additive noise channels
- Why ∑_{In} domination by symmetric channels?
 - just because we ♥ IT
 - \succeq_{ln} domination \Rightarrow log-Sobolev inequality
 - secrecy capacity

Data Processing Inequality:

For any channel V,

$$\forall P_X, Q_X, \ D(P_X||Q_X) \geq D(P_XV||Q_XV)$$

Strong Data Processing Inequality [Ahlswede-Gács 1976]: For any channel V,

$$\forall P_X, Q_X, \ \eta_{\mathsf{KL}}(V) D(P_X||Q_X) \geq D(P_X V||Q_X V)$$

where $\eta_{KL}(V)$ – contraction coefficient:

$$\eta_{\mathsf{KL}}(V) \triangleq \sup_{P_X, Q_X} \frac{D(P_X V || Q_X V)}{D(P_X || Q_X)} \in [0, 1].$$

Strong Data Processing Inequality [Ahlswede-Gács 1976]: For any channel V,

$$\forall P_X, Q_X, \ \eta_{\mathsf{KL}}(V) D(P_X||Q_X) \geq D(P_X V||Q_X V)$$

where $\eta_{KL}(V)$ – contraction coefficient.

Relation to Erasure Channels [Polyanskiy-Wu 2016]:

• **Definition:** q-ary erasure channel q- $EC(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η .

Strong Data Processing Inequality [Ahlswede-Gács 1976]: For any channel V,

$$\forall P_X, Q_X, \ \eta_{\mathsf{KL}}(V) D(P_X||Q_X) \geq D(P_X V||Q_X V)$$

where $\eta_{KL}(V)$ – contraction coefficient.

Relation to Erasure Channels [Polyanskiy-Wu 2016]:

- **Definition:** q-ary erasure channel q- $EC(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η .
- Prop [Polyanskiy-Wu 2016]:

$$q$$
- $EC(1-\eta) \succeq_{\mathsf{In}} V \Leftrightarrow \forall P_X, Q_X, \eta D(P_X||Q_X) \geq D(P_XV||Q_XV)$.

Strong Data Processing Inequality [Ahlswede-Gács 1976]: For any channel V,

$$\forall P_X, Q_X, \ \eta_{\mathsf{KL}}(V) D(P_X||Q_X) \geq D(P_X V||Q_X V)$$

where $\eta_{KL}(V)$ – contraction coefficient.

Relation to Erasure Channels [Polyanskiy-Wu 2016]:

- **Definition:** q-ary erasure channel q- $EC(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η .
- Prop [Polyanskiy-Wu 2016]:

$$q$$
- $EC(1-\eta) \succeq_{ln} V \Leftrightarrow \forall P_X, Q_X, \eta D(P_X||Q_X) \ge D(P_X V||Q_X V)$.

 $SDPI \Leftrightarrow \succeq_{In} domination by erasure channel$

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln} V$?

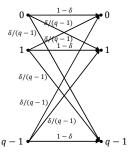
Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\mathsf{ln}} V$?

Definition (q-ary Symmetric Channel)

Channel matrix:

$$W_{\delta} riangleq egin{bmatrix} 1 - \delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1 - \delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1 - \delta \end{bmatrix}$$

where $\delta \in [0,1]$ – total crossover probability.



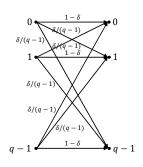
Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\mathsf{ln}} V$?

Definition (q-ary Symmetric Channel)

Channel matrix:

$$W_{\delta} riangleq egin{bmatrix} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{bmatrix}$$

where $\delta \in [0,1]$ – total crossover probability.



• For every channel V, $W_0 \succeq_{\ln} V$ and $V \succeq_{\ln} W_{(q-1)/q}$.

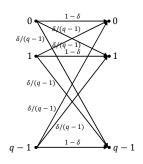
Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\mathsf{in}} V$?

Definition (q-ary Symmetric Channel)

Channel matrix:

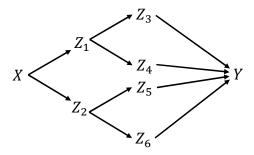
$$W_\delta riangleq egin{bmatrix} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{\delta} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{bmatrix}$$

where $\delta \in [0,1]$ – total crossover probability.

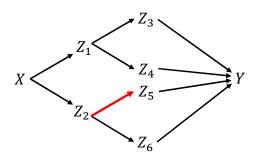


- For every channel V, $W_0 \succeq_{\ln} V$ and $V \succeq_{\ln} W_{(q-1)/q}$.
- $\forall \epsilon, \delta \in (0,1), \ W_{\delta} \succeq_{ln} q\text{-}EC(\epsilon).$

Consider general Bayesian network:



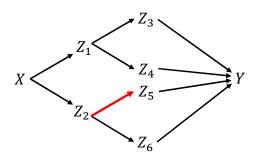
Consider general Bayesian network:



Conjecture:

Replace $P_{Z_5|Z_2}$ with less noisy channel $\Rightarrow P_{Y|X}$ becomes less noisy.

Consider general Bayesian network:

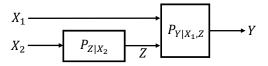


Conjecture:

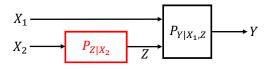
Replace $P_{Z_5|Z_2}$ with less noisy channel $\Rightarrow P_{Y|X}$ becomes less noisy.

Motivation: Results of [Polyanskiy-Wu 2016] on SDPIs in networks.

Consider Bayesian network with binary r.v.s



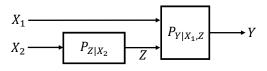
Consider Bayesian network with binary r.v.s



where we replace $P_{Z|X_2}$ with less noisy channel.

Can this decrease $I(X_1, X_2; Y)$?

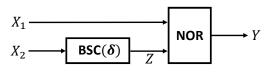
Consider Bayesian network with binary r.v.s



where we replace $P_{Z|X_2}$ with less noisy channel.

Can this decrease $I(X_1, X_2; Y)$? YES

Example: Let $X_1 \sim \text{Ber}(\frac{1}{2})$ and $X_2 = 1$ a.s., and let $I(\delta) = I(X_1, X_2; Y)$.



For $\delta > 0$, BSC(0) \succeq_{\ln} BSC(δ), but $h(\delta/2) - h(\delta)/2 = I(\delta) > I(0) = 0$.

Outline

- Introduction
- Equivalent Characterizations of Less Noisy Preorder
 - χ^2 -Divergence Characterization of Less Noisy
 - Löwner and Spectral Characterizations of Less Noisy
- Conditions for Less Noisy Domination by Symmetric Channels
- 4 Consequences of Less Noisy Domination by Symmetric Channels

Theorem 1 $(\chi^2$ -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{ln} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_XW||Q_XW) \geq \chi^2(P_XV||Q_XV).$$

Recall χ^2 -divergence between P_X and Q_X :

$$\chi^2(P_X||Q_X) \triangleq \sum_{x \in \mathcal{X}} \frac{(P_X(x) - Q_X(x))^2}{Q_X(x)}.$$

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{\operatorname{In}} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Rightarrow) Fix any P_X , Q_X . Recall local approximation:

$$\lim_{\lambda \to 0^+} \frac{2}{\lambda^2} D\left(\lambda P_X + (1-\lambda)Q_X||Q_X\right) = \chi^2\left(P_X||Q_X\right).$$

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{\operatorname{In}} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Rightarrow) Fix any P_X , Q_X . Recall local approximation:

$$\lim_{\lambda \to 0^+} \frac{2}{\lambda^2} D\left(\lambda P_X + (1-\lambda)Q_X||Q_X\right) = \chi^2\left(P_X||Q_X\right).$$

 $W \succeq_{\mathsf{In}} V$ implies

$$D(\lambda P_X W + (1-\lambda)Q_X W||Q_X W) \ge D(\lambda P_X V + (1-\lambda)Q_X V||Q_X V)$$

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{\operatorname{In}} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Rightarrow) Fix any P_X , Q_X . Recall local approximation:

$$\lim_{\lambda \to 0^+} \frac{2}{\lambda^2} D\left(\lambda P_X + (1-\lambda)Q_X||Q_X\right) = \chi^2\left(P_X||Q_X\right).$$

 $W \succeq_{\mathsf{In}} V$ implies

$$D(\lambda P_X W + (1 - \lambda)Q_X W || Q_X W) \ge D(\lambda P_X V + (1 - \lambda)Q_X V || Q_X V)$$
$$\chi^2(P_X W || Q_X W) \ge \chi^2(P_X V || Q_X V)$$

after taking limits.

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{ln} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \ge \chi^2(P_X V || Q_X V).$$

Proof: (\Leftarrow) Fix any P_X , Q_X . Recall integral representation:

$$D(P_X||Q_X) = \int_0^\infty \chi^2(P_X||Q_X^t) dt$$

where $Q_X^t = \frac{t}{1+t} P_X + \frac{1}{t+1} Q_X$ for $t \in [0, \infty)$ [Choi-Ruskai-Seneta 1994].

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{ln} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Leftarrow) Fix any P_X , Q_X . Recall integral representation:

$$D(P_X||Q_X) = \int_0^\infty \chi^2(P_X||Q_X^t) dt$$

where
$$Q_X^t = \frac{t}{1+t} P_X + \frac{1}{t+1} Q_X$$
 for $t \in [0, \infty)$ [Choi-Ruskai-Seneta 1994].

$$\chi^{2}\left(P_{X}W||Q_{X}^{t}W\right) \geq \chi^{2}\left(P_{X}V||Q_{X}^{t}V\right)$$

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{ln} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Leftarrow) Fix any P_X , Q_X . Recall integral representation:

$$D(P_X||Q_X) = \int_0^\infty \chi^2(P_X||Q_X^t) dt$$

where $Q_X^t = rac{t}{1+t} P_X + rac{1}{t+1} Q_X$ for $t \in [0,\infty)$ [Choi-Ruskai-Seneta 1994].

$$\chi^{2}\left(P_{X}W||Q_{X}^{t}W\right) \geq \chi^{2}\left(P_{X}V||Q_{X}^{t}V\right)$$

$$\int_0^\infty \chi^2 \left(P_X W || Q_X^t W \right) dt \ge \int_0^\infty \chi^2 \left(P_X V || Q_X^t V \right) dt$$

Theorem 1 (χ^2 -Divergence Characterization of \succeq_{ln})

Given channels W and V, $W \succeq_{ln} V$ if and only if

$$\forall P_X, Q_X, \ \chi^2(P_X W || Q_X W) \geq \chi^2(P_X V || Q_X V).$$

Proof: (\Leftarrow) Fix any P_X , Q_X . Recall integral representation:

$$D(P_X||Q_X) = \int_0^\infty \chi^2(P_X||Q_X^t) dt$$

where $Q_X^t = \frac{t}{1+t} P_X + \frac{1}{t+1} Q_X$ for $t \in [0, \infty)$ [Choi-Ruskai-Seneta 1994].

$$\chi^{2}\left(P_{X}W||Q_{X}^{t}W\right) \geq \chi^{2}\left(P_{X}V||Q_{X}^{t}V\right)$$

$$\int_{0}^{\infty} \chi^{2}\left(P_{X}W||Q_{X}^{t}W\right) dt \geq \int_{0}^{\infty} \chi^{2}\left(P_{X}V||Q_{X}^{t}V\right) dt$$

$$D\left(P_{X}W||Q_{X}W\right) \geq D\left(P_{X}V||Q_{X}V\right)$$

Löwner and Spectral Characterizations of Less Noisy

Theorem 1 (Equivalent Characterizations of \succeq_{ln})

Given channels W and V,

$$\begin{aligned} W \succeq_{\mathsf{In}} V &\Leftrightarrow & \forall P_X, Q_X, \ \chi^2\left(P_X W || Q_X W\right) \geq \chi^2\left(P_X V || Q_X V\right) \\ &\Leftrightarrow & \forall P_X, \ W \mathsf{diag}(P_X W)^{-1} \ W^T \succeq_{\mathsf{PSD}} V \mathsf{diag}(P_X V)^{-1} \ V^T \\ &\Leftrightarrow & \forall P_X, \ \rho\big(\big(W \mathsf{diag}(P_X W)^{-1} \ W^T\big)^{\dagger} V \mathsf{diag}(P_X V)^{-1} \ V^T\big) = 1 \end{aligned}$$

where \succeq_{PSD} – Löwner (PSD) partial order,

 A^{\dagger} – Moore-Penrose pseudoinverse of A,

and $\rho(\cdot)$ – spectral radius.

Outline

- Introduction
- 2 Equivalent Characterizations of Less Noisy Preorder
- 3 Conditions for Less Noisy Domination by Symmetric Channels
 - General Sufficient Condition via Degradation
 - Refinements for Additive Noise Channels
 - Proof Sketch of Additive Noise Channel Criterion
- Consequences of Less Noisy Domination by Symmetric Channels

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln} V$?

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln} V$?

• **Definition (Degradation)** [Bergmans 1973]: V is degraded version of W, denoted $W \succeq_{deg} V$, if V = WA for some channel A.

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln} V$?

- **Definition (Degradation)** [Bergmans 1973]: V is degraded version of W, denoted $W \succeq_{deg} V$, if V = WA for some channel A.
- Prop: $W \succeq_{deg} V \Rightarrow W \succeq_{ln} V$.

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in \left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln} V$?

- **Definition (Degradation)** [Bergmans 1973]: V is degraded version of W, denoted $W \succeq_{deg} V$, if V = WA for some channel A.
- Prop: $W \succeq_{deg} V \Rightarrow W \succeq_{ln} V$.

Theorem 2 (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum probability $\nu=\min{\{[V]_{i,j}:1\leq i,j\leq q\}}$,

$$0 \leq \delta \leq rac{
u}{1 - (q-1)
u + rac{
u}{q-1}} \;\; \Rightarrow \;\; W_\delta \succeq_{\mathsf{deg}} V \,.$$

Theorem 2 (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum probability $\nu = \min\{[V]_{i,j} : 1 \le i, j \le q\}$,

$$0 \le \delta \le rac{
u}{1 - (q-1)
u + rac{
u}{q-1}} \;\; \Rightarrow \;\; W_\delta \succeq_{\mathsf{deg}} V \,.$$

Remark: Condition is tight when no further information about V known. For example, suppose

$$V = \left[egin{array}{ccccc}
u & 1-(q-1)
u &
u &
u &
u \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1-(q-1)
u &
u &
u &
u &
u \end{array}
ight].$$

Then,
$$0 \leq \delta \leq \nu/\big(1-(q-1)\nu+rac{\nu}{q-1}\big) \;\;\Leftrightarrow\;\; W_{\delta} \succeq_{\mathsf{deg}} V.$$

• Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$Y = X \oplus Z$$
, $X \perp \!\!\!\perp Z$

where $X,Y,Z\in\mathcal{X}$ are input, output, and noise r.v.s.

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$Y = X \oplus Z, \qquad X \perp \!\!\!\perp Z$$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise r.v.s.

• Channel probabilities given by noise pmf P_Z :

$$\forall x, y \in \mathcal{X}, \ P_{Y|X}(y|x) = P_Z(-x \oplus y).$$

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$Y = X \oplus Z$$
, $X \perp \!\!\!\perp Z$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise r.v.s.

• Channel probabilities given by noise pmf P_Z :

$$\forall x, y \in \mathcal{X}, \ P_{Y|X}(y|x) = P_Z(-x \oplus y).$$

• P_Y is convolution of P_X and P_Z :

$$\forall y \in \mathcal{X}, \ P_Y(y) = (P_X \star P_Z)(y) \triangleq \sum_{x \in \mathcal{X}} P_X(x) P_Z(-x \oplus y).$$

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$Y = X \oplus Z$$
, $X \perp \!\!\!\perp Z$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise r.v.s.

• Channel probabilities given by noise pmf P_Z :

$$\forall x, y \in \mathcal{X}, \ P_{Y|X}(y|x) = P_Z(-x \oplus y).$$

• P_Y is convolution of P_X and P_Z :

$$\forall y \in \mathcal{X}, \ P_Y(y) = (P_X \star P_Z)(y) \triangleq \sum_{x \in \mathcal{X}} P_X(x) P_Z(-x \oplus y).$$

ullet q-ary symmetric channel: $P_Z=\left(1-\delta,rac{\delta}{q-1},\ldots,rac{\delta}{q-1}
ight)$ for $\delta\in[0,1]$

$$(\cdot \star P_Z) = W_\delta$$

More Noisy and Degradation Regions

• Fix q-ary symmetric channel W_{δ} with $\delta \in [0, 1]$.

More Noisy and Degradation Regions

- Fix q-ary symmetric channel W_{δ} with $\delta \in [0,1]$.
- More noisy region of W_{δ} is

$$more-noisy(W_{\delta}) \triangleq \{P_Z : W_{\delta} \succeq_{ln} (\cdot \star P_Z)\}.$$

More Noisy and Degradation Regions

- Fix q-ary symmetric channel W_{δ} with $\delta \in [0,1]$.
- More noisy region of W_{δ} is

$$more-noisy(W_{\delta}) \triangleq \{P_Z : W_{\delta} \succeq_{ln} (\cdot \star P_Z)\}.$$

• Degradation region of W_{δ} is

$$degrade(W_{\delta}) \triangleq \{P_Z : W_{\delta} \succeq_{deg} (\cdot \star P_Z)\}.$$

Theorem 3 (More Noisy and Degradation Regions)

For
$$W_{\delta}$$
 with $\delta \in \left[0, \frac{q-1}{q}\right]$ and $q \geq 2$,
$$degrade(W_{\delta}) = co(\text{rows of } W_{\delta})$$

$$\subseteq co(\text{rows of } W_{\delta} \text{ and } W_{\gamma})$$

$$\subseteq \textit{more-noisy}(W_{\delta})$$

$$\subseteq \{P_{Z} : \|P_{Z} - \mathbf{u}\|_{\ell^{2}} \leq \|w_{\delta} - \mathbf{u}\|_{\ell^{2}}\}$$

where $co(\cdot)$ – convex hull, $\gamma = (1 - \delta)/\left(1 - \delta + \frac{\delta}{(q-1)^2}\right)$, **u** – uniform pmf, and w_{δ} – first row of W_{δ} .

Theorem 3 (More Noisy and Degradation Regions)

For
$$W_{\delta}$$
 with $\delta \in \left[0, \frac{q-1}{q}\right]$ and $q \geq 2$,
$$degrade(W_{\delta}) = co(\text{rows of } W_{\delta})$$

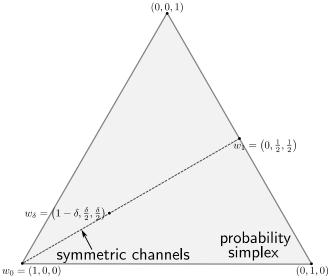
$$\subseteq co(\text{rows of } W_{\delta} \text{ and } W_{\gamma})$$

$$\subseteq \textit{more-noisy}(W_{\delta})$$

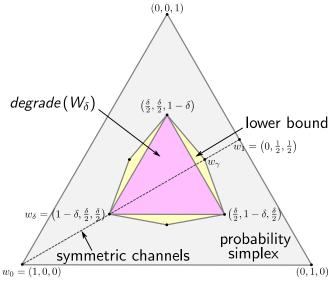
$$\subseteq \{P_{Z} : \|P_{Z} - \mathbf{u}\|_{\mathscr{Q}} \leq \|w_{\delta} - \mathbf{u}\|_{\mathscr{Q}}\}$$

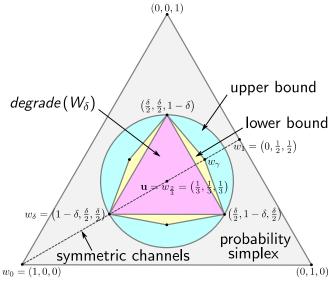
where $co(\cdot)$ – convex hull, $\gamma = (1 - \delta)/\left(1 - \delta + \frac{\delta}{(q-1)^2}\right)$, **u** – uniform pmf, and w_{δ} – first row of W_{δ} .

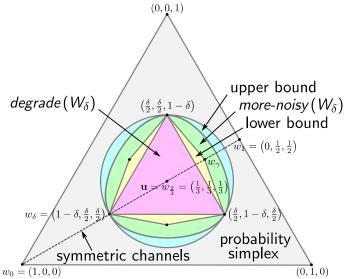
Furthermore, more- $noisy(W_{\delta})$ is closed, convex, and invariant under permutations of (\mathcal{X}, \oplus) .











Theorem 3 (More Noisy and Degradation Regions)

For
$$W_{\delta}$$
 with $\delta \in \left[0, \frac{q-1}{q}\right]$ and $q \geq 2$,
$$degrade(W_{\delta}) = co(\text{rows of } W_{\delta})$$

$$\subseteq co(\text{rows of } W_{\delta} \text{ and } W_{\gamma})$$

$$\subseteq \textit{more-noisy}(W_{\delta})$$

$$\subseteq \{P_{Z} : \|P_{Z} - \mathbf{u}\|_{\ell^{2}} \leq \|w_{\delta} - \mathbf{u}\|_{\ell^{2}}\}$$

where $co(\cdot)$ – convex hull, $\gamma = (1 - \delta) / \left(1 - \delta + \frac{\delta}{(q-1)^2}\right)$, **u** – uniform pmf, and w_{δ} – first row of W_{δ} .

Furthermore, more- $noisy(W_{\delta})$ is closed, convex, and invariant under permutations of (\mathcal{X}, \oplus) .

• more-noisy (W_{δ}) is convex, invariant under permutations of (\mathcal{X}, \oplus) \Rightarrow suffices to prove $W_{\delta} \succeq_{\ln} W_{\gamma}$.

- more-noisy (W_{δ}) is convex, invariant under permutations of (\mathcal{X}, \oplus) \Rightarrow suffices to prove $W_{\delta} \succeq_{\ln} W_{\gamma}$.
- By Theorem 1,

$$\forall P_X, \ W_\delta \operatorname{diag}(P_X W_\delta)^{-1} \ W_\delta^T \succeq_{\mathsf{PSD}} W_\gamma \operatorname{diag}(P_X W_\gamma)^{-1} \ W_\gamma^T$$

- more-noisy (W_{δ}) is convex, invariant under permutations of (\mathcal{X}, \oplus) \Rightarrow suffices to prove $W_{\delta} \succeq_{\ln} W_{\gamma}$.
- By Theorem 1,

$$\forall P_X, \ W_{\delta} \operatorname{diag}(P_X W_{\delta})^{-1} W_{\delta}^T \succeq_{PSD} W_{\gamma} \operatorname{diag}(P_X W_{\gamma})^{-1} W_{\gamma}^T$$
$$\Leftrightarrow 1 \ge \|A\|_{\operatorname{op}}$$

where $\|\cdot\|_{op}$ – operator norm, and A is symmetric PSD:

$$A \triangleq \mathsf{diag}(w_{\gamma})^{-\frac{1}{2}} W_{\gamma} W_{\delta}^{-1} \mathsf{diag}(w_{\delta}) W_{\delta}^{-1} W_{\gamma} \, \mathsf{diag}(w_{\gamma})^{-\frac{1}{2}}$$

with w_{δ} – first row of W_{δ} , and w_{γ} – first row of W_{γ} .

- more-noisy(W_{δ}) is convex, invariant under permutations of (\mathcal{X}, \oplus) \Rightarrow suffices to prove $W_{\delta} \succeq_{\ln} W_{\gamma}$.
- By Theorem 1,

$$\forall P_X, \ W_{\delta} \operatorname{diag}(P_X W_{\delta})^{-1} W_{\delta}^T \succeq_{PSD} W_{\gamma} \operatorname{diag}(P_X W_{\gamma})^{-1} W_{\gamma}^T$$

$$\Leftrightarrow \ 1 \ge \|A\|_{op}$$

where $\|\cdot\|_{op}$ – operator norm, and A is symmetric PSD:

$$A \triangleq \mathsf{diag}(w_{\gamma})^{-\frac{1}{2}} W_{\gamma} W_{\delta}^{-1} \mathsf{diag}(w_{\delta}) W_{\delta}^{-1} W_{\gamma} \, \mathsf{diag}(w_{\gamma})^{-\frac{1}{2}}$$

with w_{δ} – first row of W_{δ} , and w_{γ} – first row of W_{γ} .

• A has left eigenvector $\sqrt{w_{\gamma}} > 0$ with eigenvalue 1:

$$\sqrt{w_{\gamma}}A = \sqrt{w_{\gamma}}$$
.

• $A \ge 0$ (entry-wise) \Rightarrow largest eigenvalue of A is 1 by Perron-Frobenius theorem, because $\sqrt{w_{\gamma}} > 0$.

- $A \ge 0$ (entry-wise) \Rightarrow largest eigenvalue of A is 1 by Perron-Frobenius theorem, because $\sqrt{w_{\gamma}} > 0$.
- Since A symmetric PSD, A ≥ 0 ⇒ ||A||_{op} ≤ 1.
 ⇒ Suffices to prove A ≥ 0.

- $A \ge 0$ (entry-wise) \Rightarrow largest eigenvalue of A is 1 by Perron-Frobenius theorem, because $\sqrt{w_{\gamma}} > 0$.
- Since A symmetric PSD, $A \ge 0 \Rightarrow ||A||_{op} \le 1$. \Rightarrow Suffices to prove $A \ge 0$.
- Verify that:

$$\min_{i,j} [A]_{i,j} \geq 0 \quad \Leftrightarrow \quad \delta \leq \gamma \leq \frac{1-\delta}{1-\delta + \frac{\delta}{(q-1)^2}}.$$

Outline

- Introduction
- Equivalent Characterizations of Less Noisy Preorder
- Conditions for Less Noisy Domination by Symmetric Channels
- 4 Consequences of Less Noisy Domination by Symmetric Channels
 - Log-Sobolev Inequalities via Comparison of Dirichlet Forms
 - Interpretation via Wyner's Wiretap Channel

Consider irreducible Markov chain V with uniform stationary pmf u
on state space of size q.

- Consider irreducible Markov chain V with uniform stationary pmf u
 on state space of size q.
- Dirichlet form $\mathcal{E}_V : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}^+$

$$\mathcal{E}_{V}(f,f) \triangleq \frac{1}{q} f^{T} \left(I - \frac{V + V^{T}}{2} \right) f$$

- Consider irreducible Markov chain V with uniform stationary pmf u
 on state space of size q.
- Dirichlet form $\mathcal{E}_V : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}^+$

$$\mathcal{E}_{V}(f,f) \triangleq \frac{1}{q} f^{T} \left(I - \frac{V + V^{T}}{2} \right) f$$

• Log-Sobolev inequality with constant $\alpha \in \mathbb{R}^+$: For every $f \in \mathbb{R}^q$ such that $f^T f = q$,

$$D\left(f^{2}\mathbf{u} \mid\mid \mathbf{u}\right) = \frac{1}{q} \sum_{i=1}^{q} f_{i}^{2} \log\left(f_{i}^{2}\right) \leq \frac{1}{\alpha} \mathcal{E}_{V}\left(f, f\right).$$

- Consider irreducible Markov chain V with uniform stationary pmf u
 on state space of size q.
- Dirichlet form $\mathcal{E}_V : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}^+$

$$\mathcal{E}_{V}(f,f) \triangleq \frac{1}{q} f^{T} \left(I - \frac{V + V^{T}}{2} \right) f$$

• Log-Sobolev inequality with constant $\alpha \in \mathbb{R}^+$: For every $f \in \mathbb{R}^q$ such that $f^T f = q$,

$$D\left(f^{2}\mathbf{u} \mid\mid \mathbf{u}\right) = \frac{1}{q} \sum_{i=1}^{q} f_{i}^{2} \log\left(f_{i}^{2}\right) \leq \frac{1}{\alpha} \mathcal{E}_{V}\left(f, f\right).$$

ullet Log-Sobolev constant – largest lpha satisfying log-Sobolev inequality.

Standard Dirichlet form:

$$\mathcal{E}_{\mathsf{std}}\left(f,f\right) \triangleq \mathbb{VAR}_{\mathbf{u}}(f) = \sum_{i=1}^{q} \frac{1}{q} f_i^2 - \left(\sum_{i=1}^{q} \frac{1}{q} f_i\right)^2$$

• For standard Dirichlet form, $\mathcal{E}_{std}(f, f) \triangleq \mathbb{VAR}_{\mathbf{u}}(f)$, log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

$$D\left(f^2\mathbf{u}\,||\,\mathbf{u}\right) \leq \frac{q\log(q-1)}{(q-2)}\,\mathcal{E}_{\mathsf{std}}\left(f,f\right)$$

for all $f \in \mathbb{R}^q$ with $f^T f = q$.

• For standard Dirichlet form, $\mathcal{E}_{std}(f, f) \triangleq \mathbb{VAR}_{\mathbf{u}}(f)$, log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

$$D\left(f^2\mathbf{u}\,||\,\mathbf{u}\right) \leq rac{q\log(q-1)}{(q-2)}\,\mathcal{E}_{\mathsf{std}}\left(f,f
ight)$$

for all $f \in \mathbb{R}^q$ with $f^T f = q$.

Theorem 4 (Domination of Dirichlet Forms)

For channels W_δ and V with $\delta \in \left[0, rac{q-1}{q}
ight]$ and stationary pmf ${f u}$,

$$W_\delta \succeq_{\mathsf{ln}} V \;\; \Rightarrow \;\; \mathcal{E}_V \geq rac{q\delta}{q-1} \, \mathcal{E}_{\mathsf{std}} \;\; \mathsf{pointwise} \,.$$

• For standard Dirichlet form, $\mathcal{E}_{std}(f, f) \triangleq \mathbb{VAR}_{\mathbf{u}}(f)$, log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

$$D\left(f^2\mathbf{u}\,||\,\mathbf{u}\right) \leq rac{q\log(q-1)}{(q-2)}\,\mathcal{E}_{\mathsf{std}}\left(f,f
ight)$$

for all $f \in \mathbb{R}^q$ with $f^T f = q$.

Theorem 4 (Domination of Dirichlet Forms)

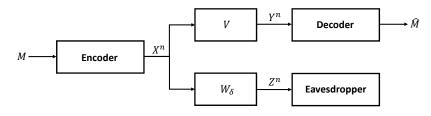
For channels W_δ and V with $\delta \in \left[0, rac{q-1}{q}
ight]$ and stationary pmf ${f u}$,

$$W_\delta \succeq_{\mathsf{ln}} V \;\; \Rightarrow \;\; \mathcal{E}_V \geq rac{q\delta}{q-1} \, \mathcal{E}_{\mathsf{std}} \;\; \mathsf{pointwise} \,.$$

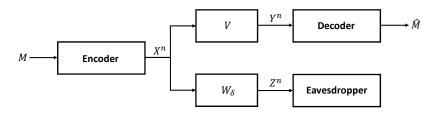
• $W_{\delta} \succeq_{\ln} V \Rightarrow \text{log-Sobolev inequality for } V$,

$$D(f^2\mathbf{u} \mid\mid \mathbf{u}) \leq \frac{(q-1)\log(q-1)}{\delta(q-2)} \mathcal{E}_V(f,f)$$

for every $f \in \mathbb{R}^q$ satisfying $f^T f = q$.



ullet V - main channel, W_δ - eavesdropper channel



- V main channel, W_{δ} eavesdropper channel
- Secrecy capacity maximum rate to legal receiver such that $\mathbb{P}(M \neq \hat{M}) \to 0$ and $\frac{1}{n}I(M; Z^n) \to 0$

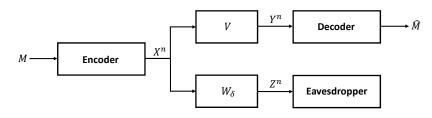
$$C_S = \max_{P_{U,X}} I(U;Y) - I(U;Z)$$
 [Csiszár-Körner 1978]



- V main channel, W_{δ} eavesdropper channel
- Secrecy capacity maximum rate to legal receiver such that $\mathbb{P}(M \neq \hat{M}) \to 0$ and $\frac{1}{n}I(M; Z^n) \to 0$

$$C_S = \max_{P_{U,X}} I(U; Y) - I(U; Z)$$
 [Csiszár-Körner 1978]

• **Prop** [Csiszár-Körner 1978]: $C_S = 0 \Leftrightarrow W_\delta \succeq_{ln} V$.



- V main channel, W_{δ} eavesdropper channel
- Secrecy capacity maximum rate to legal receiver such that $\mathbb{P}(M \neq \hat{M}) \to 0$ and $\frac{1}{n}I(M; Z^n) \to 0$

$$C_S = \max_{P_{U,X}} I(U;Y) - I(U;Z)$$
 [Csiszár-Körner 1978]

- **Prop** [Csiszár-Körner 1978]: $C_S = 0 \Leftrightarrow W_{\delta} \succeq_{ln} V$.
- Finding maximally noisy $W_{\delta} \succeq_{\ln} V$ establishes minimal noise on $P_{Z|X}$ so that secret communication feasible.

Thank You!