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Preliminaries

@ probability distributions — row vectors
@ channels (conditional distributions) — row stochastic matrices

Definition (Less Noisy Preorder [Kérner-Marton 1977])

Py|x = W is less noisy than Pz x =V, denoted W =, V, if and only if
(U, Y)>1(U; 2)

for every joint distribution Py x such that U — X — (Y, Z).

U—— X —
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Preliminaries

@ probability distributions — row vectors
@ channels (conditional distributions) — row stochastic matrices

Definition (Less Noisy Preorder [Korner-Marton 1977])

Py|x = W is less noisy than Pz x =V, denoted W =, V/, if and only if
D(PxW||QxW) > D(PxV||QxV)

for every pair of input distributions Px and Qx.
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Main Results

@ Test =, using different divergence measure?
Yes, y?-divergence

@ Sufficient conditions for >, domination by symmetric channels?
Yes
o degradation criterion for general channels
e stronger criterion for additive noise channels

© Why >, domination by symmetric channels?

e just because we @ [T
e >, domination = log-Sobolev inequality
e secrecy capacity

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 29 June 2017 5/28



Motivation: Strong Data Processing Inequality

Data Processing Inequality:
For any channel V,

VPx, Qx, D(Px[|Qx) = D(PxVI[|Qx V)
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Motivation: Strong Data Processing Inequality

Strong Data Processing Inequality [Ahlswede-Gacs 1976]:
For any channel V,

VPx, Qx, nkL(V)D(Px||Qx) > D(PxV||QxV)

where 1k (V) — contraction coefficient:

A D(PX VHQX V)
e M -
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Strong Data Processing Inequality [Ahlswede-Gacs 1976]:
For any channel V,

VPx, Qx, nkL(V) D(Px||Qx) = D(PxV||Qx V)
where 7k (V) — contraction coefficient.

Relation to Erasure Channels [Polyanskiy-Wu 2016]:

e Definition: g-ary erasure channel g-EC(1 — 1)
erases input w.p. 1 —n, and reproduces input w.p. 7.
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Motivation: Strong Data Processing Inequality

Strong Data Processing Inequality [Ahlswede-Gacs 1976]:
For any channel V,

VPx, Qx, nkL(V)D(Px||Qx) > D(PxV||QxV)

where 7k (V) — contraction coefficient.

Relation to Erasure Channels [Polyanskiy-Wu 2016]:

e Definition: g-ary erasure channel g-EC(1 — 1)
erases input w.p. 1 —n, and reproduces input w.p. 7.

e Prop [Polyanskiy-Wu 2016]:

g-EC(1—n) =, V & VPx,Qx, nD(Px||@x) > D(PxV||QxV).

SDPI < =,, domination by erasure channel J
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Given channel V, find g-ary symmetric channel Wj
with largest § € [0, "T_l} such that W; =, V? J
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Given channel V, find g-ary symmetric channel Wj
with largest § € [0, qT_l} such that W; =, V? J

Definition (g-ary Symmetric Channel)
Channel matrix:
B

5

5 5
1S ... o

—1 -1

ws & | 7

Q

5 5 e
2 A o 1-9

—
Q
|
-

where § € [0, 1] — total crossover probability.
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Given channel V, find g-ary symmetric channel Wj
with largest § € [0, qT_l} such that W; =, V? J

Channel matrix:

1—§ -0

[

BS
>

6 )
q—

H
5
L

where § € [0, 1] — total crossover probability.

Definition (g-ary Symmetric Channel)

Q
ST S
=

5
L

1-6

’

o For every channel V, Wy =, V and V =, W(q,l)/q.
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Given channel V, find g-ary symmetric channel Wj
with largest § € [0, qT_l} such that W; =, V? J

Definition (g-ary Symmetric Channel)

Channel matrix:

5 5 5/<q—
1 ; 0 g1 B LN A
s | 1-0 - 24
6 — : : - : 8/(q—-1)

% % el 1-=96 5/(q1>!
where § € [0, 1] — total crossover probability. 1

’

@ For every channel V, Wy =, V and V =, W(q_l)/q.
o V675 € (07 1)7 W5 iln q'EC(f)
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Less Noisy Channels in Networks

Consider general Bayesian network:

Z3
Zy
X e 2%
Z5 /
Z,
Zg
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Less Noisy Channels in Networks

Consider general Bayesian network:

Z3
Zy
X e 2%
Z5 /
Z,
Zg

Conjecture:
Replace Pz z, with less noisy channel = Py|x becomes less noisy.

Motivation: Results of [Polyanskiy-Wu 2016] on SDPIs in networks.
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Less Noisy Channels in Networks

Consider Bayesian network with binary r.v.s

X1

Pyix,z——Y

Xo—  Pyx,
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Less Noisy Channels in Networks

Consider Bayesian network with binary r.v.s

X1

Pyix,z——Y

Xz— PZ|X2 Z

where we replace Pz x, with less noisy channel.

Can this decrease /(X1, X2; Y)?
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Less Noisy Channels in Networks

Consider Bayesian network with binary r.v.s

X1

Pyix,z——Y

Xo—  Pyx,

Z

where we replace Pz x, with less noisy channel.
Can this decrease /(X1, X2; Y)? YES

Example: Let X; ~ Ber(3) and Xo = La.s., and let /(5) = I(X1, Xo; Y).

X1 >
NOR [— Y

X,——| BSC(8)

Z

For § > 0, BSC(0) =, BSC(d), but h(8/2) — h(8)/2 = 1(5) > 1(0) = 0.
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W =, V if and only if

VPx, Qx, X2 (PxW||QxW) > x?(PxV||QxV) .

Recall y?-divergence between Px and Qx:

2
X2(PXHQX) A Z (PX(X) - QX(X)) )

xeX QX (X)
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X (PxW||QxW) > x*(PxV||Qx V) .

Proof: (=) Fix any Px, Qx. Recall local approximation:

2
Jim 5D (APx + (1 - )Qx||Qx) = x* (Px||Qx) -
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X (PxW||QxW) > x*(PxV||Qx V) .

Proof: (=) Fix any Px, Qx. Recall local approximation:

2
Jim 5D (APx + (1 - )Qx||Qx) = x* (Px||Qx) -

W =, V implies

D (APxW + (1 = 2)QxWI|Qx W) > D(APxV + (1 - X)Qx V||Qx V)
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X (PxW||QxW) > x*(PxV||Qx V) .

Proof: (=) Fix any Px, Qx. Recall local approximation:

2
Jim 5D (APx + (1 - )Qx||Qx) = x* (Px||Qx) -

W =, V implies

D(APxW + (1 - X)QxW||[Qx W)
X* (PxWI|Qx W)

D(APXV + (1 - \)@x V[|QxV)

>
> x* (PxV||Qx V)

after taking limits.
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X* (PxWI[|QxW) > x*(PxV||QxV) .

Proof: (<) Fix any Px, Qx. Recall integral representation:
D(PxlIQx) = [ * (PxllQ¥) dt
0

where Q% = 15 Px + 77 Qx for t € [0,00) [Choi-Ruskai-Seneta 1994].
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VPx, Qx, X* (PxWI[|QxW) > x*(PxV||QxV) .

Proof: (<) Fix any Px, Qx. Recall integral representation:
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X* (PxWI[|QxW) > x*(PxV||QxV) .

Proof: (<) Fix any Px, Qx. Recall integral representation:
D(PxlIQx) = [ * (PxllQ¥) dt
0

where Q% = 15 Px + ﬁ@x for t € [0,00) [Choi-Ruskai-Seneta 1994].
X2 (PxW(|QxW) > x* (Px VI[|Q%V)

o0

7 ewiiaiw) o> [T 2 (evilasy) a
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x?-Divergence Characterization of Less Noisy

Theorem 1 (2-Divergence Characterization of =)
Given channels W and V, W >,, V if and only if

VPx, Qx, X* (PxWI[|QxW) > x*(PxV||QxV) .

Proof: (<) Fix any Px, Qx. Recall integral representation:
D(PxlIQx) = [ * (PxllQ¥) dt
0

where Q% = 15 Px + 77 Qx for t € [0,00) [Choi-Ruskai-Seneta 1994].
X2 (PxW(|QxW) > x* (Px VI[|Q%V)

7 ewiiaiw) o> [T 2 (evilasy) a

D(PxW||QxW) > D (PxV||QxV)
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Lowner and Spectral Characterizations of Less Noisy

Theorem 1 (Equivalent Characterizations of =)
Given channels W and V,

Wiz V & VPx, Qx, X* (PxWI[IQxW) > x* (PxV||Qx V)

& VYPx, Wdiag(PxW) ' WT o, Vdiag(Px V)t VT

& VPx, p((Wdiag(Px W) WT) Vdiag(Px V)1 vT) = 1
where =psp — Lowner (PSD) partial order,

AT — Moore-Penrose pseudoinverse of A,
and p(-) — spectral radius.
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© Conditions for Less Noisy Domination by Symmetric Channels
@ General Sufficient Condition via Degradation
@ Refinements for Additive Noise Channels
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Condition for Degradation by Symmetric Channels

Given channel V, find g-ary symmetric channel Wj
with largest § € [0, qT_l] such that W =, V7 J
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Condition for Degradation by Symmetric Channels

Given channel V, find g-ary symmetric channel Wj
with largest § € [0, qT_l] such that W =, V7 }

o Definition (Degradation) [Bergmans 1973]: V is degraded version
of W, denoted W ., V, if V = WA for some channel A.

@ Prop: W >y, V = W>, V.

Theorem 2 (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum
probability v = min {[V];; : 1 <i,j < q},

1%
<
T l-(e-1v+ 5

0<6 = Wy =g V.
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Condition for Degradation by Symmetric Channels

Theorem 2 (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum
probability v = min {[V];; : 1 <i,j < q},
v

0<6< = Ws>. V.
=TS (g-rt G 0 e

Remark: Condition is tight when no further information about V' known.
For example, suppose

v l1—-(¢g—1w v - v
1—(g—1)v v [ 7

V= ( ) : : :
1—(g—1)w v v oo v

Then,Ogégy/(l—(q—l)V+ﬁ) & Ws = V.
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Additive Noise Channels

e Fix Abelian group (X, ®) with order g as alphabet.
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Additive Noise Channels

e Fix Abelian group (X, ®) with order g as alphabet.
o Additive noise channel:

Y=X®&Z  X1Z

where X, Y,Z € X are input, output, and noise r.v.s.
@ Channel probabilities given by noise pmf Pz:

Vx,y € X, Pyx(y|x) = Pz(—x®y).
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Additive Noise Channels

e Fix Abelian group (X, ®) with order g as alphabet.
o Additive noise channel:

Y=X®&Z  X1Z

where X, Y,Z € X are input, output, and noise r.v.s.
@ Channel probabilities given by noise pmf Pz:

Vx,y € X, Pyx(y|x) = Pz(—x®y).
@ Py is convolution of Px and Pz:

Vy € X, Py(y) = (Px*Pz)(y) £ Y Px(x)Pz(-x®y).
xXeEX
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Additive Noise Channels

e Fix Abelian group (X, ®) with order g as alphabet.
o Additive noise channel:

Y=X®&Z  X1Z

where X, Y,Z € X are input, output, and noise r.v.s.
@ Channel probabilities given by noise pmf Pz:

Vx,y € X, Pyix(y|x) = Pz(-xy).

@ Py is convolution of Px and Pz:

Vy € X, Py(y) = (Px*Pz)(y) £ Y Px(x)Pz(-x®y).
xeX
@ g-ary symmetric channel: Py = (1 — 9, ﬁ, e %) for 6 € [0,1]
(-*Pz) = W5
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More Noisy and Degradation Regions

e Fix g-ary symmetric channel W;s with ¢ € [0, 1].
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@ More noisy region of Wy is

more-noisy (Ws) £ {Pz : Ws =, (-* Pz)}.
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More Noisy and Degradation Regions

e Fix g-ary symmetric channel W;s with ¢ € [0, 1].
@ More noisy region of Wy is

more-noisy (Ws) £ {Pz : Ws =, (-* Pz)}.
@ Degradation region of Wj is

degrade (Ws) = {Pz : Ws =4, (- x Pz)}.
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Domination Structure of Additive Noise Channels

Theorem 3 (More Noisy and Degradation Regions)

For Ws with § € [0, qT_l} and g > 2,

degrade (W;s) = co(rows of W)
C co(rows of Wsand W)
C more-noisy (Wj)
C {Pz:[|Pz —ullp <|lws —ul2}

where co(-) — convex hull, v = (1 — 5)/( -0+ W) — uniform
pmf, and wy — first row of Wj.
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Domination Structure of Additive Noise Channels

Theorem 3 (More Noisy and Degradation Regions)

For Ws with § € [0, qT_l} and g > 2,

degrade (W;s) = co(rows of W)
C co(rows of Wsand W)
C more-noisy (Wj)
C {Pz:[|Pz —ullp <|lws —ul2}

where co(-) — convex hull, v = (1 — 5)/( -0+ W) — uniform
pmf, and wy — first row of Wj.

Furthermore, more-noisy (W;) is closed, convex, and invariant under
permutations of (X, ®).

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 29 June 2017
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case:
(0,0,1)

\
\

S

R
\ 1o
=

\

D

probability
/" symmetric channels simplex
Wo = (17070) (07 170)
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case:
(0,0,1)

degrade (W)

\
\
S
R
\ 1o
=
\
D
\

probability
/" symmetric channels simplex
Wo = (17070) (07 170)
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case:
(0,0,1)

degrade (W)
lower bound

probability
/ mmetric channels simplex
wo = (1.0,0) 0,1,0
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case:
(0,0,1)

upper bound
degrade (W)

Urobablllty

symmetrlc channels simplex
wo = (1,0,0) 0,1,0
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case:
(0,0,1)

upper bound

more-noisy (W)
" 4

degrade (W)

lower bound

SO = (0.3.1)

1202

g 1
u=wz = (3
- 3 (37

e Si=i5
\ probability
/" symmetric channels simplex
Wo = (17070) (07 170)
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Domination Structure of Additive Noise Channels

Theorem 3 (More Noisy and Degradation Regions)

For Ws with § € [0, qT_l} and g > 2,

degrade (W;s) = co(rows of W)

co (rows of Wsand W)
more-noisy (Ws)

{Pz: Pz —ulle < [lws — ull2}

N 1N 1N

where co(-) — convex hull, v = (1 — 5)/(1 — 0+ ﬁ), u — uniform
pmf, and wy — first row of Wj.

Furthermore, more-noisy (W;) is closed, convex, and invariant under
permutations of (X, ®).
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

e more-noisy (Wj) is convex, invariant under permutations of (X, ®)
= suffices to prove Ws =, W,.
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

e more-noisy (Wj) is convex, invariant under permutations of (X, ®)
= suffices to prove Ws =, W,.

@ By Theorem 1,

VPx, Wsdiag(PxWs) ™t Wy >=psp W, diag(PxW,)™ " W,
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

e more-noisy (Wj) is convex, invariant under permutations of (X, ®)
= suffices to prove Ws =, W,.

@ By Theorem 1,

VPx, Wsdiag(PxWs) ™t Wy >=psp W, diag(PxW,)™ " W,
& 12> [|A]

where ||-||,, — operator norm, and A is symmetric PSD:

N

A2 diag(w,) 2 W, W, diag(ws) Wy W, diag(w,)~

with ws — first row of Wj, and w., — first row of W.,.
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

e more-noisy (Wj) is convex, invariant under permutations of (X, ®)
= suffices to prove Ws =, W,.

@ By Theorem 1,

VPx, Wsdiag(PxWs) ™t Wy >=psp W, diag(PxW,)™ " W,
& 12> [|A]

where ||-||,, — operator norm, and A is symmetric PSD:

N

A2 diag(w,) 2 W, W, diag(ws) Wy W, diag(w,)~
with ws — first row of Wj, and w., — first row of W.,.

@ A has left eigenvector ,/w; > 0 with eigenvalue 1:

VLA = /W
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

@ A >0 (entry-wise) = largest eigenvalue of Ais 1
by Perron-Frobenius theorem, because ,/w, > 0.
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

@ A >0 (entry-wise) = largest eigenvalue of Ais 1
by Perron-Frobenius theorem, because ,/w, > 0.

e Since A — symmetric PSD, A> 0 = |Al|,, < 1.
= Suffices to prove A > 0.
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Proof Sketch: co(rows of Wsand W.) C more-noisy (Wj)

@ A >0 (entry-wise) = largest eigenvalue of Ais 1
by Perron-Frobenius theorem, because ,/w, > 0.

e Since A — symmetric PSD, A> 0 = |Al|,, < 1.
= Suffices to prove A > 0.

o Verify that:

1-96

1-6+ 2%

Y (g—1)?
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© Introduction
e Equivalent Characterizations of Less Noisy Preorder
© Conditions for Less Noisy Domination by Symmetric Channels

@ Consequences of Less Noisy Domination by Symmetric Channels
@ Log-Sobolev Inequalities via Comparison of Dirichlet Forms
@ Interpretation via Wyner's Wiretap Channel
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Log-Sobolev Inequalities

@ Consider irreducible Markov chain V' with uniform stationary pmf u
on state space of size gq.
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Log-Sobolev Inequalities

o Consider irreducible Markov chain V' with uniform stationary pmf u
on state space of size gq.

@ Dirichlet form &y : R x R — RT

1 V+ VT
Ev(fF,A)2=fT(1————|f
V(?) q ( 5 >
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Log-Sobolev Inequalities

o Consider irreducible Markov chain V' with uniform stationary pmf u
on state space of size gq.

o Dirichlet form &y : RY x R — RT

o ler(_VAVT
Ev (.= f </ ) f

@ Log-Sobolev inequality with constant o € R™:
For every f € RY such that fTf= q,

D(fzuHu) =

I
—
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Log-Sobolev Inequalities

o Consider irreducible Markov chain V' with uniform stationary pmf u
on state space of size gq.

o Dirichlet form &y : RY x R — RT

o ler(_VAVT
Ev (.= f </ ) f

@ Log-Sobolev inequality with constant o € R™:
For every f € RY such that fTf= q,

1 q
D (f?u||u) :quFmg )<= gv(f f).

@ Log-Sobolev constant — largest « satisfying log-Sobolev inequality.
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Comparison of Dirichlet Forms

@ Standard Dirichlet form:

Estd (F,F) 2 VAR, (

MQ
Q\I—‘
I\)
/—\
=
| =
Ih
e ®
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Comparison of Dirichlet Forms

e For standard Dirichlet form, Euq (f, f) = VAR, (f),
log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

log(q — 1)

D (f2ul|u) < 2 f,f
(Fulu) < TR e (7.1)
for all f € R9 with fTf = q.
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Comparison of Dirichlet Forms

e For standard Dirichlet form, Euq (f, f) = VAR, (f),
log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

log(q — 1)

D (f? < 908G — 2) ff
( uHu)— (q—2) gStd(? )
for all f € R9 with fTf = q.

Theorem 4 (Domination of Dirichlet Forms)

For channels W5 and V with § € [0, q%ql] and stationary pmf u,

)
Ws =,V = &y > % Estd pointwise .
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Comparison of Dirichlet Forms

e For standard Dirichlet form, Euq (f, f) = VAR, (f),
log-Sobolev constant known [Diaconis-Saloff-Coste 1996]:

log(q — 1)

D (f? < 908G — 2) ff
( uHu)— (q—2) gStd(? )
for all f € R9 with fTf = q.

Theorem 4 (Domination of Dirichlet Forms)

For channels W5 and V with § € [0, q%ql] and stationary pmf u,

)
Ws =,V = &y > % Estd pointwise .

o W;s =, V = log-Sobolev inequality for V/,
—1)log(q —1)
D(Fu|u) < 9
(Fulju) < =20 88
for every f € RY satisfying f'f = q.

Ev(f,f)

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 29 June 2017



Interpretation via Wyner's Wiretap Channel

yn _
%4 Decoder — M

XTl

M — Encoder

Zn
Ws Eavesdropper

o V — main channel, Ws — eavesdropper channel
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Interpretation via Wyner's Wiretap Channel

yn _
%4 Decoder — M

XTl

M — Encoder

Zn
Ws Eavesdropper

@ V — main channel, W5 — eavesdropper channel

@ Secrecy capacity — maximum rate to legal receiver such that
P(M # M) —0and 1/(M;Z") — 0

Cs = rlgaxl(U; Y)—-1(U; 2) [Csiszar-Korner 1978]
U, X
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Interpretation via Wyner's Wiretap Channel

yn _
%4 Decoder — M

XTl

M — Encoder

Zn
Ws Eavesdropper

@ V — main channel, W5 — eavesdropper channel

@ Secrecy capacity — maximum rate to legal receiver such that
P(M # M) —0and 1/(M;Z") — 0

Cs = rlgaxl(U; Y)—-1(U; 2) [Csiszar-Korner 1978]
U, X

o Prop [Csiszér-Korner 1978]: Cs =0 < W5 =, V.
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Interpretation via Wyner's Wiretap Channel

yn _
%4 Decoder — M

XTl

M — Encoder

Zn
Ws Eavesdropper

@ V — main channel, W5 — eavesdropper channel
@ Secrecy capacity — maximum rate to legal receiver such that
P(M # M) —0and 1/(M;Z") — 0

Cs = rlgaxl(U; Y)—-1(U; 2) [Csiszar-Korner 1978]
U, X

o Prop [Csiszér-Korner 1978]: Cs =0 < W5 =, V.

@ Finding maximally noisy W5 =, V establishes
minimal noise on Pz x so that secret communication feasible.
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Thank Youl

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination
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