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Motivation: Information Propagation in 2D Grid

How does information spread in time?

Can we invent relay functions so that far boundary contains
non-trivial information about the original bit?
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Motivation: Broadcasting on Trees

Fix infinite tree T with branching number br(T ).

Root X0,0 ∼ Bernoulli
(
1
2

)
Edges are independent BSCs with crossover probability δ ∈

(
0, 12
)
.

Let P
(k)
ML = P

(
X̂ k
ML(Xk) 6= X0,0

)
, where Xk =

(
Xk,0, . . . ,Xk,br(T )k−1

)
.
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Motivation: Broadcasting on Trees

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

If δ < 1
2 −

1

2
√

br(T )
, then reconstruction possible: lim

k→∞
P
(k)
ML <

1
2 .

If δ > 1
2 −

1

2
√

br(T )
, then reconstruction impossible: lim

k→∞
P
(k)
ML = 1

2 .

Proof Idea: Strong data processing inequality [AG76, ES99]
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If (1− 2δ)2 br(T ) > 1, then reconstruction possible: lim
k→∞

P
(k)
ML <

1
2 .

If (1− 2δ)2 br(T ) < 1, then reconstruction impossible: lim
k→∞

P
(k)
ML = 1

2 .

Proof Idea: Strong data processing inequality [AG76, ES99]

Layers grow by br(T ) and
information contracts by
(1− 2δ)2. So, whichever
effect wins determines

reconstruction.
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Motivation: Broadcasting on Trees

Intuition: In tree T , layers grow exponentially with rate br(T )
and information contracts with rate (1− 2δ)2.
So, whichever effect wins determines reconstruction.

If intuition correct, then broadcasting impossible on finite-dimensional
grids, because layers grow polynomially.

Can there be any graph with sub-exponentially growing
layer sizes such that reconstruction possible?

Surprise: Yes, and in fact, even logarithmic growth suffices
(doubly-exponential reduction compared to trees (!)).

But need nice loops to aggregate information.
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Formal Model: Broadcasting on Bounded Indegree DAGs

Fix infinite directed acyclic graph (DAG) with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

X0,0 ∼ Bernoulli
(
1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 12
)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.
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Broadcasting Problem

Let Xk , (Xk,0, . . . ,Xk,Lk−1).

Can we decode X0 from Xk as k →∞?

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

Binary Hypothesis Testing: Let X̂ k
ML(Xk) ∈ {0, 1} be maximum

likelihood (ML) decoder with probability of error:

P
(k)
ML , P

(
X̂ k
ML(Xk) 6= X0,0

)

=
1

2

(
1−

∥∥PXk |X0=1 − PXk |X0=0

∥∥
TV

)

.

By data processing inequality, TV distance contracts as k increases.

Broadcasting/Reconstruction possible if:

lim
k→∞

P
(k)
ML <

1

2
⇔ lim

k→∞

∥∥PXk |X0=1 − PXk |X0=0

∥∥
TV

> 0

.

For which δ, d , {Lk}, and Boolean processing functions
is reconstruction possible?
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Related Models in the Literature

Communication Networks:
Sender broadcasts single bit through network.

Reliable Computation and Storage:
Broadcasting model is noisy circuit to remember a bit using perfect
gates and faulty wires.

Probabilistic Cellular Automata:
roadcasting on 2D regular grid parallels 1D probabilistic cellular
automata.

Ancestral Data Reconstruction:
Reconstruction on trees ⇔ Infer trait of ancestor from observed
population.

Ferromagnetic Ising Models: [BRZ95, EKPS00]
Reconstruction impossible on tree ⇔ Free boundary Gibbs state of
Ising model on tree is extremal.
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Random DAG Model

Fix {Lk} and d > 1.

For each node Xk,j , randomly and independently select d parents
from level k − 1 (with repetition).
This defines random DAG G .
P
(k)
ML(G ) – ML decoding probability of error for DAG G

σk , 1
Lk

∑Lk−1
j=0 Xk,j – sufficient statistic of Xk for σ0 = X0,0

in the absence of knowledge of G
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Random DAG with Majority Processing

Theorem (Phase Transition for d ≥ 3)

Consider random DAG model with d ≥ 3 and majority processing (with

ties broken randomly). Let δmaj , 1
2 −

2d−2

dd/2e( d
dd/2e)

.

Suppose δ ∈ (0, δmaj). Then, there exists C (δ, d) > 0 such that if
Lk ≥ C (δ, d) log(k), then reconstruction possible:

lim sup
k→∞

P
(
Ŝk 6= X0,0

)
<

1

2

where Ŝk , 1
{
σk ≥ 1

2

}
is majority decoder.

Suppose δ ∈
(
δmaj,

1
2

)
. Then, there exists D(δ, d) > 1 such that if

Lk = o
(
D(δ, d)k

)
, then reconstruction impossible:

lim
k→∞

P
(k)
ML(G ) =

1

2
G -a.s.
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Proof Intuition

Suppose d = 3 and δmaj = 1
6 .

Conditioned on σk−1 = σ ∈ [0, 1],

Define the cubic polynomial

gδ(σ) , (σ ∗ δ)3 + 3(σ ∗ δ)2(1− σ ∗ δ).

Concentration: For large k , σk ≈ gδ(σk−1) given σk−1.

Case δ < δmaj: 3 fixed points Case δ > δmaj: 1 fixed point
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Remarks:

δmaj = 1
6 for d = 3 appears in reliable computation [vNe56, HW91].

δmaj for odd d ≥ 3 also relevant in reliable computation [ES03].

δmaj for d ≥ 3 relevant in recursive reconstruction on trees [Mos98].
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Questions:

Broadcasting possible with sub-logarithmic Lk?

Broadcasting possible when δ > δmaj with other processing functions?

What about d = 2?

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 14 / 26



Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic Lk?

Proposition (Layer Size Impossibility Result)

For any deterministic DAG, if:

Lk ≤
log(k)

d log
(

1
2δ

) ,
then reconstruction impossible for all processing functions:

lim
k→∞

P
(k)
ML =

1

2
.

No, broadcasting impossible with sub-logarithmic Lk !
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Partial Converse Results

Broadcasting possible when δ > δmaj

with other processing functions?

Proposition (Single Vertex Reconstruction)

Consider random DAG model with d ≥ 3.

If δ ∈ (0, δmaj), Lk ≥ C (δ, d) log(k), and processing functions are
majority, then single vertex reconstruction possible:

lim sup
k→∞

P(Xk,0 6= X0,0) <
1

2
.

If δ ∈
[
δmaj,

1
2

)
, d is odd, lim

k→∞
Lk =∞, and inf

n≥k
Ln = O

(
d2k
)
, then

single vertex reconstruction impossible for all processing functions
(which may be graph dependent):

lim
k→∞

E
[∥∥∥PXk,0|G ,X0,0=1 − PXk,0|G ,X0,0=0

∥∥∥
TV

]
= 0 .

Remark: Converse uses reliable computation results [HW91, ES03].
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Partial Converse Results

Broadcasting possible when δ > δmaj

with other processing functions?

Remark: Converse uses reliable computation results [HW91, ES03].

Proposition (Information Percolation [ES99, PW17])

For any deterministic DAG, if:

δ >
1

2
− 1

2
√
d

> δmaj

and Lk = o

(
1

((1− 2δ)2d)k

)

then reconstruction impossible for all processing functions:

lim
k→∞

P
(k)
ML =

1

2
.
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Random DAG with NAND Processing

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions.

Let δnand , 3−
√
7

4 .

Suppose δ ∈ (0, δnand). Then, there exist C (δ) > 0 and t(δ) ∈ (0, 1)
such that if Lk ≥ C (δ) log(k), then reconstruction possible:

lim
k→∞

E
[
P
(k)
ML(G )

]
≤ lim sup

k→∞
P
(
T̂2k 6= X0,0

)
<

1

2

where T̂k , 1{σk ≥ t(δ)} is thresholding decoder.

Suppose δ ∈
(
δnand,

1
2

)
. Then, there exist D(δ),E (δ) > 1 such that if

Lk = o
(
D(δ)k

)
and lim inf

k→∞
Lk > E (δ), then reconstruction impossible:

lim
k→∞

P
(k)
ML(G ) =

1

2
G -a.s.

Remark: δnand appears in reliable computation [EP98, Ung07].
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Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting ⇒ DAG where reconstruction possible exists.

For example:

Corollary (Existence of Deterministic Broadcasting DAGs)

For every d ≥ 3, δ ∈ (0, δmaj), and Lk ≥ C (δ, d) log(k), there exists DAG
with majority processing functions such that reconstruction possible:

lim
k→∞

P
(k)
ML <

1

2
.

Can we construct such DAGs for any δ ∈
(
0, 12
)
?
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Regular Bipartite Expander Graphs

Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite
graph Bn = (Un,Vn,En) with disjoint vertex sets Un,Vn of cardinality
|Un| = |Vn| = n, edge multiset En, and the lossless expansion property:

∀S ⊆ Un, |S | =
n

d6/5
⇒ |Γ(S)| ≥

(
1− 2

d1/5

)
d |S |

where Γ(S) , {v ∈ Vn : ∃u ∈ S , (u, v) ∈ En} is neighborhood of S .

Intuition: Expander graphs are sparse, but have high connectivity.

vertices

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 20 / 26



Regular Bipartite Expander Graphs

Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite
graph Bn = (Un,Vn,En) with disjoint vertex sets Un,Vn of cardinality
|Un| = |Vn| = n, edge multiset En, and the lossless expansion property:

∀S ⊆ Un, |S | =
n

d6/5
⇒ |Γ(S)| ≥

(
1− 2

d1/5

)
d |S |

where Γ(S) , {v ∈ Vn : ∃u ∈ S , (u, v) ∈ En} is neighborhood of S .

Intuition: Expander graphs are sparse, but have high connectivity.

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 20 / 26



Regular Bipartite Expander Graphs

Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite
graph Bn = (Un,Vn,En) with disjoint vertex sets Un,Vn of cardinality
|Un| = |Vn| = n, edge multiset En, and the lossless expansion property:

∀S ⊆ Un, |S | =
n

d6/5
⇒ |Γ(S)| ≥

(
1− 2

d1/5

)
d |S |

where Γ(S) , {v ∈ Vn : ∃u ∈ S , (u, v) ∈ En} is neighborhood of S .

Intuition: Expander graphs are sparse, but have high connectivity.

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 20 / 26



Construction of DAGs where Broadcasting is Possible

Fix any δ ∈
(
0, 12
)

and any sufficiently large odd d = d(δ).

Fix L0 = 1, Lk = N for k ∈ {1, . . . , bMc} where N = N(δ) sufficiently
large and M = exp

(
N/(4d12/5)

)
, and

∀ r ≥ 1, M2r−1
< k ≤ M2r , Lk = 2rN

such that Lk = Θ(log(k)).

Construct bounded degree deterministic “expander DAG”:

Each X1,j has one edge from X0,0.

Case Lk+1 = Lk :
Edge multiset Xk → Xk+1 given by expander BLk .

Case Lk+1 = 2Lk :
Both edge multisets Xk → (Xk+1,0, . . . ,Xk+1,Lk−1) and
Xk → (Xk+1,Lk , . . . ,Xk+1,Lk+1−1) given by expander BLk .
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Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

level  𝑀

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

level  𝑀 + 1

level  𝑀

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

𝐵

level  𝑀 + 1

level  𝑀

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

𝐵

level  𝑀 + 1

𝐵

level  𝑀

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

𝐵

level  𝑀 + 1

𝐵

level  𝑀

𝐵

level  𝑀 + 2

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Illustration of “Expander DAG”:
level 0

level 1

𝐵

level 2

𝐵

level  𝑀 ‐ 1

𝐵

level  𝑀 + 1

𝐵

level  𝑀

𝐵

level  𝑀 + 2

𝐵

level  𝑀

level  𝑀 ‐ 1

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks 10 July 2019 22 / 26



Construction of DAGs where Broadcasting is Possible

Theorem (Broadcasting in Expander DAG)

For “expander DAG” with majority processing, reconstruction possible:

lim sup
k→∞

P
(
Ŝk 6= X0,0

)
<

1

2

where Ŝk = 1
{
σk ≥ 1

2

}
is majority decoder.

Proposition (Computational Complexity of DAG Construction)

For any δ ∈
(
0, 12
)
, the d-regular bipartite expander graphs for levels

0, . . . , k of “expander DAG” can be constructed in:

deterministic quasi-polynomial time O( exp( Θ(log(k) log log(k)) ) ),

randomized polylogarithmic time O( log(k) log log(k) )
with positive success probability (which depends on δ but not k).

Remark: d-regular bipartite graphs.
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Ŝk 6= X0,0

)
<

1

2

where Ŝk = 1
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Conclusion

Main Contributions:

Broadcasting in random DAGs with d ≥ 3 and majority processing

Broadcasting in random DAGs with d = 2 and NAND processing

Broadcasting in “expander DAG” construction

Future Directions:

Prove conjecture that for random DAG with odd d ≥ 3 (or d = 2),
reconstruction impossible for all processing functions when δ ≥ δmaj

(or δ ≥ δnand).

Find polynomial time construction of DAGs with sufficiently large d
given some δ such that broadcasting possible.

Construct DAGs with arbitrary d ≥ 3 and δ < δmaj, or d = 2 and
δ < δnand, such that broadcasting possible.
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Thank You!
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