Broadcasting on Random Networks

Anuran Makur, Elchanan Mossel, and Yury Polyanskiy

EECS and Mathematics Departments Massachusetts Institute of Technology

ISIT 2019

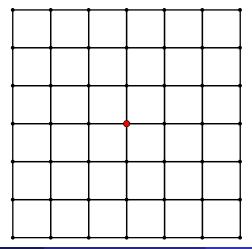
A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks

Outline

Introduction

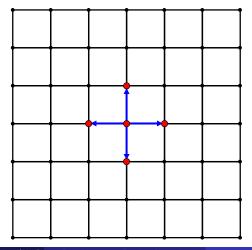
- Motivation
- Formal Model and Broadcasting Problem
- Related Models in the Literature
- 2 Results on Random DAGs
- 3 Deterministic Broadcasting DAGs

• How does information spread in time?



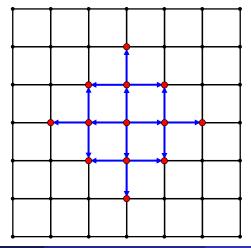
A. Makur, E. Mossel, Y. Polyanskiy (MIT)

• How does information spread in time?



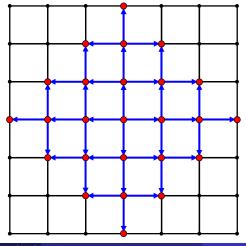
A. Makur, E. Mossel, Y. Polyanskiy (MIT)

• How does information spread in time?



A. Makur, E. Mossel, Y. Polyanskiy (MIT)

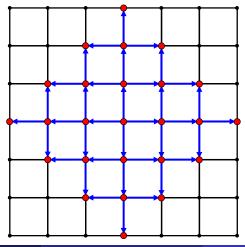
• How does information spread in time?



) 2 (~

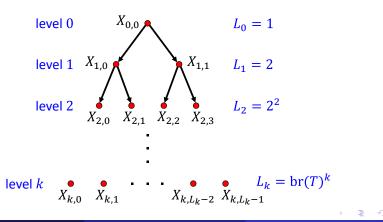
A. Makur, E. Mossel, Y. Polyanskiy (MIT)

- How does information spread in time?
- Can we invent relay functions so that far boundary contains non-trivial information about the original bit?

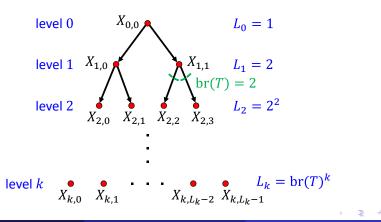


A. Makur, E. Mossel, Y. Polyanskiy (MIT)

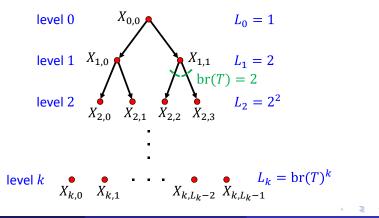
• Fix infinite tree T with branching number br(T).



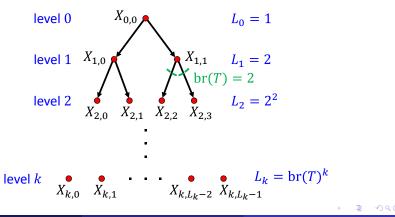
• Fix infinite tree T with branching number br(T).



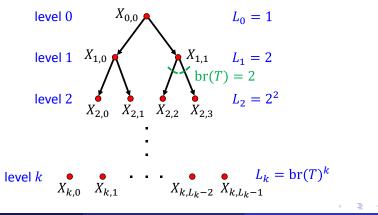
- Fix infinite tree T with branching number br(T).
- Root $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$



- Fix infinite tree T with branching number br(T).
- Root $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$
- Edges are independent BSCs with crossover probability $\delta \in (0, \frac{1}{2})$.

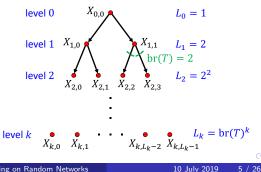


- Fix infinite tree T with branching number br(T).
- Root $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$
- Edges are independent BSCs with crossover probability $\delta \in (0, \frac{1}{2})$.
- Let $P_{ML}^{(k)} = \mathbb{P}(\hat{X}_{ML}^{k}(X_{k}) \neq X_{0,0})$, where $X_{k} = (X_{k,0}, \dots, X_{k,br(\mathcal{T})^{k}-1})$.

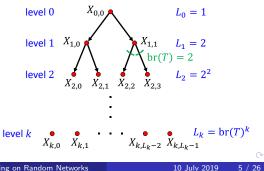


Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

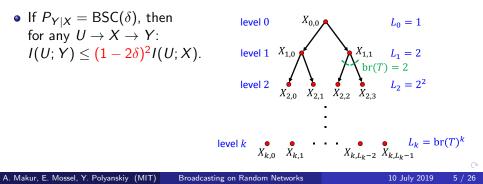
• If
$$\delta < \frac{1}{2} - \frac{1}{2\sqrt{br(T)}}$$
, then reconstruction possible: $\lim_{k \to \infty} P_{ML}^{(k)} < \frac{1}{2}$.
• If $\delta > \frac{1}{2} - \frac{1}{2\sqrt{br(T)}}$, then reconstruction impossible: $\lim_{k \to \infty} P_{ML}^{(k)} = \frac{1}{2}$.



Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

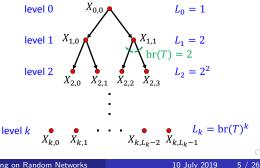


Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])



Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $P_{Y|X} = BSC(\delta)$, then for any $U \to X \to Y$: $I(U; Y) < (1 - 2\delta)^2 I(U; X).$
- For any $0 \le i < br(T)^k$, $I(X_{0,0}; X_{k,i}) \leq (1-2\delta)^{2k}$



Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

• If $(1 - 2\delta)^2$ br(T) > 1, then reconstruction possible: $\lim_{k \to \infty} P_{ML}^{(k)} < \frac{1}{2}$.

• If $(1-2\delta)^2 \operatorname{br}(\mathcal{T}) < 1$, then reconstruction impossible: $\lim_{k \to \infty} P_{ML}^{(k)} = \frac{1}{2}$.

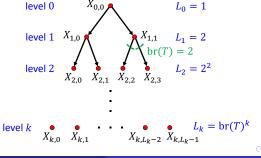
• If
$$P_{Y|X} = BSC(\delta)$$
, then
for any $U \to X \to Y$:
 $I(U; Y) \le (1 - 2\delta)^2 I(U; X)$.
• For any $0 \le j < br(T)^k$,
 $I(X_{0,0}; X_{k,j}) \le (1 - 2\delta)^{2k}$.
• $br(T)^k$ paths from X_0 to X_k :
 $I(X_0; X_k) \le (br(T)(1 - 2\delta)^2)^k$.
• $br(T)^k$ level k
 $X_{k,0}$
• $X_{k,1}$
• C
 $X_{k,1}$
• C
 $X_{k,2}$
• C
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
 $X_{k,2}$
• C
• C
 $X_{k,2}$
• C
• C

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

If (1 - 2δ)² br(T) > 1, then reconstruction possible: lim_{k→∞} P^(k)_{ML} < ¹/₂.
If (1 - 2δ)² br(T) < 1, then reconstruction impossible: lim_{k→∞} P^(k)_{ML} = ¹/₂.

Proof Idea: Strong data processing inequality [AG76, ES99]

Layers grow by br(T) and information contracts by $(1-2\delta)^2$. So, whichever effect wins determines reconstruction.



Intuition: In tree *T*, layers grow exponentially with rate br(*T*) and information contracts with rate (1 – 2δ)².
 So, whichever effect wins determines reconstruction.

- Intuition: In tree *T*, layers grow exponentially with rate br(*T*) and information contracts with rate (1 2δ)².
 So, whichever effect wins determines reconstruction.
- If intuition correct, then broadcasting impossible on finite-dimensional grids, because layers grow polynomially.

- Intuition: In tree *T*, layers grow exponentially with rate br(*T*) and information contracts with rate (1 2δ)².
 So, whichever effect wins determines reconstruction.
- If intuition correct, then broadcasting impossible on finite-dimensional grids, because layers grow polynomially.

Can there be any graph with sub-exponentially growing layer sizes such that reconstruction possible?

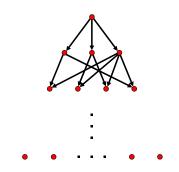
- Intuition: In tree *T*, layers grow exponentially with rate br(*T*) and information contracts with rate (1 2δ)².
 So, whichever effect wins determines reconstruction.
- If intuition correct, then broadcasting impossible on finite-dimensional grids, because layers grow polynomially.

Can there be any graph with sub-exponentially growing layer sizes such that reconstruction possible?

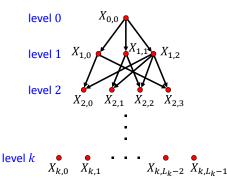
Surprise: Yes, and in fact, even logarithmic growth suffices (doubly-exponential reduction compared to trees (!)).

But need nice loops to aggregate information.

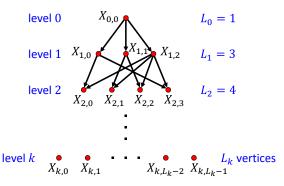
• Fix infinite directed acyclic graph (DAG) with single source node.



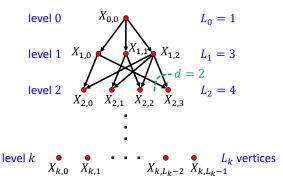
- Fix infinite DAG with single source node.
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level k



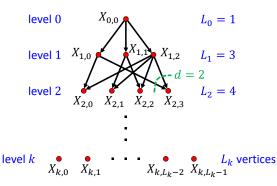
- Fix infinite DAG with single source node.
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k



- Fix infinite DAG with single source node.
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- *d* indegree of each node

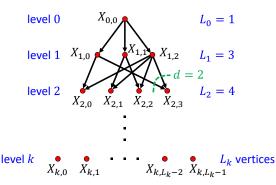


- Fix infinite DAG with single source node.
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- *d* indegree of each node



- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Every edge is independent BSC with crossover probability $\delta \in (0, \frac{1}{2})$.

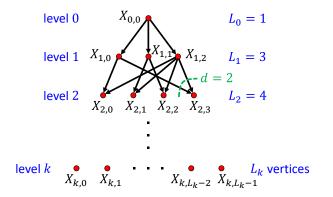
- Fix infinite DAG with single source node.
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- *d* indegree of each node



- $X_{0,0} \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
- Every edge is independent BSC with crossover probability $\delta \in (0, \frac{1}{2})$.
- Nodes combine inputs with *d*-ary Boolean functions.
- This defines joint distribution of {X_{k,j}}.

• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

• Can we decode X_0 from X_k as $k \to \infty$?



• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

- Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing: Let Â^k_{ML}(X_k) ∈ {0,1} be maximum likelihood (ML) decoder with probability of error:

 $P_{\mathsf{ML}}^{(k)} \triangleq \mathbb{P}\Big(\hat{X}_{\mathsf{ML}}^k(X_k) \neq X_{0,0}\Big)$

• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

- Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing: Let Â^k_{ML}(X_k) ∈ {0,1} be maximum likelihood (ML) decoder with probability of error:

$$P_{\mathsf{ML}}^{(k)} \triangleq \mathbb{P}\Big(\hat{X}_{\mathsf{ML}}^{k}(X_{k}) \neq X_{0,0}\Big) = \frac{1}{2}\Big(1 - \left\|P_{X_{k}|X_{0}=1} - P_{X_{k}|X_{0}=0}\right\|_{\mathsf{TV}}\Big)$$

• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

- Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing: Let Â^k_{ML}(X_k) ∈ {0,1} be maximum likelihood (ML) decoder with probability of error:

$$P_{\mathsf{ML}}^{(k)} \triangleq \mathbb{P}\Big(\hat{X}_{\mathsf{ML}}^{k}(X_{k}) \neq X_{0,0}\Big) = rac{1}{2}\Big(1 - \left\|P_{X_{k}|X_{0}=1} - P_{X_{k}|X_{0}=0}\right\|_{\mathsf{TV}}\Big)$$

• By data processing inequality, TV distance contracts as k increases.

• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

- Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing: Let Â^k_{ML}(X_k) ∈ {0,1} be maximum likelihood (ML) decoder with probability of error:

$$P_{ML}^{(k)} \triangleq \mathbb{P}\Big(\hat{X}_{ML}^{k}(X_{k}) \neq X_{0,0}\Big) = \frac{1}{2}\Big(1 - \|P_{X_{k}|X_{0}=1} - P_{X_{k}|X_{0}=0}\|_{\mathsf{TV}}\Big)$$

- By data processing inequality, TV distance contracts as k increases.
- Broadcasting/Reconstruction possible if:

$$\lim_{k \to \infty} P_{\mathsf{ML}}^{(k)} < \frac{1}{2} \quad \Leftrightarrow \quad \lim_{k \to \infty} \left\| P_{X_k | X_0 = 1} - P_{X_k | X_0 = 0} \right\|_{\mathsf{TV}} > 0$$

and Broadcasting/Reconstruction impossible if:

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} = \frac{1}{2} \quad \Leftrightarrow \quad \lim_{k\to\infty} \left\| P_{X_k|X_0=1} - P_{X_k|X_0=0} \right\|_{\mathsf{TV}} = 0.$$

• Let
$$X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1}).$$

- Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing: Let X̂^k_{ML}(X_k) ∈ {0,1} be maximum likelihood (ML) decoder with probability of error:

$$P_{ML}^{(k)} \triangleq \mathbb{P}\Big(\hat{X}_{ML}^{k}(X_{k}) \neq X_{0,0}\Big) = \frac{1}{2}\Big(1 - \|P_{X_{k}|X_{0}=1} - P_{X_{k}|X_{0}=0}\|_{\mathsf{TV}}\Big)$$

- By data processing inequality, TV distance contracts as k increases.
- Broadcasting/Reconstruction possible iff:

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} < \frac{1}{2} \quad \Leftrightarrow \quad \lim_{k\to\infty} \left\| P_{X_k|X_0=1} - P_{X_k|X_0=0} \right\|_{\mathsf{TV}} > 0 \, .$$

For which δ , d, $\{L_k\}$, and Boolean processing functions is reconstruction possible?

Related Models in the Literature

• Communication Networks:

Sender broadcasts single bit through network.

• Communication Networks:

Sender broadcasts single bit through network.

 Reliable Computation and Storage: [vNe56, HW91, ES03, Ung07] Broadcasting model is noisy circuit to remember a bit using perfect gates and faulty wires.

• Communication Networks:

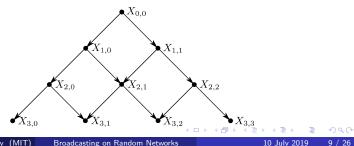
Sender broadcasts single bit through network.

• Reliable Computation and Storage:

Broadcasting model is noisy circuit to remember a bit using perfect gates and faulty wires.

Probabilistic Cellular Automata:

Impossibility of broadcasting on 2D regular grid parallels ergodicity of 1D probabilistic cellular automata.



9 / 26

• Communication Networks:

Sender broadcasts single bit through network.

• Reliable Computation and Storage:

Broadcasting model is noisy circuit to remember a bit using perfect gates and faulty wires.

• Probabilistic Cellular Automata:

Broadcasting on 2D regular grid parallels 1D probabilistic cellular automata.

• Ancestral Data Reconstruction:

Reconstruction on *trees* \Leftrightarrow Infer trait of ancestor from observed population.

• Communication Networks:

Sender broadcasts single bit through network.

• Reliable Computation and Storage:

Broadcasting model is noisy circuit to remember a bit using perfect gates and faulty wires.

• Probabilistic Cellular Automata:

Broadcasting on 2D regular grid parallels 1D probabilistic cellular automata.

• Ancestral Data Reconstruction:

Reconstruction on *trees* \Leftrightarrow Infer trait of ancestor from observed population.

Ferromagnetic Ising Models: [BRZ95, EKPS00] Reconstruction impossible on *tree* ⇔ Free boundary Gibbs state of Ising model on tree is extremal.

Introduction

2 Results on Random DAGs

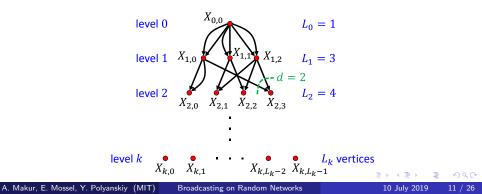
- Phase Transition for Majority Processing
- Impossibility Results for Broadcasting
- Phase Transition for NAND Processing

3 Deterministic Broadcasting DAGs

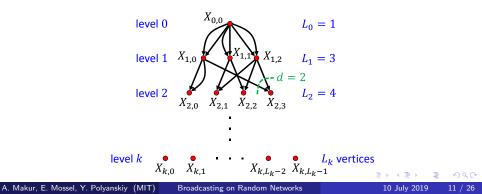
• Fix $\{L_k\}$ and d > 1.

Image: A math a math

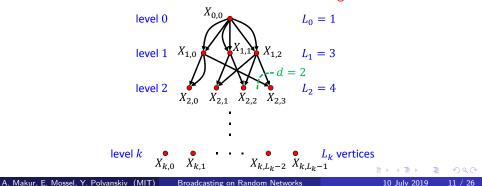
- Fix $\{L_k\}$ and d > 1.
- For each node $X_{k,j}$, randomly and independently select d parents from level k 1 (with repetition).
- This defines random DAG G.



- Fix $\{L_k\}$ and d > 1.
- For each node $X_{k,j}$, randomly and independently select d parents from level k 1 (with repetition).
- This defines random DAG G.
- $P_{ML}^{(k)}(G)$ ML decoding probability of error for DAG G



- Fix $\{L_k\}$ and d > 1.
- For each node $X_{k,j}$, randomly and independently select d parents from level k 1 (with repetition).
- This defines random DAG G.
- $P_{ML}^{(k)}(G)$ ML decoding probability of error for DAG G
- $\sigma_k \triangleq \frac{1}{L_k} \sum_{j=0}^{L_k-1} X_{k,j}$ sufficient statistic of X_k for $\sigma_0 = X_{0,0}$ in the absence of knowledge of G



Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

• Suppose $\delta \in (0, \delta_{maj})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k \triangleq \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

• Suppose $\delta \in (0, \delta_{maj})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then reconstruction possible:

$$\lim_{k\to\infty} \mathbb{E}\Big[P_{\mathsf{ML}}^{(k)}(G)\Big] \leq \limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k \triangleq \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

• Suppose $\delta \in (0, \delta_{maj})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then reconstruction possible:

$$\lim_{k\to\infty} \mathbb{E}\Big[\mathsf{P}_{\mathsf{ML}}^{(k)}(G) \Big] \leq \limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0} \Big) < \frac{1}{2}$$

where $\hat{S}_k \triangleq \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

• Suppose $\delta \in (\delta_{maj}, \frac{1}{2})$. Then, there exists $D(\delta, d) > 1$ such that if $L_k = o(D(\delta, d)^k)$, then reconstruction impossible:

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)}(G) = \frac{1}{2} \quad G\text{-a.s.}$$

• Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.

- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, level k has i.i.d. random bits

 $X_{k,j} \stackrel{\text{i.i.d.}}{\sim} \text{majority}(\text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta))$

where $\sigma * \delta = \sigma(1-\delta) + \delta(1-\sigma)$

- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, level k has i.i.d. random bits

 $X_{k,j} \stackrel{\text{i.i.d.}}{\sim} \text{majority}(\text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta))$

where $\sigma * \delta = \sigma(1 - \delta) + \delta(1 - \sigma)$, and

$$L_k \sigma_k = \sum_{j=0}^{L_k-1} X_{k,j} \sim \text{binomial}(L_k, \mathbb{E}[\sigma_k | \sigma_{k-1} = \sigma]).$$

- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, level k has i.i.d. random bits

 $X_{k,j} \stackrel{\text{i.i.d.}}{\sim} \text{majority}(\text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta), \text{Bernoulli}(\sigma * \delta))$

where $\sigma * \delta = \sigma(1-\delta) + \delta(1-\sigma)$, and

$$L_k \sigma_k = \sum_{j=0}^{L_k-1} X_{k,j} \sim \text{binomial}(L_k, g_\delta(\sigma)).$$

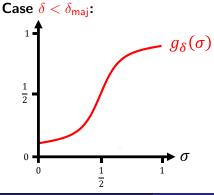
• Define the cubic polynomial:

$$g_{\delta}(\sigma) \triangleq \mathbb{E}[\sigma_k | \sigma_{k-1} = \sigma] = \mathbb{P}(X_{k,j} = 1 | \sigma_{k-1} = \sigma)$$

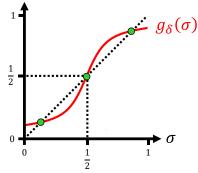
= $(\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 - \sigma * \delta)$.

- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .

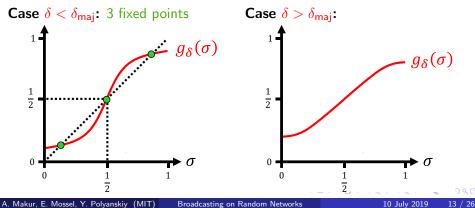
- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .
- Fixed Point Analysis:



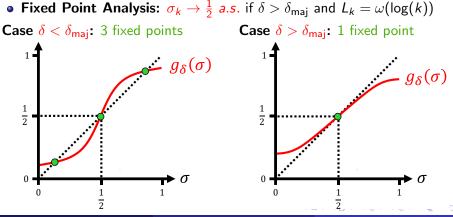
- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .
- Fixed Point Analysis: σ_k "concentrates" at fixed point near $X_{0,0}$ Case $\delta < \delta_{maj}$: 3 fixed points



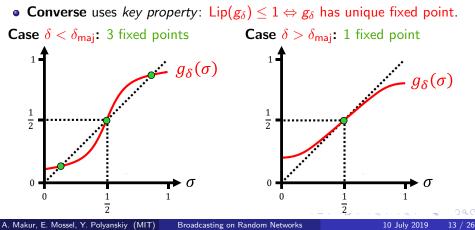
- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .
- Fixed Point Analysis:



- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .



- Suppose d = 3 and $\delta_{maj} = \frac{1}{6}$.
- Conditioned on $\sigma_{k-1} = \sigma \in [0, 1]$, $L_k \sigma_k \sim \text{binomial}(L_k, g_{\delta}(\sigma))$.
- Define the cubic polynomial $g_{\delta}(\sigma) \triangleq (\sigma * \delta)^3 + 3(\sigma * \delta)^2(1 \sigma * \delta)$.
- **Concentration:** For large k, $\sigma_k \approx g_{\delta}(\sigma_{k-1})$ given σ_{k-1} .



Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

- Suppose $\delta \in (0, \delta_{\text{maj}})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then $\lim_{k \to \infty} \mathbb{E} \Big[P_{\text{ML}}^{(k)}(G) \Big] < \frac{1}{2}$.
- Suppose $\delta \in (\delta_{\text{maj}}, \frac{1}{2})$. Then, there exists $D(\delta, d) > 1$ such that if $L_k = o(D(\delta, d)^k)$, then $\lim_{k \to \infty} P_{\text{ML}}^{(k)}(G) = \frac{1}{2}$ G-a.s.

Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

- Suppose $\delta \in (0, \delta_{\text{maj}})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then $\lim_{k \to \infty} \mathbb{E} \Big[P_{\text{ML}}^{(k)}(G) \Big] < \frac{1}{2}$.
- Suppose $\delta \in (\delta_{\text{maj}}, \frac{1}{2})$. Then, there exists $D(\delta, d) > 1$ such that if $L_k = o(D(\delta, d)^k)$, then $\lim_{k \to \infty} P_{\text{ML}}^{(k)}(G) = \frac{1}{2}$ G-a.s.

Remarks:

- $\delta_{maj} = \frac{1}{6}$ for d = 3 appears in reliable computation [vNe56, HW91].
- δ_{maj} for odd $d \ge 3$ also relevant in reliable computation [ES03].
- δ_{maj} for $d \ge 3$ relevant in recursive reconstruction on trees [Mos98].

Theorem (Phase Transition for $d \ge 3$)

Consider random DAG model with $d \ge 3$ and majority processing (with ties broken randomly). Let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$.

- Suppose $\delta \in (0, \delta_{\text{maj}})$. Then, there exists $C(\delta, d) > 0$ such that if $L_k \ge C(\delta, d) \log(k)$, then $\lim_{k \to \infty} \mathbb{E} \Big[P_{\text{ML}}^{(k)}(G) \Big] < \frac{1}{2}$.
- Suppose $\delta \in (\delta_{\text{maj}}, \frac{1}{2})$. Then, there exists $D(\delta, d) > 1$ such that if $L_k = o(D(\delta, d)^k)$, then $\lim_{k \to \infty} P_{\text{ML}}^{(k)}(G) = \frac{1}{2}$ G-a.s.

Questions:

- Broadcasting possible with sub-logarithmic *L_k*?
- Broadcasting possible when $\delta > \delta_{maj}$ with other processing functions?
- What about d = 2?

Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic L_k ?

Proposition (Layer Size Impossibility Result)

For any deterministic DAG, if:

$$L_k \leq rac{\log(k)}{d\log(rac{1}{2\delta})}\,,$$

then reconstruction impossible for all processing functions:

$$\lim_{k o\infty} P_{\mathsf{ML}}^{(k)} = rac{1}{2}$$
 .

Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic L_k ?

Proposition (Layer Size Impossibility Result)

For any deterministic DAG, if:

$$L_k \leq rac{\log(k)}{d\log(rac{1}{2\delta})}\,,$$

then reconstruction impossible for all processing functions:

$$\lim_{k\to\infty}P_{\rm ML}^{(k)}=\frac{1}{2}\,.$$

No, broadcasting impossible with sub-logarithmic L_k !

Partial Converse Results

Broadcasting possible when $\delta > \delta_{maj}$ with other processing functions?

Proposition (Single Vertex Reconstruction)

Consider random DAG model with $d \ge 3$.

If δ ∈ (0, δ_{maj}), L_k ≥ C(δ, d) log(k), and processing functions are majority, then single vertex reconstruction possible:

$$\limsup_{k o\infty} \mathbb{P}(oldsymbol{X}_{k,0}
eq X_{0,0}) < rac{1}{2}$$
 .

Broadcasting possible when $\delta > \delta_{maj}$ with other processing functions?

Proposition (Single Vertex Reconstruction)

Consider random DAG model with $d \ge 3$.

 If δ ∈ (0, δ_{maj}), L_k ≥ C(δ, d) log(k), and processing functions are majority, then single vertex reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}(X_{k,0}\neq X_{0,0}) < \frac{1}{2}$$

• If $\delta \in [\delta_{maj}, \frac{1}{2})$, d is odd, $\lim_{k \to \infty} L_k = \infty$, and $\inf_{n \ge k} L_n = O(d^{2k})$, then single vertex reconstruction impossible for all processing functions (which may be graph dependent):

$$\lim_{k\to\infty} \mathbb{E}\Big[\Big\| P_{X_{k,0}|G,X_{0,0}=1} - P_{X_{k,0}|G,X_{0,0}=0}\Big\|_{\mathsf{TV}}\Big] = 0\,.$$

Remark: Converse uses reliable computation results [HW91, ES03].

Partial Converse Results

Broadcasting possible when $\delta > \delta_{maj}$ with other processing functions?

Proposition (Information Percolation [ES99, PW17])

For any deterministic DAG, if:

$$\delta > rac{1}{2} - rac{1}{2\sqrt{d}}$$
 and $L_k = o\left(rac{1}{\left((1-2\delta)^2 d\right)^k}
ight)$

then reconstruction impossible for all processing functions:

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} = \frac{1}{2} \,.$$

Partial Converse Results

Broadcasting possible when $\delta > \delta_{maj}$ with other processing functions?

Proposition (Information Percolation [ES99, PW17])

For any deterministic DAG, if:

$$\delta > \frac{1}{2} - \frac{1}{2\sqrt{d}} > \delta_{\mathsf{maj}}$$
 and $L_k = o\left(\frac{1}{\left((1-2\delta)^2 d\right)^k}\right)$

then reconstruction impossible for all processing functions:

$$\lim_{k\to\infty} P_{\rm ML}^{(k)} = \frac{1}{2} \,.$$

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions. Let $\delta_{\text{nand}} \triangleq \frac{3-\sqrt{7}}{4}$.

Image: Image:

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions. Let $\delta_{\text{nand}} \triangleq \frac{3-\sqrt{7}}{4}$.

• Suppose $\delta \in (0, \delta_{nand})$. Then, there exist $C(\delta) > 0$ and $t(\delta) \in (0, 1)$ such that if $L_k \ge C(\delta) \log(k)$, then reconstruction possible:

$$\lim_{k\to\infty} \mathbb{E}\Big[P_{\mathsf{ML}}^{(k)}(G)\Big] \leq \limsup_{k\to\infty} \mathbb{P}\Big(\hat{T}_{2k} \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{T}_k \triangleq \mathbb{1}\{\sigma_k \ge t(\delta)\}$ is thresholding decoder.

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions. Let $\delta_{\text{nand}} \triangleq \frac{3-\sqrt{7}}{4}$.

• Suppose $\delta \in (0, \delta_{nand})$. Then, there exist $C(\delta) > 0$ and $t(\delta) \in (0, 1)$ such that if $L_k \ge C(\delta) \log(k)$, then reconstruction possible:

$$\lim_{k\to\infty} \mathbb{E}\Big[\mathsf{P}_{\mathsf{ML}}^{(k)}(G) \Big] \leq \limsup_{k\to\infty} \mathbb{P}\Big(\hat{\mathcal{T}}_{2k} \neq X_{0,0} \Big) < \frac{1}{2}$$

where $\hat{T}_k \triangleq \mathbb{1}\{\sigma_k \ge t(\delta)\}$ is thresholding decoder.

• Suppose $\delta \in (\delta_{\text{nand}}, \frac{1}{2})$. Then, there exist $D(\delta), E(\delta) > 1$ such that if $L_k = o(D(\delta)^k)$ and $\liminf_{k \to \infty} L_k > E(\delta)$, then reconstruction impossible: $\lim_{k \to \infty} P_{\text{ML}}^{(k)}(G) = \frac{1}{2} \quad G\text{-a.s.}$

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions. Let $\delta_{\text{nand}} \triangleq \frac{3-\sqrt{7}}{4}$.

• Suppose $\delta \in (0, \delta_{nand})$. Then, there exist $C(\delta) > 0$ and $t(\delta) \in (0, 1)$ such that if $L_k \ge C(\delta) \log(k)$, then reconstruction possible:

$$\lim_{k\to\infty} \mathbb{E}\Big[\mathsf{P}_{\mathsf{ML}}^{(k)}(G) \Big] \leq \limsup_{k\to\infty} \mathbb{P}\Big(\hat{\mathcal{T}}_{2k} \neq X_{0,0} \Big) < \frac{1}{2}$$

where $\hat{T}_k \triangleq \mathbb{1}\{\sigma_k \ge t(\delta)\}$ is thresholding decoder.

• Suppose $\delta \in (\delta_{\text{nand}}, \frac{1}{2})$. Then, there exist $D(\delta), E(\delta) > 1$ such that if $L_k = o(D(\delta)^k)$ and $\liminf_{k \to \infty} L_k > E(\delta)$, then reconstruction impossible: $\lim_{k \to \infty} P_{\text{ML}}^{(k)}(G) = \frac{1}{2}$ G-a.s.

Remark: δ_{nand} appears in reliable computation [EP98, Ung07].

A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broad

Broadcasting on Random Networks

10 July 2019 17 / 26

Introduction

- 2 Results on Random DAGs
- 3 Deterministic Broadcasting DAGs
 - Existence of DAGs where Broadcasting is Possible
 - Construction of DAGs where Broadcasting is Possible

4 Conclusion

Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting \Rightarrow DAG where reconstruction possible exists.

Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting \Rightarrow DAG where reconstruction possible exists. For example:

Corollary (Existence of Deterministic Broadcasting DAGs)

For every $d \ge 3$, $\delta \in (0, \delta_{maj})$, and $L_k \ge C(\delta, d) \log(k)$, there exists DAG with majority processing functions such that reconstruction possible:

$$\lim_{k\to\infty}P_{\rm ML}^{(k)}<\frac{1}{2}\,.$$

Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting \Rightarrow DAG where reconstruction possible exists. For example:

Corollary (Existence of Deterministic Broadcasting DAGs)

For every $d \ge 3$, $\delta \in (0, \delta_{maj})$, and $L_k \ge C(\delta, d) \log(k)$, there exists DAG with majority processing functions such that reconstruction possible:

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} < \frac{1}{2} \, .$$

Can we construct such DAGs for any $\delta \in (0, \frac{1}{2})$?

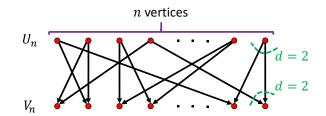
Regular Bipartite Expander Graphs

Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite graph $B_n = (U_n, V_n, E_n)$ with disjoint vertex sets U_n, V_n of cardinality $|U_n| = |V_n| = n$, edge multiset E_n , and the lossless expansion property:

$$orall S\subseteq U_n, \quad |S|=rac{n}{d^{6/5}} \;\; \Rightarrow \;\; |\Gamma(S)|\geq igg(1-rac{2}{d^{1/5}}igg)d|S|$$

where $\Gamma(S) \triangleq \{v \in V_n : \exists u \in S, (u, v) \in E_n\}$ is neighborhood of S.



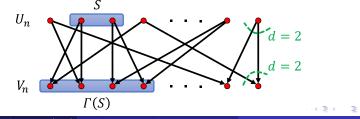
Regular Bipartite Expander Graphs

Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite graph $B_n = (U_n, V_n, E_n)$ with disjoint vertex sets U_n, V_n of cardinality $|U_n| = |V_n| = n$, edge multiset E_n , and the lossless expansion property:

$$orall S\subseteq U_n, \quad |S|=rac{n}{d^{6/5}} \;\; \Rightarrow \;\; |\Gamma(S)|\geq igg(1-rac{2}{d^{1/5}}igg)d|S|$$

where $\Gamma(S) \triangleq \{v \in V_n : \exists u \in S, (u, v) \in E_n\}$ is neighborhood of S.



Regular Bipartite Expander Graphs

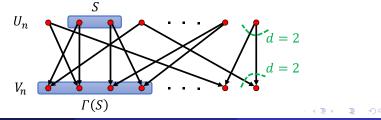
Proposition (Existence of Expander Graphs [Pin73, SS96])

For all (large) d and all sufficiently large n, there exists d-regular bipartite graph $B_n = (U_n, V_n, E_n)$ with disjoint vertex sets U_n, V_n of cardinality $|U_n| = |V_n| = n$, edge multiset E_n , and the lossless expansion property:

$$orall S\subseteq U_n, \quad |S|=rac{n}{d^{6/5}} \;\; \Rightarrow \;\; |\Gamma(S)|\geq igg(1-rac{2}{d^{1/5}}igg)d|S|$$

where $\Gamma(S) \triangleq \{v \in V_n : \exists u \in S, (u, v) \in E_n\}$ is neighborhood of S.

Intuition: Expander graphs are sparse, but have high connectivity.



• Fix any $\delta \in (0, \frac{1}{2})$ and any sufficiently large odd $d = d(\delta)$.

- Fix any $\delta \in (0, \frac{1}{2})$ and any sufficiently large odd $d = d(\delta)$.
- Fix $L_0 = 1$, $L_k = N$ for $k \in \{1, \dots, \lfloor M \rfloor\}$ where $N = N(\delta)$ sufficiently large and $M = \exp(N/(4d^{12/5}))$, and

$$\forall r \ge 1, M^{2^{r-1}} < k \le M^{2^r}, L_k = 2^r N$$

such that $L_k = \Theta(\log(k))$.

• Fix any $\delta \in (0, \frac{1}{2})$ and any sufficiently large odd $d = d(\delta)$.

• Fix $L_0 = 1$, $L_k = N$ for $k \in \{1, ..., \lfloor M \rfloor\}$ where $N = N(\delta)$ sufficiently large and $M = \exp(N/(4d^{12/5}))$, and

$$\forall r \ge 1, M^{2^{r-1}} < k \le M^{2^r}, L_k = 2^r N$$

such that $L_k = \Theta(\log(k))$.

- Construct bounded degree deterministic "expander DAG":
 - Each $X_{1,j}$ has one edge from $X_{0,0}$.

• Fix any $\delta \in (0, \frac{1}{2})$ and any sufficiently large odd $d = d(\delta)$.

• Fix $L_0 = 1$, $L_k = N$ for $k \in \{1, ..., \lfloor M \rfloor\}$ where $N = N(\delta)$ sufficiently large and $M = \exp(N/(4d^{12/5}))$, and

$$\forall r \ge 1, M^{2^{r-1}} < k \le M^{2^r}, L_k = 2^r N$$

such that $L_k = \Theta(\log(k))$.

- Construct bounded degree deterministic "expander DAG":
 - Each $X_{1,j}$ has one edge from $X_{0,0}$.

• Case
$$L_{k+1} = L_k$$
:
Edge multiset $X_k \to X_{k+1}$ given by expander B_{L_k}

• Fix any $\delta \in (0, \frac{1}{2})$ and any sufficiently large odd $d = d(\delta)$.

• Fix $L_0 = 1$, $L_k = N$ for $k \in \{1, ..., \lfloor M \rfloor\}$ where $N = N(\delta)$ sufficiently large and $M = \exp(N/(4d^{12/5}))$, and

$$\forall r \ge 1, M^{2^{r-1}} < k \le M^{2^r}, L_k = 2^r N$$

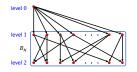
such that $L_k = \Theta(\log(k))$.

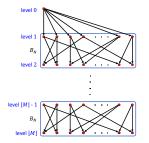
• Construct bounded degree deterministic "expander DAG":

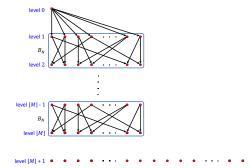
• Each
$$X_{1,j}$$
 has one edge from $X_{0,0}$.

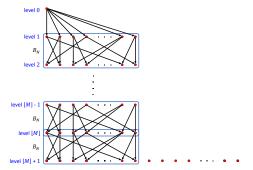
• Case
$$L_{k+1} = L_k$$
:
Edge multiset $X_k \to X_{k+1}$ given by expander B_{L_k} .

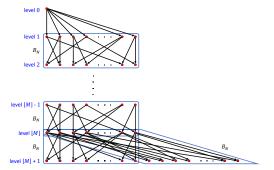
• Case
$$L_{k+1} = 2L_k$$
:
Both edge multisets $X_k \rightarrow (X_{k+1,0}, \dots, X_{k+1,L_k-1})$ and
 $X_k \rightarrow (X_{k+1,L_k}, \dots, X_{k+1,L_{k+1}-1})$ given by expander B_{L_k} .











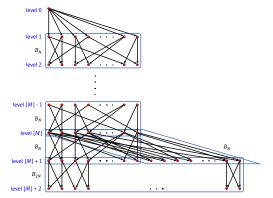
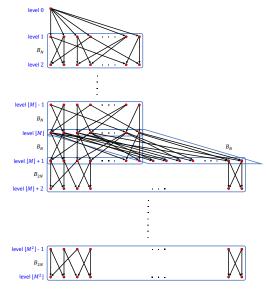


Illustration of "Expander DAG":



A. Makur, E. Mossel, Y. Polyanskiy (MIT) Broadcasting on Random Networks

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Proof Sketch:

• Suppose edges from level k to k + 1 given by expander B_N .

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose edges from level k to k + 1 given by expander B_N .
- Let $S_k \triangleq \{ \text{nodes equal to } 1 \text{ at level } k \}.$

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose edges from level k to k + 1 given by expander B_N .
- Let $S_k \triangleq \{ \text{nodes equal to } 1 \text{ at level } k \}$. Call node at level k + 1"bad" if it is connected to $\geq 1 + \frac{d}{4}$ nodes in S_k .

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose edges from level k to k + 1 given by expander B_N .
- Let $S_k \triangleq \{ \text{nodes equal to } 1 \text{ at level } k \}$. Call node at level k + 1"bad" if it is connected to $\geq 1 + \frac{d}{4}$ nodes in S_k .
- Expansion Property: If $|S_k| \le d^{-6/5}N$, then we have $\le 8d^{-7/5}N$ "bad" nodes.

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose edges from level k to k + 1 given by expander B_N .
- Let $S_k \triangleq \{ \text{nodes equal to } 1 \text{ at level } k \}$. Call node at level k + 1"bad" if it is connected to $\geq 1 + \frac{d}{4}$ nodes in S_k .
- Expansion Property: If $|S_k| \le d^{-6/5}N$, then we have $\le 8d^{-7/5}N$ "bad" nodes.
- Main Lemma: Given |S_k| ≤ d^{-6/5}N, we have |S_{k+1}| ≤ d^{-6/5}N with high probability, as "good" nodes have low probability of becoming 1.

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose edges from level k to k + 1 given by expander B_N .
- Let $S_k \triangleq \{ \text{nodes equal to } 1 \text{ at level } k \}$. Call node at level k + 1"bad" if it is connected to $\geq 1 + \frac{d}{4}$ nodes in S_k .
- Expansion Property: If $|S_k| \le d^{-6/5}N$, then we have $\le 8d^{-7/5}N$ "bad" nodes.
- Main Lemma: Given |S_k| ≤ d^{-6/5}N, we have |S_{k+1}| ≤ d^{-6/5}N with high probability, as "good" nodes have low probability of becoming 1.
 If X_{0,0} = 0, then |S_k| likely to remain small as k → ∞.

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Proposition (Computational Complexity of DAG Construction)

For any $\delta \in (0, \frac{1}{2})$, the *d*-regular bipartite expander graphs for levels $0, \ldots, k$ of "expander DAG" can be constructed in:

• deterministic quasi-polynomial time $O(\exp(\Theta(\log(k) \log \log(k))))$,

Remark: Enumerate all *d*-regular bipartite graphs and test expansion.

Theorem (Broadcasting in Expander DAG)

For "expander DAG" with majority processing, reconstruction possible:

$$\limsup_{k\to\infty} \mathbb{P}\Big(\hat{S}_k \neq X_{0,0}\Big) < \frac{1}{2}$$

where $\hat{S}_k = \mathbb{1}\left\{\sigma_k \geq \frac{1}{2}\right\}$ is majority decoder.

Proposition (Computational Complexity of DAG Construction)

For any $\delta \in (0, \frac{1}{2})$, the *d*-regular bipartite expander graphs for levels $0, \ldots, k$ of "expander DAG" can be constructed in:

- deterministic quasi-polynomial time $O(\exp(\Theta(\log(k) \log \log(k))))$,
- randomized polylogarithmic time O(log(k) log log(k))
 with positive success probability (which depends on δ but not k).

Remark: Generate uniform random *d*-regular bipartite graphs.

- 2 Results on Random DAGs
- 3 Deterministic Broadcasting DAGs

4 Conclusion

Conclusion

Main Contributions:

• Broadcasting in random DAGs with $d \ge 3$ and majority processing

- Broadcasting in random DAGs with $d \ge 3$ and majority processing
- Broadcasting in random DAGs with d = 2 and NAND processing

- Broadcasting in random DAGs with $d \ge 3$ and majority processing
- Broadcasting in random DAGs with d = 2 and NAND processing
- Broadcasting in "expander DAG" construction

- Broadcasting in random DAGs with $d \ge 3$ and majority processing
- Broadcasting in random DAGs with d = 2 and NAND processing
- Broadcasting in "expander DAG" construction

Future Directions:

• Prove conjecture that for random DAG with odd $d \ge 3$ (or d = 2), reconstruction impossible for all processing functions when $\delta \ge \delta_{maj}$ (or $\delta \ge \delta_{nand}$).

- Broadcasting in random DAGs with $d \ge 3$ and majority processing
- Broadcasting in random DAGs with d = 2 and NAND processing
- Broadcasting in "expander DAG" construction

Future Directions:

- Prove conjecture that for random DAG with odd $d \ge 3$ (or d = 2), reconstruction impossible for all processing functions when $\delta \ge \delta_{maj}$ (or $\delta \ge \delta_{nand}$).
- Find polynomial time construction of DAGs with sufficiently large d given some δ such that broadcasting possible.

- Broadcasting in random DAGs with $d \ge 3$ and majority processing
- Broadcasting in random DAGs with d = 2 and NAND processing
- Broadcasting in "expander DAG" construction

Future Directions:

- Prove conjecture that for random DAG with odd $d \ge 3$ (or d = 2), reconstruction impossible for all processing functions when $\delta \ge \delta_{maj}$ (or $\delta \ge \delta_{nand}$).
- Find polynomial time construction of DAGs with sufficiently large d given some δ such that broadcasting possible.
- Construct DAGs with arbitrary $d \ge 3$ and $\delta < \delta_{maj}$, or d = 2 and $\delta < \delta_{nand}$, such that broadcasting possible.

Thank You!

< m