Bounds on Permutation Channel Capacity

Anuran Makur

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

IEEE International Symposium on Information Theory 2020

Anuran Makur (MIT)

Bounds on Permutation Channel Capacity

SIT 21-26 June 2020 1 / 22

Outline

1 Introduction

- Three Motivations
- Permutation Channel Model
- Information Capacity

2 Achievability Bound

3 Converse Bounds

4 Conclusion

э

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

3

э

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets *do not have sequence numbers*

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

- DNA based storage systems
- Source data encoded into DNA molecules

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets *do not have sequence numbers*

- DNA based storage systems
- Source data encoded into DNA molecules
- Fragments of DNA molecules cached
- Receiver reads encoded data by shotgun sequencing (i.e., random sampling)

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

- DNA based storage systems
- Source data encoded into DNA molecules
- Fragments of DNA molecules cached
- Receiver reads encoded data by shotgun sequencing (i.e., random sampling)

ISIT 21-26 June 2020 4 / 2

Model communication network as a channel

Model communication network as a channel:

• Alphabet symbols = all possible *b*-bit packets \Rightarrow 2^{*b*} input symbols

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network or evolving network topology

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network \Rightarrow packets received with transpositions

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- \bullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired (e.g., deletions, substitutions, etc.)

Anuran Makur (MIT)

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- \bullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired \Rightarrow model using channel probabilities

Anuran Makur (MIT)

Bounds on Permutation Channel Capacity

Consider a communication network where packets can be dropped:

Anuran Makur (MIT)

Bounds on Permutation Channel Capacity

Consider a communication network where packets can be dropped:

Abstraction:

• *n*-length codeword = sequence of *n* packets

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Equivalent Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers (packet size = $b + \log(n)$ bits, alphabet size = $n2^{b}$)

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques
- More refined coding techniques simulate sequence numbers [Mit06], [Met09]

Consider a communication network where packets can be dropped:

Abstraction:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?

Anuran Makur (MIT)

Bounds on Permutation Channel Capacity

21-26 June 2020

5/22

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- n = blocklength

э

Permutation Channel Model

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \ldots, X_n) = f_n(\mathcal{M})$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces \mathbb{Z}_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

• Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, \ldots, n\}$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \ldots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, \ldots, n\}$
- Randomized decoder $g_n : \mathcal{Y}^n \to \mathcal{M} \cup \{\text{error}\}$ produces estimate $\hat{\mathcal{M}} = g_n(Y_1^n)$ at receiver

Permutation Channel Model

What if we analyze the "swapped" model?

э

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Remarks:

• Proof follows from direct calculation.

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Remarks:

- Proof follows from direct calculation.
- Can analyze either model!

Anuran Makur (MIT)

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• Multiset codes are studied in [KV13], [KV15], and [KT18].

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• Multiset codes are studied in [KV13], [KV15], and [KT18].

In contrast, in [Mak18], we asked:

What are the fundamental information theoretic limits?

э

• $|\mathcal{M}| = n^R$

• Average probability of error
$$P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$$

- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$ because number of empirical distributions of Y_1^n is poly(n)

- $|\mathcal{M}| = n^R$
- Rate $R \geq 0$ is achievable $\Leftrightarrow \exists \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{error}^n = 0$

 $C_{\text{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$

Definition (Permutation Channel Capacity [Mak18])

 $C_{\text{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$

Main Question

What is the permutation channel capacity of a general $P_{Z|X}$?

Anuran Makur (MIT)

Bounds on Permutation Channel Capacity

1 Introduction

2 Achievability Bound

- Coding Scheme
- Rank Bound

3 Converse Bounds

4 Conclusion

э

• Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$

3

< □ > < 円

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent

э

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

э

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where $|\mathcal{M}| = {\binom{k+r-1}{r-1}} = \Theta(n^{\frac{r-1}{2}})$

3

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where $|\mathcal{M}| = \binom{k+r-1}{r-1} = \Theta(n^{\frac{r-1}{2}})$

• Randomized Encoder:

$$\forall p \in \mathcal{M}, \ f_n(p) = X_1^n \stackrel{\text{i.i.d.}}{\sim} P_X \quad \text{where} \quad P_X(x) = \begin{cases} \frac{p(x)}{k}, & \text{for } x \in \mathcal{X}' \\ 0, & \text{for } x \in \mathcal{X} \setminus \mathcal{X}' \end{cases}$$

(신문) 문

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*

э

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \hat{P}_{y_1^n}(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \ \hat{P}_{y_1^n}(y) = rac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{\rho} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{\rho}(x) = \arg\min_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \ \hat{\mathcal{P}}_{y_1^n}(y) = rac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{p} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{\rho}(x) = \arg\min_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

Step 3: Output decoded message

$$g_n(y_1^n) = egin{cases} \hat{p}, & ext{if } \hat{p} \in \mathcal{M} \ ext{error}, & ext{otherwise} \end{cases}$$

Achievability: Rank Bound

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$\mathcal{L}_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

Remarks about Coding Scheme:

• Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.

э

Achievability: Rank Bound

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$\mathcal{E}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.
- Expurgation: Achievability bound holds under maximal probability of error criterion.

Introduction

2 Achievability Bound

3 Converse Bounds

- Output Alphabet Bound
- Effective Input Alphabet Bound
- Degradation by Symmetric Channels

4 Conclusion

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}$$
 .

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}$$
 .

Remarks:

• Proof hinges on Fano's inequality and CLT-based approximation of binomial entropy.

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}$$
 .

Remarks:

- Proof hinges on Fano's inequality and CLT-based approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

 $C_{\mathsf{perm}}(P_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}$.

Remarks:

- Proof hinges on Fano's inequality and CLT-based approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?
- Want: Converse bound in terms of input alphabet size.

э

N 4 1 N

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{\mathsf{ext}(\mathcal{P}_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

• Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \le (\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1)/2$.
Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \le \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{\text{perm}}(P_{Z|X}) \leq \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{perm}(P_{Z|X}) \le \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{\text{perm}}(P_{Z|X}) \leq \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1$.
- How do we prove above theorem?

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Definition (q-ary Symmetric Channel)

A *q*-ary symmetric channel, denoted q-SC(δ), with total crossover probability $\delta \in [0, 1]$ and alphabet \mathcal{X} where $|\mathcal{X}| = q$, is given by the doubly stochastic matrix:

$$W_{\delta} \triangleq \left[egin{array}{cccccccccc} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{array}
ight]$$

.

• • • • • • • • •

ISIT

Proposition (Degradation by Symmetric Channels)

Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if we have:

$$0 \le \delta \le \frac{\nu}{1-\nu+\frac{\nu}{q-1}}\,,$$

then $P_{Z|X}$ is a degraded version of q-SC(δ).

Proposition (Degradation by Symmetric Channels)

Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if we have:

$$0 \le \delta \le \frac{\nu}{1-\nu+\frac{\nu}{q-1}}\,,$$

then $P_{Z|X}$ is a degraded version of q-SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Many other applications in information theory and statistics [MP18], [MOS13].

Proposition (Degradation by Symmetric Channels)

Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if we have:

$$0 \le \delta \le \frac{\nu}{1-\nu+\frac{\nu}{q-1}}\,,$$

then $P_{Z|X}$ is a degraded version of q-SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Many other applications in information theory and statistics [MP18], [MOS13].
- Prop + "swapped" model + *tensorization* of degradation $\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$, where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ).

Proposition (Degradation by Symmetric Channels)

Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if we have:

$$0 \le \delta \le \frac{\nu}{1-\nu+\frac{\nu}{q-1}}\,,$$

then $P_{Z|X}$ is a degraded version of q-SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Many other applications in information theory and statistics [MP18], [MOS13].
- Prop + "swapped" model + *tensorization* of degradation $\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$, where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ).
- *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to ext $(P_{Z|X})$.

• • = • • = •

Proposition (Degradation by Symmetric Channels)

Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if we have:

$$0 \le \delta \le \frac{\nu}{1-\nu+\frac{\nu}{q-1}}\,,$$

then $P_{Z|X}$ is a degraded version of q-SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Many other applications in information theory and statistics [MP18], [MOS13].
- Prop + "swapped" model + *tensorization* of degradation $\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$, where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ).
- *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to ext $(P_{Z|X})$.
- Fano argument of output alphabet bound \Rightarrow effective input alphabet bound.

Anuran Makur (MIT)

- 2 Achievability Bound
- 3 Converse Bounds

4 Conclusion

• Strictly Positive and "Full Rank" Channels

э

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is *"full rank"* in the sense that $r \triangleq \operatorname{rank}(P_{Z|X}) = \min\{\operatorname{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

 $C_{\mathsf{perm}}(P_{Z|X}) = rac{r-1}{2}$.

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is *"full rank"* in the sense that $r \triangleq \operatorname{rank}(P_{Z|X}) = \min\{\operatorname{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

 $C_{\mathsf{perm}}(P_{Z|X}) = rac{r-1}{2}$.

Example [Mak18]: C_{perm} of non-trivial binary symmetric channel is $\frac{1}{2}$.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

э

.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Direction:

Characterize C_{perm} of all entry-wise strictly positive channels, and more generally, all channels.

э

(4) E (4) (4) E (4)

.

Thank You!

э

Image: A matrix