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Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network
Packets are impaired

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel

:

Alphabet symbols = all possible b-bit packets
Multipath routed network
Packets are impaired

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets ⇒ 2b input symbols

Multipath routed network
Packets are impaired

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network or evolving network topology

Packets are impaired

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network ⇒ packets received with transpositions

Packets are impaired

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network ⇒ packets received with transpositions
Packets are impaired (e.g., deletions, substitutions, etc.)

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network ⇒ packets received with transpositions
Packets are impaired ⇒ model using channel probabilities

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 4 / 22



Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

NETWORK

SENDER RECEIVER

Abstraction:

n-length codeword = sequence of n packets
:
Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?
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Permutation Channel Model

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Sender sends message M ∼ Uniform(M)

n = blocklength

Randomized encoder fn :M→ X n produces codeword X n
1 = (X1, . . . ,Xn) = fn(M)

Discrete memoryless channel PZ |X with input & output alphabets X & Y produces Zn
1 :

PZn
1 |X n

1
(zn1 |xn1 ) =

n∏
i=1

PZ |X (zi |xi )

Random permutation π generates Y n
1 from Zn

1 : Yπ(i) = Zi for i ∈ {1, . . . , n}
Randomized decoder gn : Yn →M∪ {error} produces estimate M̂ = gn(Y n

1 ) at receiver
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Permutation Channel Model

What if we analyze the “swapped” model?

ENCODER CHANNELRANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑉 𝑊 𝑀

Proposition (Equivalent Models)

If channel PW |V is equal to channel PZ |X , then channel PW n
1 |X n

1
is equal to channel PY n

1 |X n
1

.

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Remarks:

Proof follows from direct calculation.

Can analyze either model!
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Coding for the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

General Principle:
“Encode the information in an object that is invariant under the [permutation]
transformation.” [KV13]

Multiset codes are studied in [KV13], [KV15], and [KT18].

In contrast, in [Mak18], we asked:

What are the fundamental information theoretic limits?
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Information Capacity of the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Average probability of error Pn
error , P(M 6= M̂)

“Rate” of coding scheme (fn, gn) is R ,
log(|M|)

log(n)

|M| = nR

Rate R ≥ 0 is achievable ⇔ ∃{(fn, gn)}n∈N such that lim
n→∞

Pn
error = 0

Definition (Permutation Channel Capacity [Mak18])

Cperm(PZ |X ) , sup{R ≥ 0 : R is achievable}

Main Question

What is the permutation channel capacity of a general PZ |X?
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Achievability: Coding Scheme

Let r = rank(PZ |X ) and k =
⌊√

n
⌋

Consider X ′ ⊆ X with |X ′| = r such that {PZ |X (·|x) : x ∈ X ′} are linearly independent

Message set:

M ,

{
p = (p(x) : x ∈ X ′) ∈ (Z+)X

′
:
∑
x∈X ′

p(x) = k

}

where |M| =
(k+r−1

r−1
)

= Θ
(
n

r−1
2

)

Randomized Encoder:

∀p ∈M, fn(p) = X n
1

i.i.d.∼ PX where PX (x) =

{
p(x)
k , for x ∈ X ′

0, for x ∈ X\X ′
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Achievability: Coding Scheme

Let stochastic matrix P̃Z |X ∈ Rr×|Y| have rows {PZ |X (·|x) : x ∈ X ′}
Let P̃†Z |X denote its Moore-Penrose pseudoinverse

(Sub-optimal) Thresholding Decoder: For any yn1 ∈ Yn,
Step 1: Construct its type/empirical distribution/histogram

∀y ∈ Y, P̂yn
1

(y) =
1

n

n∑
i=1

1{yi = y}

Step 2: Generate estimate p̂ ∈ (Z+)X
′

with components

∀x ∈ X ′, p̂(x) = arg min
j∈{0,...,k}

∣∣∣∣∣∣
∑
y∈Y

P̂yn
1

(y)
[
P̃†Z |X

]
y ,x
− j

k

∣∣∣∣∣∣
Step 3: Output decoded message

gn(yn1 ) =

{
p̂, if p̂ ∈M
error, otherwise
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Achievability: Rank Bound

Theorem (Rank Bound)

For any channel PZ |X :

Cperm(PZ |X ) ≥
rank(PZ |X )− 1

2
.

Remarks about Coding Scheme:

Showing limn→∞ Pn
error = 0 proves theorem.

Intuition: Conditioned on M = p, P̂Y n
1
≈ PZ with high probability as n→∞.

Hence,
∑

y∈Y P̂Y n
1

(y)
[
P̃†Z |X

]
y ,x
≈ PX (x) for all x ∈ X ′ with high probability.

Computational complexity: Decoder has O(n) running time.

Probabilistic method: Good deterministic codes exist.

Expurgation: Achievability bound holds under maximal probability of error criterion.
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Converse: Output Alphabet Bound

Theorem (Output Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤ |Y| − 1

2
.

Remarks:

Proof hinges on Fano’s inequality and CLT-based approximation of binomial entropy.

What if |X | is much smaller than |Y|?
Want: Converse bound in terms of input alphabet size.
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Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.
For any channel PZ |X > 0, Cperm(PZ |X ) ≤

(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 16 / 22



Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.

For any channel PZ |X > 0, Cperm(PZ |X ) ≤
(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 16 / 22



Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.
For any channel PZ |X > 0, Cperm(PZ |X ) ≤

(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 16 / 22



Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.
For any channel PZ |X > 0, Cperm(PZ |X ) ≤

(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 16 / 22



Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.
For any channel PZ |X > 0, Cperm(PZ |X ) ≤

(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?

Anuran Makur (MIT) Bounds on Permutation Channel Capacity ISIT 21-26 June 2020 16 / 22



Proof Idea: Degradation by Symmetric Channels

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels PZ1|X and PZ2|X with common input alphabet X , PZ2|X is a degraded version
of PZ1|X if PZ2|X = PZ1|XPZ2|Z1

for some channel PZ2|Z1
.

Definition (q-ary Symmetric Channel)

A q-ary symmetric channel, denoted q-SC(δ), with total crossover probability δ ∈ [0, 1] and
alphabet X where |X | = q, is given by the doubly stochastic matrix:

Wδ ,


1− δ δ

q−1 · · · δ
q−1

δ
q−1 1− δ · · · δ

q−1
...

...
. . .

...
δ

q−1
δ

q−1 · · · 1− δ

 .
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Proof Idea: Degradation by Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x), if we have:

0 ≤ δ ≤ ν

1− ν + ν
q−1

,

then PZ |X is a degraded version of q-SC(δ).

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Many other applications in information theory and statistics [MP18], [MOS13].

Prop + “swapped” model + tensorization of degradation ⇒ I (X n
1 ;Y n

1 ) ≤ I (X n
1 ; Ỹ n

1 ),
where Y n

1 and Ỹ n
1 are outputs of permutation channels with PZ |X and q-SC(δ).

Convexity of KL divergence ⇒ Reduce |X | to ext(PZ |X ).

Fano argument of output alphabet bound ⇒ effective input alphabet bound.
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Prop + “swapped” model + tensorization of degradation ⇒ I (X n
1 ;Y n

1 ) ≤ I (X n
1 ; Ỹ n

1 ),
where Y n

1 and Ỹ n
1 are outputs of permutation channels with PZ |X and q-SC(δ).

Convexity of KL divergence ⇒ Reduce |X | to ext(PZ |X ).

Fano argument of output alphabet bound ⇒ effective input alphabet bound.
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Strictly Positive and “Full Rank” Channels

Achievability and converse bounds yield:

Theorem (Strictly Positive and “Full Rank” Channels)

For any entry-wise strictly positive channel PZ |X > 0 that is “full rank” in the sense that

r , rank(PZ |X ) = min{ext(PZ |X ), |Y|}:

Cperm(PZ |X ) =
r − 1

2
.

Example [Mak18]: Cperm of non-trivial binary symmetric channel is 1
2 .
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Conclusion

Main Result:
For any entry-wise strictly positive channel PZ |X > 0:

rank(PZ |X )− 1

2
≤ Cperm(PZ |X ) ≤

min{ext(PZ |X ), |Y|} − 1

2
.

Future Direction:
Characterize Cperm of all entry-wise strictly positive channels, and more generally, all channels.
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Thank You!
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