Reconstruction on 2D Regular Grids

Anuran Makur ${ }^{\dagger}$, Elchanan Mossel*, and Yury Polyanskiy ${ }^{\dagger}$

${ }^{\dagger}$ Department of Electrical Engineering and Computer Science
*Department of Mathematics
Massachusetts Institute of Technology
IEEE International Symposium on Information Theory 2021

Outline

(1) Introduction

- Motivation
- Formal Model
- Background
(2) Main Results
(3) Conclusion

Motivation: Information Propagation in Networks

communication networks
social networks

Motivation: Information Propagation in Networks

- How does information propagate through such large networks over time?

Motivation: Information Propagation in Networks

- How does information propagate through such large networks over time?

Motivation: Information Propagation in Networks

- How does information propagate through such large networks over time?

Motivation: Information Propagation in Networks

- How does information propagate through such large networks over time?

Motivation: Information Propagation in Networks

- How does information propagate through such large networks over time?
- Can we invent processing functions so that far boundary has information about source bit?

Formal Model: Bounded Indegree DAGs

- Fix infinite directed acyclic graph (DAG) with single source node

Formal Model: Bounded Indegree DAGs

- Fix infinite DAG with single source node
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k

-

level k

$$
\stackrel{\bullet}{X_{k, 0}} \quad \stackrel{\ominus}{X}_{k, 1} \quad \cdots \cdot{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\ominus}{X}_{k, L_{k}-1}
$$

Formal Model: Bounded Indegree DAGs

- Fix infinite DAG with single source node
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k

$$
\begin{aligned}
& L_{0}=1 \\
& L_{1}=3 \\
& L_{2}=4
\end{aligned}
$$

level k

$$
X_{X_{k, 0}}^{\bullet} \quad \stackrel{\ominus}{X}_{k, 1} \quad \cdot \quad \cdot{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\ominus}{X}_{X_{k, L_{k}-1}}^{L_{k}} \text { vertices }
$$

Formal Model: Bounded Indegree DAGs

- Fix infinite DAG with single source node
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of node

level $k \quad \stackrel{X_{k, 0}}{\bullet} \quad \stackrel{\ominus}{X_{k, 1}} \quad \cdots \cdots{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\bullet}{X_{k, L_{k}-1}} \quad L_{k}$ vertices

Formal Model: Bounded Indegree DAGs

- Fix infinite DAG with single source node
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of node

-

level $k \quad \stackrel{X_{k, 0}}{\bullet} \quad \stackrel{\ominus}{X_{k, 1}} \quad \cdots \cdots{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\bullet}{X_{k, L_{k}-1}} \quad L_{k}$ vertices

- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability $\delta \in\left(0, \frac{1}{2}\right)$, i.e., edges are binary symmetric channels (BSC (δ))

Formal Model: Bounded Indegree DAGs

- Fix infinite DAG with single source node
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of node

level k
- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability $\delta \in\left(0, \frac{1}{2}\right)$, i.e., edges are binary symmetric channels ($\operatorname{BSC}(\delta)$)
- Nodes combine inputs with Boolean processing functions
- This defines joint distribution of $\left\{X_{k, j}\right\}$

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing:

Let $\operatorname{ML}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathrm{ML}\left(X_{k}\right) \neq X_{0,0}\right)
$$

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing:

Let $\operatorname{ML}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathrm{ML}\left(X_{k}\right) \neq X_{0,0}\right)
$$

- $P_{\mathrm{ML}}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing:

Let $\operatorname{ML}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathrm{ML}\left(X_{k}\right) \neq X_{0,0}\right)
$$

- $P_{\mathrm{ML}}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or broadcasting) possible if

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}
$$

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing:

Let $\operatorname{ML}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathrm{ML}\left(X_{k}\right) \neq X_{0,0}\right)
$$

- $P_{\mathrm{ML}}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or broadcasting) possible if

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}
$$

and reconstruction impossible if

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

Formal Model: Bounded Indegree DAGs

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$
- Question: Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing:

Let $\operatorname{ML}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathrm{ML}\left(X_{k}\right) \neq X_{0,0}\right)
$$

- $P_{\mathrm{ML}}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or broadcasting) impossible if and only if

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

For which graph topologies, noise levels δ, and Boolean processing functions is reconstruction possible?

Background: Reconstruction on Trees

- Suppose DAG is tree T with identity processing and branching number $\operatorname{br}(T)$

Background: Reconstruction on Trees

- Suppose DAG is tree T with identity processing and branching number $\operatorname{br}(T)$

Phase Transition for Trees:

[Kesten-Stigum 1966, Bleher-RuizZagrebnov 1995, Evans et al. 2000]

- If noise level $\delta<\frac{1}{2}-\frac{1}{2 \sqrt{\operatorname{br}(T)}}$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$

level $k \underset{X_{k, 0}}{\stackrel{\bullet}{X}} \quad \stackrel{\bullet}{X_{k, 1}} \quad \cdots \quad \underset{X_{k, L_{k}-2}}{\bullet} \stackrel{\stackrel{\circ}{X}_{k, L_{k}-1}}{L_{k}}=\operatorname{br}(T)^{k}$

Background: Reconstruction on Trees

- Suppose DAG is tree T with identity processing and branching number $\operatorname{br}(T)$

Phase Transition for Trees:

 [Kesten-Stigum 1966, Bleher-RuizZagrebnov 1995, Evans et al. 2000]- If noise level $\delta<\frac{1}{2}-\frac{1}{2 \sqrt{\operatorname{br}(T)}}$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$
- If $\delta>\frac{1}{2}-\frac{1}{2 \sqrt{\operatorname{br}(T)}}$, then reconstruction

level $k \begin{array}{llll}X_{k, 0} & \stackrel{\bullet}{X_{k, 1}} & \cdots & \cdot \\ X_{k, L_{k}-2} & \stackrel{\circ}{X_{k, L_{k}-1}}\end{array} L_{k}=\operatorname{br}(T)^{k}$ impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$

Background: Reconstruction on Random DAGs

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)
level $k \begin{array}{llllll}X_{k, 0} & \stackrel{\circ}{X_{k, 1}} & \cdots & & X_{k, L_{k}-2} & \stackrel{\circ}{X}_{k, L_{k}-1}\end{array} L_{k}$ vertices

Background: Reconstruction on Random DAGs

-

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \geq 3$ and all nodes use majority processing, and let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\left(\begin{array}{l}{[d / 2\rceil}\end{array}\right)}$:

Background: Reconstruction on Random DAGs

level $k \begin{array}{llllll}X_{k, 0} & \stackrel{\circ}{X_{k, 1}} & \cdots & & X_{k, L_{k}-2} & \stackrel{\circ}{X} \\ & L_{k, L_{k}-1}\end{array}$

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \geq 3$ and all nodes use majority processing, and let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\left(\begin{array}{l}d / 27\end{array}\right)}$:

- If noise level $\delta<\delta_{\text {maj }}$ and $L_{k}=\Omega(\log (k))$, then reconstruction possible using majority voting decoder

Background: Reconstruction on Random DAGs

level k

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \geq 3$ and all nodes use majority processing, and let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\left(\begin{array}{l}d / 27\end{array}\right)}$:

- If noise level $\delta<\delta_{\text {maj }}$ and $L_{k}=\Omega(\log (k))$, then reconstruction possible using majority voting decoder
- If $\delta>\delta_{\text {maj }}$ and L_{k} sub-exponential, then reconstruction impossible G-a.s.

Background: Reconstruction on Random DAGs

-
.
level $k \begin{array}{llllll}X_{k, 0} & \stackrel{\circ}{X_{k, 1}} & \cdots & & X_{k, L_{k}-2} & \stackrel{\circ}{X} \\ & L_{k, L_{k}-1}\end{array}$

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d=2$ and all nodes use NAND gates, and let $\delta_{\text {nand }} \triangleq \frac{3-\sqrt{7}}{4}$:

Background: Reconstruction on Random DAGs

-
.

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d=2$ and all nodes use NAND gates, and let $\delta_{\text {nand }} \triangleq \frac{3-\sqrt{7}}{4}$:

- If $\delta<\delta_{\text {nand }}$ and $L_{k}=\Omega(\log (k))$, then reconstruction possible using biased majority voting decoder

Background: Reconstruction on Random DAGs

\cdot
-
level $k \begin{array}{lllll}X_{k, 0} & \stackrel{\circ}{X_{k, 1}} & \cdots & \stackrel{\bullet}{X_{k, L_{k}-2}} & \stackrel{\circ}{X_{k, L_{k}-1}}\end{array} L_{k}$ vertices

- Consider random DAG G with fixed layer sizes L_{k} and indegree $d>1$, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d=2$ and all nodes use NAND gates, and let $\delta_{\text {nand }} \triangleq \frac{3-\sqrt{7}}{4}$:

- If $\delta<\delta_{\text {nand }}$ and $L_{k}=\Omega(\log (k))$, then reconstruction possible using biased majority voting decoder
- If $\delta>\delta_{\text {nand }}$ and L_{k} sub-exponential, then reconstruction impossible G-a.s.

Outline

(1) Introduction
(2) Main Results

- 2D Regular Grid Model
- Impossibility Result for AND Processing
- Impossibility Result for XOR Processing
- Impossibility Result for NAND Processing
(3) Conclusion

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_{k}=k+1$

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_{k}=k+1$
- Boundary nodes use identity processing
- Interior nodes use common Boolean processing function

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_{k}=k+1$
- Boundary nodes use identity processing
- Interior nodes use common Boolean processing function

Conjecture: For all $\delta \in\left(0, \frac{1}{2}\right)$ and all choices of processing functions, reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$

- Motivation: "Positive rates conjecture" on ergodicity of simple 1D probabilistic cellular automata (e.g., [Gray 2001])

Impossibility Result for AND Processing

- Common processing function $=$ AND gate

x	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Impossibility Result for AND Processing

- Common processing function $=$ AND gate

x	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Theorem (Reconstruction with AND Gates)

Reconstruction impossible on 2D regular grid with AND processing functions for all $\delta \in\left(0, \frac{1}{2}\right)$

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain
- Define Markov chains $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$: Copies of $\left\{X_{k}\right\}$ with $X_{0}^{+}=1$ and $X_{0}^{-}=0$

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain
- Define Markov chains $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$: Copies of $\left\{X_{k}\right\}$ with $X_{0}^{+}=1$ and $X_{0}^{-}=0$
- Representation of $\operatorname{BSC}(\delta):\left(Z\right.$ is $\left.\operatorname{Bernoulli}\left(\frac{1}{2}\right)\right)$

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain
- Define Markov chains $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$: Copies of $\left\{X_{k}\right\}$ with $X_{0}^{+}=1$ and $X_{0}^{-}=0$
- Couple $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$to run on common 2D regular grid:

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain
- Define Markov chains $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$: Copies of $\left\{X_{k}\right\}$ with $X_{0}^{+}=1$ and $X_{0}^{-}=0$
- Couple $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$to run on common 2D regular grid:

- AND gate is monotone $\Rightarrow X_{k, j}^{+} \geq X_{k, j}^{-}$for all k, j

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Layers $\left\{X_{k}=\left(X_{k, 0}, \ldots, X_{k, k}\right)\right\}$ form a Markov chain
- Define Markov chains $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$: Copies of $\left\{X_{k}\right\}$ with $X_{0}^{+}=1$ and $X_{0}^{-}=0$
- Couple $\left\{X_{k}^{+}\right\}$and $\left\{X_{k}^{-}\right\}$to run on common 2D regular grid:

- AND gate is monotone $\Rightarrow X_{k, j}^{+} \geq X_{k, j}^{-}$for all k, j
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{c}, 1_{u}, 1_{c}\right\}$ with source $Y_{0,0}=1_{u}$, where $0_{c}=(0,0), 1_{u}=(0,1), 1_{c}=(1,1)$

Proof Sketch: AND Processing

- Step 2: Reduction to coupled grid
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{\mathrm{c}}, 1_{\mathrm{u}}, 1_{\mathrm{c}}\right\}$ with source $Y_{0,0}=1_{\mathrm{u}}$

Proof Sketch: AND Processing

- Step 2: Reduction to coupled grid
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{c}, 1_{\mathrm{u}}, 1_{c}\right\}$ with source $Y_{0,0}=1_{u}$
- Maximal coupling characterization of total variation distance $\|\cdot\|_{\mathrm{TV}}$:

$$
\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{k}^{+} \neq X_{k}^{-}\right)=1-\mathbb{P}\left(\forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

Proof Sketch: AND Processing

- Step 2: Reduction to coupled grid
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{c}, 1_{\mathrm{u}}, 1_{c}\right\}$ with source $Y_{0,0}=1_{u}$
- Maximal coupling characterization of total variation distance $\|\cdot\|_{\mathrm{TV}}$:

$$
\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{k}^{+} \neq X_{k}^{-}\right)=1-\mathbb{P}\left(\forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

- Using Step 1, $\lim _{k \rightarrow \infty}\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq 1-\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)$

Proof Sketch: AND Processing

- Step 2: Reduction to coupled grid
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{\mathrm{c}}, 1_{\mathrm{u}}, 1_{\mathrm{c}}\right\}$ with source $Y_{0,0}=1_{\mathrm{u}}$
- Maximal coupling characterization of total variation distance $\|\cdot\|_{\mathrm{TV}}$:

$$
\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{k}^{+} \neq X_{k}^{-}\right)=1-\mathbb{P}\left(\forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

- Using Step 1, $\lim _{k \rightarrow \infty}\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq 1-\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)$
- By Le Cam's relation,

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}\left(1-\lim _{k \rightarrow \infty}\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}}\right) \geq \frac{1}{2} \mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

Proof Sketch: AND Processing

- Step 2: Reduction to coupled grid
- Define coupled grid variables $Y_{k, j}=\left(X_{k, j}^{-}, X_{k, j}^{+}\right) \in\left\{0_{c}, 1_{u}, 1_{c}\right\}$ with source $Y_{0,0}=1_{u}$
- Maximal coupling characterization of total variation distance $\|\cdot\|_{\mathrm{TV}}$:

$$
\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{k}^{+} \neq X_{k}^{-}\right)=1-\mathbb{P}\left(\forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

- Using Step 1, $\lim _{k \rightarrow \infty}\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}} \leq 1-\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)$
- By Le Cam's relation,

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}\left(1-\lim _{k \rightarrow \infty}\left\|P_{X_{k}}^{+}-P_{X_{k}}^{-}\right\|_{\mathrm{TV}}\right) \geq \frac{1}{2} \mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)
$$

- To show $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$, it suffices to prove that $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)=1$

Proof Sketch: AND Processing

- Step 3: Bond percolation

Proof Sketch: AND Processing

- Step 3: Bond percolation
- Independently keep each edge open with probability $p \in[0,1]$, and closed with probability $1-p$

Proof Sketch: AND Processing

- Step 3: Bond percolation
- Independently keep each edge open with probability $p \in[0,1]$, and closed with probability $1-p$
- For each level k, let R_{k} and L_{k} be the rightmost and leftmost node indices connected to $Y_{0,0}$ by open paths

Proof Sketch: AND Processing

- Step 3: Bond percolation
- Independently keep each edge open with probability $p \in[0,1]$, and closed with probability $1-p$
- For each level k, let R_{k} and L_{k} be the rightmost and leftmost node indices connected to $Y_{0,0}$ by open paths
- Define event $\Omega_{\infty} \triangleq\{\exists$ infinite open path from $\left.Y_{0,0}\right\}$

Proof Sketch: AND Processing

- Step 3: Bond percolation
- Independently keep each edge open with probability $p \in[0,1]$, and closed with probability $1-p$
- For each level k, let R_{k} and L_{k} be the rightmost and leftmost node indices connected to $Y_{0,0}$ by open paths
- Define event $\Omega_{\infty} \triangleq\{\exists$ infinite open path from $\left.Y_{0,0}\right\}$

- Phase transition [Durrett 1984]: There is a critical threshold $\delta_{\text {perc }} \in\left(\frac{1}{2}, 1\right)$ such that:
- If $p<\delta_{\text {perc }}$, then $\mathbb{P}\left(\Omega_{\infty}\right)=0$

Proof Sketch: AND Processing

- Step 3: Bond percolation
- Independently keep each edge open with probability $p \in[0,1]$, and closed with probability $1-p$
- For each level k, let R_{k} and L_{k} be the rightmost and leftmost node indices connected to $Y_{0,0}$ by open paths
- Define event $\Omega_{\infty} \triangleq\{\exists$ infinite open path from $\left.Y_{0,0}\right\}$

- Phase transition [Durrett 1984]: There is a critical threshold $\delta_{\text {perc }} \in\left(\frac{1}{2}, 1\right)$ such that:
- If $p<\delta_{\text {perc }}$, then $\mathbb{P}\left(\Omega_{\infty}\right)=0$
- If $p>\delta_{\text {perc }}$, then $\mathbb{P}\left(\Omega_{\infty}\right)>0$ and $\mathbb{P}\left(\left.\lim _{k \rightarrow \infty} \frac{R_{k}-L_{k}}{k}>0 \right\rvert\, \Omega_{\infty}\right)=1$

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{u}\right)=1$

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)=1$
- Step 4: Case I (Noise level satisfies $p=1-2 \delta<\delta_{\text {perc }}$)
- Bond percolation: Edge open $\Leftrightarrow \operatorname{BSC}(\delta)$ copies input, i.e., $p=1-2 \delta$

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)=1$
- Step 4: Case I (Noise level satisfies $p=1-2 \delta<\delta_{\text {perc }}$)
- Bond percolation: Edge open $\Leftrightarrow \operatorname{BSC}(\delta)$ copies input, i.e., $p=1-2 \delta$
- Step $3 \Rightarrow$ There is no infinite open path from $Y_{0,0}$ almost surely

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{\mathrm{u}}\right)=1$
- Step 4: Case I (Noise level satisfies $p=1-2 \delta<\delta_{\text {perc }}$)
- Bond percolation: Edge open $\Leftrightarrow \operatorname{BSC}(\delta)$ copies input, i.e., $p=1-2 \delta$
- Step $3 \Rightarrow$ There is no infinite open path from $Y_{0,0}$ almost surely
- Markovian coupling of Step $1 \Rightarrow 1_{\mathrm{u}}$'s only travel along open edges

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists k, \forall j, Y_{k, j} \neq 1_{u}\right)=1 \checkmark$
- Step 4: Case I (Noise level satisfies $p=1-2 \delta<\delta_{\text {perc }}$)
- Bond percolation: Edge open $\Leftrightarrow \operatorname{BSC}(\delta)$ copies input, i.e., $p=1-2 \delta$
- Step $3 \Rightarrow$ There is no infinite open path from $Y_{0,0}$ almost surely
- Markovian coupling of Step $1 \Rightarrow 1_{\mathrm{u}}$'s only travel along open edges
- Hence, there exists level k such that $Y_{k, j} \neq 1_{u}$ for all j

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- Bond percolation: Edge open \Leftrightarrow $\mathrm{BSC}(\delta)$ copies or generates random bit $=0$, i.e., $p=1-\delta$

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- Bond percolation: Edge open \Leftrightarrow $\mathrm{BSC}(\delta)$ copies or generates random bit $=0$, i.e., $p=1-\delta$
- Boundary $\operatorname{BSC}(\delta)$'s generate random bits $=0$ independently with probability δ

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- Bond percolation: Edge open \Leftrightarrow $\mathrm{BSC}(\delta)$ copies or generates random bit $=0$, i.e., $p=1-\delta$
- Boundary $\operatorname{BSC}(\delta)$'s generate random bits $=0$ independently with probability δ
- Step $3 \Rightarrow 0_{c}$ nodes subtend infinite open subgraph with probability $\mathbb{P}\left(\Omega_{\infty}\right)>0$

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- Bond percolation: Edge open \Leftrightarrow $\mathrm{BSC}(\delta)$ copies or generates random bit $=0$, i.e., $p=1-\delta$
- Boundary $\operatorname{BSC}(\delta)$'s generate random bits $=0$ independently with probability δ
- Step $3 \Rightarrow 0_{c}$ nodes subtend infinite open subgraph with probability $\mathbb{P}\left(\Omega_{\infty}\right)>0$
- Borel-Cantelli \Rightarrow There exists 0_{c} boundary node with infinite open
 path almost surely

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- For some levels k and m, $Y_{k, 0}=Y_{m, m}=0_{c}$ and both nodes have infinite open paths almost surely

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- For some levels k and m, $Y_{k, 0}=Y_{m, m}=0_{c}$ and both nodes have infinite open paths almost surely
- Step $3 \Rightarrow$ Open paths from $Y_{k, 0}$ and $Y_{m, m}$ meet

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- For some levels k and m, $Y_{k, 0}=Y_{m, m}=0_{c}$ and both nodes have infinite open paths almost surely
- Step $3 \Rightarrow$ Open paths from $Y_{k, 0}$ and $Y_{m, m}$ meet
- Markovian coupling of Step $1 \Rightarrow$ Nodes enclosed by open paths are 0_{c} or 1_{c}

Proof Sketch: AND Processing

- Step 2: Suffices to prove $\mathbb{P}\left(\exists r, \forall j, Y_{r, j} \neq 1_{u}\right)=1 \checkmark$
- Step 5: Case II (Noise level satisfies $p=1-\delta>\delta_{\text {perc }}$)
- For some levels k and m, $Y_{k, 0}=Y_{m, m}=0_{c}$ and both nodes have infinite open paths almost surely
- Step $3 \Rightarrow$ Open paths from $Y_{k, 0}$ and $Y_{m, m}$ meet
- Markovian coupling of Step $1 \Rightarrow$ Nodes enclosed by open paths are 0_{c} or 1_{c}
- Hence, there exists level r such
 that $Y_{r, j} \neq 1_{u}$ for all j

Proof Sketch: AND Processing

- Step 1: Monotone Markovian coupling
- Step 2: Reduction to coupled grid
- Step 3: Bond percolation
- Step 4: Case I - Noise level $\delta>\left(1-\delta_{\text {perc }}\right) / 2$
- Step 5: Case II - Noise level $\delta<1-\delta_{\text {perc }}$

Impossibility Result for XOR Processing

- Common processing function $=$ XOR gate

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Impossibility Result for XOR Processing

- Common processing function $=$ XOR gate

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all $\delta \in\left(0, \frac{1}{2}\right)$

Impossibility Result for XOR Processing

- Common processing function $=$ XOR gate

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all $\delta \in\left(0, \frac{1}{2}\right)$

- Proof uses bit-wise ML decoding of linear codes

Impossibility Result for NAND Processing

- Common processing function $=$ NAND gate

x	y	$\neg(x \wedge y)$
0	0	1
0	1	1
1	0	1
1	1	0

Impossibility Result for NAND Processing

- Common processing function $=$ NAND gate

x	y	$\neg(x \wedge y)$
0	0	1
0	1	1
1	0	1
1	1	0

- Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in\left(0, \frac{1}{2}\right)$

Impossibility Result for NAND Processing

- Common processing function $=$ NAND gate

x	y	$\neg(x \wedge y)$
0	0	1
0	1	1
1	0	1
1	1	0

- Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in\left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in\left(0, \frac{1}{2}\right)$, if linear programming (LP) feasibility problem, $A(\delta) x \geq b$, has solution $x=x^{*}(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

Impossibility Result for NAND Processing

- Common processing function $=$ NAND gate

x	y	$\neg(x \wedge y)$
0	0	1
0	1	1
1	0	1
1	1	0

- Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in\left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in\left(0, \frac{1}{2}\right)$, if linear programming (LP) feasibility problem, $A(\delta) x \geq b$, has solution $x=x^{*}(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

- Proof uses martingale argument and LP solution generates desired martingale

Impossibility Result for NAND Processing

- Common processing function $=$ NAND gate

x	y	$\neg(x \wedge y)$
0	0	1
0	1	1
1	0	1
1	1	0

- Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in\left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in\left(0, \frac{1}{2}\right)$, if linear programming (LP) feasibility problem, $A(\delta) x \geq b$, has solution $x=x^{*}(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

- Proof uses martingale argument and LP solution generates desired martingale
- LPs computationally solved for numerous values of $\delta \in\left(0, \frac{1}{2}\right)$

Outline

(1) Introduction
(2) Main Results

3 Conclusion

Conclusion

Main Contribution:

- Reconstruction impossible in 2D regular grids with symmetric processing functions

Conclusion

Main Contribution:

- Reconstruction impossible in 2D regular grids with symmetric processing functions

Future Direction:

- Conjecture: For 2D regular grids, reconstruction impossible for all processing functions

Thank You!

