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Motivation: Information Propagation in Networks

= 01 I | communication networks

social networks
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Motivation: Information Propagation in Networks

@ How does information propagate through such large networks over time?
o Can we invent processing functions so that far boundary has information about source bit?

-2
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Formal Model: Bounded Indegree DAGs

e Fix infinite directed acyclic graph (DAG) with single source node
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Formal Model: Bounded Indegree DAGs

@ Fix infinite DAG with single source node
@ X, ;< {0,1} = node random variable at jth position in level k

level 0 Xo,0

level 1 X1,0

[P

level 2 L
XZ,O X2,1 X2,2 X2,3
levelk e ® ook ° o
Xio Xka XiL—2 XiLp-1
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@ Fix infinite DAG with single source node

@ Xij € {0,1} = node random variable at jth position in level k

@ L, — number of nodes at level k
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level 1 X1,0

[P

XZ,O X2,1 X2,2 X2,3

level 2 L,=4

levelk @ ® - - ° ° L, vertices
Xio Xka Xi -2 XiLp-1

A. Makur (MIT) Reconstruction on 2D Regular Grids

ISIT

12-20 July 2021

4/21



Formal Model: Bounded Indegree DAGs

@ Fix infinite DAG with single source node
@ Xij € {0,1} = node random variable at jth position in level k
@ Lx — number of nodes at level k
@ d — indegree of node
level 0 Xo,0 Lo=1
level 1 X1, A Xi2 L;=3
LR
level 2 g L, =4
X0 X21 Xzp Xo3
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Formal Model: Bounded Indegree DAGs

@ Fix infinite DAG with single source node
@ Xij € {0,1} = node random variable at jth position in level k
@ Lx — number of nodes at level k
@ d — indegree of node
X =
level 0 9 Lo=1 ® Xo,0 ~ Bernoulli(3)
Edges independently flip bits
X X _ ¢ Ladg p y Thp
evel 1 S0 AL A A2 11 =3 with probability § € (0, 1),
' -d = i.e., edges are binary symmetric
level 2 Xpo Xoi Xop Xps L, =4 channels (BSC(0))
levelk @ ® - - ° ° L, vertices
Xio Xka Xi -2 XiLp-1
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Formal Model: Bounded Indegree DAGs

@ Fix infinite DAG with single source node
@ Xij € {0,1} = node random variable at jth position in level k
@ Lx — number of nodes at level k
@ d — indegree of node
X =
level 0 9 Lo=1 ® Xo,0 ~ Bernoulli(3)
Edges independently flip bits
X X _ ¢ Lag p y Thp
level 1 1.0 AQ A 12 Ly =3 with probability § € (0, ),
' -d =2 i.e., edges are binary symmetric
level 2 Xpo Xoi Xop Xps L, =4 channels (BSC(9))
. @ Nodes combine inputs with
. Boolean processing functions
) @ This defines joint distribution of
levelk @ ® - - ° ° L, vertices X
Xio Xka Xi -2 XiLp-1 { Xt
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Formal Model: Bounded Indegree DAGs

o Let Xy £ (Xk70, . an,Lk—l)

@ Question: Can we decode Xy from Xy as k — o0o?

level 0 =1
level 1 X1,0 =3
level 2 =4
levelk @ e o Ly vertices

) . -
ko X1 XiLy-2 XieLg-1
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Formal Model: Bounded Indegree DAGs

o Let Xk £ (Xk70, . an,Lk—l)
@ Question: Can we decode Xy from Xy as k — o0o?

o Binary Hypothesis Testing;:
Let ML(Xk) € {0,1} be maximum likelihood (ML) decoder with probability of error

PIE/IFL) £ P (ML(Xk) # Xo0)
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o Let Xk £ (Xk70, . an,Lk—l)
@ Question: Can we decode Xy from Xy as k — o0o?
o Binary Hypothesis Testing;:
Let ML(Xk) € {0,1} be maximum likelihood (ML) decoder with probability of error

PIE/II(B £ P (ML(Xk) # Xo0)

P,E,lfL) non-decreasing in k and bounded by %

Reconstruction (or broadcasting) possible if

N =

: (k)
klmm PML =

A. Makur (MIT) Reconstruction on 2D Regular Grids ISIT 12-20 July 2021 5/21



Formal Model: Bounded Indegree DAGs

o Let Xk £ (Xk70, . an,Lk—l)
@ Question: Can we decode Xy from Xy as k — o0o?
o Binary Hypothesis Testing;:
Let ML(Xk) € {0,1} be maximum likelihood (ML) decoder with probability of error

PIE/II(B £ P (ML(Xk) # Xo0)

P,E,lfL) non-decreasing in k and bounded by %

@ Reconstruction (or broadcasting) possible if

1
lim P < =
kl—>moo ML 2

and reconstruction impossible if

1
lim P ==
kme ML 2
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Formal Model: Bounded Indegree DAGs

o Let Xy £ (Xk70, - an,Lk—l)
@ Question: Can we decode Xy from Xy as k — o0o?
o Binary Hypothesis Testing;:
Let ML(Xk) € {0,1} be maximum likelihood (ML) decoder with probability of error

PIE/II(B £ P (ML(Xk) # Xo0)

° P,E,lfL) non-decreasing in k and bounded by %
@ Reconstruction (or broadcasting) impossible if and only if
1

lim P = =
kl—>moo M 2

For which graph topologies, noise levels J, and Boolean processing functions is
reconstruction possible?
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Background: Reconstruction on Trees

@ Suppose DAG is tree T with identity
processing and branching number br(T)

level 0

level 1 X10

level 2

level k

Xk,Lk—Z Xk,Lk—l
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Background: Reconstruction on Trees

@ Suppose DAG is tree T with identity
processing and branching number br(T)

Phase Transition for Trees:
[Kesten-Stigum 1966, Bleher-Ruiz-

Zagrebnov 1995, Evans et al. 2000]

then

o If noise level § < 1 —
2 2,/b( )’
reconstruction possible: I|m P(k)

level 0 Xo,0 Ly=1

level 1 X1 X1 L=
br(T) = 2
level 2 L, = 22
20 X21 X2z Xp3
levelk © o - -- o o Lg=br(TF
ko Xk K Le-2 XieLg—1
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Background: Reconstruction on Trees

@ Suppose DAG is tree T with identity
processing and branching number br(T)

Phase Transition for Trees:
[Kesten-Stigum 1966, Bleher-Ruiz-

Zagrebnov 1995, Evans et al. 2000]

then

@ If noise level § < % —

2\/b M)’

reconstruction possible: I|m P(k)

L__ then reconstruction

° If 6> 35— e

impossible: I|m P,EAB =5
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level 0 Xo,0 Ly=1
level 1 X1, X1 L=
br(T) = 2
level 2 L, = 22
20 X21 X22 Xp3
levelk © o - -- o o Lg=br(TF*
ko Xk K Le-2 XieLg—1
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Background: Reconstruction on Random DAGs

@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level 0 Lo=1
level 1 X1,0 R X12 L, =3
-d =
level 2 L,=4
20 X21 Xz22 Xp3
levelk @ e - - - e o Ly, vertices
Xio Xk1 Xieg—2 Xirp—1
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Background: Reconstruction on Random DAGs

@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level 0 Lo=1
Phase Transition for Random DAGs:
level 1 X1,0 RX12 L =3 [Makur-Mossel-Polyanskiy 2019, 2020]
-d = Suppose d > 3 and all nodes use maJorlty
level 2 > L L,=4% A1 29—
Xo0 Xp1 Xoz Xos processing, and let omaj = 5 — ’Vd/z](]'d/ﬂ)
levelk @ e - - - e o Ly, vertices
Xio Xk1 Xieg—2 Xirp—1

o
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Background: Reconstruction on Random DAGs

@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level 0 Xog Ly=1
Phase Transition for Random DAGs:
level 1 X1,0 RX12 L =3 [Makur-Mossel-Polyanskiy 2019, 2020]
-d = Suppose d > 3 and all nodes use majority
level 2 L L, =4 : A1 =2
20 X21 X2z Xps processing, and let dmaj = 3 —(d/ﬂ(rd‘/jz])'
- o If noise level 0 < dmaj and Ly = Q(log(k)),
) then reconstruction possible using majority
levelk @ e - - - e o Ly, vertices ;
Xeo X X2 Xireo1 voting decoder

o
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Background: Reconstruction on Random DAGs

@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level O Xog Lo=1
Phase Transition for Random DAGs:
level 1 X1, RX12 L =3 [Makur-Mossel-Polyanskiy 2019, 2020]
-d = Suppose d > 3 and all nodes use majority
level 2 L, =4 : A1 =2 .
20 X21 X2z Xps processing, and let dmaj = 3 —(d/ﬂ(rd(/jz])'
- o If noise level § < dmaj and Ly = Q(log(k)),
) then reconstruction possible using majority
levelk @ e - - - e o Ly, vertices ;
Xeo X Xer—2 Xir,1 voting decoder

@ If 0 > dmaj and Ly sub-exponential, then
reconstruction impossible G-a.s.

o
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@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level O Xog Lo=1
Phase Transition for Random DAGs:
level 1 X0 RX12 L, =3 [Makur-Mossel-Polyanskiy 2019, 2020]
-d = Suppose d = 2 and all nodes use NAND gates,
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Background: Reconstruction on Random DAGs

@ Consider random DAG G with fixed layer
sizes L, and indegree d > 1, where nodes
randomly select parents (with repetition)

level O Xog Lo=1
Phase Transition for Random DAGs:
level 1 X1,0 RX12 L, =3 [Makur-Mossel-Polyanskiy 2019, 2020]
-d = Suppose d = 2 and all nodes use NAND gates,
fovel 2 20 X21 X22 X3 ke =4 and let 5"3"d = 3_4\ﬁ:
; @ If 0 < dpand and Ly = Q(log(k)), then
. reconstruction possible using biased majority
levelk o© e -« - @ @ [, vertices voting decoder
Xio Xk1 Xieg—2 Xirp—1
@ If § > 0hang and L, sub-exponential, then
reconstruction impossible G-a.s.
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2D Regular Grid Model

@ Suppose DAG is 2D regular grid
o Layersize Ly = k+1
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2D Regular Grid Model

Suppose DAG is 2D regular grid
Layer size Ly = k+1
Boundary nodes use identity processing

Interior nodes use common Boolean
processing function

A. Makur (MIT) Reconstruction on 2D Regular Grids ISIT 12-20 July 2021 9/21



2D Regular Grid Model

Suppose DAG is 2D regular grid
Layer size Ly = k+1
Boundary nodes use identity processing

Interior nodes use common Boolean
processing function

Conjecture: For all § € (0 2) and all choices
of processing functions, reconstructlon

. : (k)
impossible: I|m P 2

o Motivation: “Positive rates conjecture” on
ergodicity of simple 1D probabilistic cellular
automata (e.g., [Gray 2001])

A. Makur (MIT) Reconstruction on 2D Regular Grids ISIT 12-20 July 2021 9/21



Impossibility Result for AND Processing

@ Common processing function = AND gate

XNy

== O O X
— O R Ol
— O O o>
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Impossibility Result for AND Processing

@ Common processing function = AND gate

X|y|xANy
0|0 0
0|1 0
110 0
1)1 1

Theorem (Reconstruction with AND Gates)

Reconstruction impossible on 2D regular grid with AND processing functions for all § € (0, l)

2
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Proof Sketch: AND Processing

o Step 1: Monotone Markovian coupling

o Layers {Xx = (Xko0,--.,Xkk)} form a Markov chain
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o Step 1: Monotone Markovian coupling

o Layers {Xx = (Xko0,--.,Xkk)} form a Markov chain
o Define Markov chains {X, } and {X, }: Copies of {Xx} with X;” =1 and X; =0
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Proof Sketch: AND Processing

o Step 1: Monotone Markovian coupling

o Layers {Xx = (Xko0,--.,Xkk)} form a Markov chain
o Define Markov chains {X,'} and {X, }: Copies of {Xx} with X;” =1 and X; =0
o Representation of BSC(4): (Z is Bernoulli(3))

with probability 1 — 26, X, j X,j

with probability 26, I generate random bit Z I—P Z

Xi,j BSC(6) =
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Proof Sketch: AND Processing

o Step 1: Monotone Markovian coupling

o Layers {Xx = (Xko0,--.,Xkk)} form a Markov chain
o Define Markov chains {X,'} and {X, }: Copies of {Xx} with X;” =1 and X; =0
o Couple {X,F} and {X, } to run on common 2D regular grid:

X’:]' Xl-c'.j
thprobabiity 1 - 26, " —[ ooy b
Xk+.j common edge with probability X X,;I-

k.j

= Z
Xk.j with probability 26, I common random bit Z I—P
Z
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Proof Sketch: AND Processing

o Step 1: Monotone Markovian coupling

o Layers {Xx = (Xko0,--.,Xkk)} form a Markov chain
o Define Markov chains {X,'} and {X, }: Copies of {Xx} with X;” =1 and X; =0
o Couple {X,F} and {X, } to run on common 2D regular grid:

X’:]' Xl-c'.j
thprobabiity 1 - 26, " —[ ooy b
Xk+.j common edge with probability X X,;I-

k.j

= Z
Xk.j with probability 26, I common random bit Z I—P
Z

o AND gate is monotone = X, > X, for all k, j
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Proof Sketch: AND Processing

o Step 1: Monotone Markovian coupling

Layers { Xk = (Xk,0,--.,Xkk)} form a Markov chain

Define Markov chains {X;"} and {X, }: Copies of {Xx} with X;" =1 and X; =0
Couple {X,/} and {X, } to run on common 2D regular grid:

X’:}' Xl-c'.j
thprobabiity 1 - 26, " —[ ooy b
Xk+.j common edge with probability X X,;I-

k.j

= Z
Xk.j with probability 26, I common random bit Z I—P
Z

AND gate is monotone = X, > X, for all k,j

Define coupled grid variables Y} ; = (X,:j,X,:FJ) € {0c, 1, 1.} with source Ypo = 1y,
where 0. = (0,0), 1, = (0,1), 1c = (1,1)
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Proof Sketch: AND Processing

@ Step 2: Reduction to coupled grid

@ Define coupled grid variables Yy ; = (XkJ,X+) € {0, 1y, 1.} with source Yo =1,
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Proof Sketch: AND Processing

@ Step 2: Reduction to coupled grid

@ Define coupled grid variables Y ; = (X X;r) € {0, 1y, 1.} with source Yo =1,

ka2 7 ko
e Maximal coupling characterization of total variation distance || - ||1v:
+ - + -\ _ ;
1A% =P, SPOG#X0) = 1= P(¥, Vi # L)
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Proof Sketch: AND Processing

@ Step 2: Reduction to coupled grid
@ Define coupled grid variables Yy ; = (XkJ,X+) € {0, 1y, 1.} with source Yo =1,
e Maximal coupling characterization of total variation distance || - ||1v:

+
I

@ Using Step 1, I|m HP+ - Py,

<P(X!#X) =1-P(V), Yk, # Lu)

oy S PGk, Vi # 1)
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Proof Sketch: AND Processing

@ Step 2: Reduction to coupled grid
@ Define coupled grid variables Y ; = (X X+) € {0, 1y, 1.} with source Yo =1,

k,j?
e Maximal coupling characterization of total variation distance || - ||1v:
|7, <P(X # X)) = 1= B(Y), Yij # L)

@ Using Step 1, I|m HP+ - Py,

oy S PGk, Vi # 1)

@ By Le Cam’s relatlon,

k) 1 . _
im PG =2 <1 ~ lim [P~ P

k—o00

J) 2 3 FEk Y, Vi £ 1)
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Proof Sketch: AND Processing

@ Step 2: Reduction to coupled grid
@ Define coupled grid variables Y ; = (X X+) € {0, 1y, 1.} with source Ypo = 1,

k,j?
e Maximal coupling characterization of total variation distance || - ||1v:
|7, <P(X # X)) = 1= B(Y), Yij # L)

<1l- P(Elka \V/_], ka 7& 1u)

Using Step 1, i HP*—P*
o Using Step 1, lim ||Py, Xe |1y

@ By Le Cam’s relation,

(k) _ 1
im PG =2 <1— im || P%, - Px,

k—o00

1
> —P(3k, V), Yi; #1
TV> =9 ( 7VJ> k,,17é u)

o To show limy oo PK) = 1 it suffices to prove that P(3k, Vj, Vi, # 1,) = 1
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Proof Sketch: AND Processing

o Step 3: Bond percolation
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Proof Sketch: AND Processing

o Step 3: Bond percolation
@ Independently keep each edge
open with probability p € [0, 1],
and closed with probability 1 — p
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Proof Sketch: AND Processing

o Step 3: Bond percolation

@ Independently keep each edge
open with probability p € [0, 1],
and closed with probability 1 — p

@ For each level k, let R, and Ly
be the rightmost and leftmost
node indices connected to Yp o
by open paths
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o Step 3: Bond percolation

@ Independently keep each edge
open with probability p € [0, 1],
and closed with probability 1 — p

@ For each level k, let Rk and Ly
be the rightmost and leftmost
node indices connected to Yp o
by open paths

o Define event Q. = {J infinite
open path from Ypo}
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Proof Sketch: AND Processing

o Step 3: Bond percolation

@ Independently keep each edge
open with probability p € [0, 1],
and closed with probability 1 — p

@ For each level k, let Rk and Ly
be the rightmost and leftmost
node indices connected to Yp o
by open paths

o Define event Q, = {Jinfinite
open path from Ypo}

o Phase transition [Durrett 1984]: There is a critical threshold Jperc € (3

@ If p < dperc, then P(Q2) =0

,1) such that:

ISIT 12-20 July 2021 13 /21
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Proof Sketch: AND Processing

o Step 3: Bond percolation

@ Independently keep each edge
open with probability p € [0, 1],
and closed with probability 1 — p

@ For each level k, let Rk and Ly
be the rightmost and leftmost
node indices connected to Yp o
by open paths

o Define event Q. £ {3 infinite
open path from Ypo}

level k

o Phase transition [Durrett 1984]: There is a critical threshold dperc € (3, 1) such that:
@ If p < dperc, then P(Qs) =0

R, — L
o If p > dperc, then P(Q2) > 0 and P(klim K k
—00

p >0’Qoo>:1

A. Makur (MIT) Reconst truction on 2D Regular Grids ISIT 12-20 July 2021 13 /21




Proof Sketch: AND Processing

o Step 2: Suffices to prove P(Jk, V), Yij # 1) =1
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Proof Sketch: AND Processing

o Step 2: Suffices to prove P(3k, V), Yij # 1) =1
o Step 4: Case | (Noise level satisfies p =1 — 2§ < dperc)
@ Bond percolation: Edge open < BSC(J) copies input, i.e., p=1—20
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Proof Sketch: AND Processing

o Step 2: Suffices to prove P(3k, V), Yij # 1) =1

o Step 4: Case | (Noise level satisfies p =1 — 2§ < dperc)
@ Bond percolation: Edge open < BSC(J) copies input, i.e., p=1—20
@ Step 3 = There is no infinite open path from Yp o almost surely
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Proof Sketch: AND Processing

o Step 2: Suffices to prove P(3k, V), Yij # 1) =1

o Step 4: Case | (Noise level satisfies p =1 — 2§ < dperc)
@ Bond percolation: Edge open < BSC(J) copies input, i.e., p=1—20
@ Step 3 = There is no infinite open path from Yo almost surely

@ Markovian coupling of Step 1 = 1,'s only travel along open edges
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Proof Sketch: AND Processing

o Step 2: Suffices to prove P(Jk, V), Yij # 1) =1 v

o Step 4: Case | (Noise level satisfies p =1 — 2§ < dperc)
@ Bond percolation: Edge open < BSC(J) copies input, i.e., p=1—20
@ Step 3 = There is no infinite open path from Yo almost surely
@ Markovian coupling of Step 1 = 1,'s only travel along open edges

@ Hence, there exists level k such that Y} ; # 1, for all j
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Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ Bond percolation: Edge open <
BSC(9) copies or generates
random bit =0, i.e.,, p=1—9
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e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ Bond percolation: Edge open <
BSC(9) copies or generates
random bit =0, i.e.,, p=1—9

e Boundary BSC(d)'s generate
random bits = 0 independently
with probability §
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Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ Bond percolation: Edge open <
BSC(9) copies or generates
random bit =0, i.e.,, p=1—9

e Boundary BSC(d)'s generate
random bits = 0 independently
with probability §

@ Step 3 = 0. nodes subtend
infinite open subgraph with
probability P(2+) > 0

A. Makur (MIT) Reconst truction on 2D Regular Grids ISIT 12-20 July 2021 15/21



Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ Bond percolation: Edge open <
BSC(6) copies or generates Yoo = 1u
random bit =0, i.e.,, p=1—9

@ Boundary BSC(d)'s generate
random bits = 0 independently
with probability §

@ Step 3 = 0. nodes subtend
infinite open subgraph with infinite open
probability P(Q2+) > 0 path 4

@ Borel-Cantelli = There exists 0.
boundary node with infinite open
path almost surely
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Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ For some levels k and m,
Y0 = Ymm = Oc and both Yoo = 1u
nodes have infinite open paths ’
almost surely
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Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)
@ For some levels k and m,
Yk0 = Ymm = Oc and both Yoo = 1
nodes have infinite open paths ’
almost surely

@ Step 3 = Open paths from Yo
and Yy, m meet
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Proof Sketch: AND Processing

e Step 2: Suffices to prove P(3r, V), Y, j #1,) =1
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ For some levels k and m,
Yk0 = Ymm = Oc and both
nodes have infinite open paths
almost surely

ey ftr(nostopen‘
@ Step 3 = Open paths from Yo b0, A * Yonm 8rid
and Y, m meet ’
@ Markovian coupling of Step 1 =
Nodes enclosed by open paths
are O¢c or 1.
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Proof Sketch: AND Processing

o Step 2: Suffices to prove P(3r, V), Y, # 1,) =1 v
e Step 5: Case Il (Noise level satisfies p =1 — ¢ > dperc)

@ For some levels k and m,
Yk0 = Ymm = Oc and both
nodes have infinite open paths
almost surely

eftmost open

@ Step 3 = Open paths from Yo r NC 9 QAN ¥, grid
and Y, m meet ' ’

@ Markovian coupling of Step 1 =
Nodes enclosed by open paths
are O¢c or 1.

@ Hence, there exists level r such
that Y, ; # 1, for all j
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Proof Sketch: AND Processing

@ Step 1: Monotone Markovian coupling

@ Step 2: Reduction to coupled grid

@ Step 3: Bond percolation

o Step 4: Case | - Noise level 6 > (1 — dperc)/2

@ Step 5: Case Il - Noise level 6 <1 — dperc
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Impossibility Result for XOR Processing
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Impossibility Result for XOR Processing

@ Common processing function = XOR gate

X|y|x®y
0|0 0
01 1
110 1
111 0

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all § &€ (0, l)
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Impossibility Result for XOR Processing

@ Common processing function = XOR gate

X|y|x®y
0|0 0
01 1
110 1
111 0

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all § € (O, 1)

2

@ Proof uses bit-wise ML decoding of linear codes
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Impossibility Result for NAND Processing

@ Common processing function = NAND gate

x|y | ~(xAy)
0] 0 1
01 1
1]0 1
1)1 0
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Impossibility Result for NAND Processing

@ Common processing function = NAND gate

x|y | ~(xAy)
0] 0 1
01 1
1]0 1
1)1 0

@ Fix known vector b and matrix A(d) for any
noise level § € (0, 1)

Theorem (Reconstruction with NAND Gates)

For all § € (0, 3), if linear programming (LP) feasibility problem, A(6) x > b, has solution
x = x*(9), then reconstruction impossible on 2D regular grid with NAND processing functions
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Impossibility Result for NAND Processing

@ Common processing function = NAND gate

x|y | ~(xAy)
0] 0 1
01 1
1]0 1
1)1 0

@ Fix known vector b and matrix A(d) for any
noise level § € (0, 1)

Theorem (Reconstruction with NAND Gates)

For all 6 € (0, 3), if linear programming (LP) feasibility problem, A(5) x > b, has solution
x = x*(9), then reconstruction impossible on 2D regular grid with NAND processing functions

@ Proof uses martingale argument and LP solution generates desired martingale
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Impossibility Result for NAND Processing

@ Common processing function = NAND gate

x|y | ~(xAy)
0] 0 1
01 1
1]0 1
1)1 0

@ Fix known vector b and matrix A(d) for any
noise level § € (0, 1)

Theorem (Reconstruction with NAND Gates)

For all 6 € (0, 3), if linear programming (LP) feasibility problem, A(5) x > b, has solution
x = x*(9), then reconstruction impossible on 2D regular grid with NAND processing functions

@ Proof uses martingale argument and LP solution generates desired martingale
o LPs computationally solved for numerous values of § € (0, 1)
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Conclusion

Main Contribution:

@ Reconstruction impossible in 2D regular grids with symmetric processing functions
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Conclusion

Main Contribution:

@ Reconstruction impossible in 2D regular grids with symmetric processing functions

Future Direction:

@ Conjecture: For 2D regular grids, reconstruction impossible for all processing functions
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Thank Youl
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