Reconstruction on 2D Regular Grids

Anuran Makur[†], Elchanan Mossel^{*}, and Yury Polyanskiy[†]

[†]Department of Electrical Engineering and Computer Science *Department of Mathematics Massachusetts Institute of Technology

IEEE International Symposium on Information Theory 2021

Reconstruction on 2D Regular Grids

Outline

Introduction

Motivation

- Formal Model
- Background

3 Conclusion

communication networks

social networks

- How does information propagate through such large networks over time?
- Can we invent processing functions so that far boundary has information about source bit?

• Fix infinite directed acyclic graph (DAG) with single source node

- Fix infinite DAG with single source node
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level k

- Fix infinite DAG with single source node
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k

- Fix infinite DAG with single source node
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- d indegree of node

- Fix infinite DAG with single source node
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- d indegree of node

- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability δ ∈ (0, 1/2), i.e., edges are *binary symmetric channels* (BSC(δ))

- Fix infinite DAG with single source node
- $X_{k,j} \in \{0,1\}$ node random variable at *j*th position in level *k*
- L_k number of nodes at level k
- d indegree of node

- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability δ ∈ (0, ¹/₂), i.e., edges are *binary symmetric channels* (BSC(δ))
- Nodes combine inputs with Boolean processing functions
- This defines joint distribution of $\{X_{k,j}\}$

- Let $X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?

- Let $X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing:

Let $ML(X_k) \in \{0,1\}$ be maximum likelihood (ML) decoder with probability of error

 $P_{\mathsf{ML}}^{(k)} riangleq \mathbb{P}\left(\mathsf{ML}(X_k)
eq X_{0,0}
ight)$

- Let $X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing:

Let $\mathsf{ML}(X_k) \in \{0,1\}$ be *maximum likelihood* (ML) decoder with probability of error

$$P_{\mathsf{ML}}^{(k)} riangleq \mathbb{P}\left(\mathsf{ML}(X_k)
eq X_{0,0}
ight)$$

• $P_{ML}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$

- Let $X_k \triangleq (X_{k,0}, \dots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing:

Let $ML(X_k) \in \{0,1\}$ be *maximum likelihood* (ML) decoder with probability of error

$$P_{\mathsf{ML}}^{(k)} riangleq \mathbb{P}\left(\mathsf{ML}(X_k)
eq X_{0,0}
ight)$$

- $P_{ML}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or broadcasting) possible if

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} < \frac{1}{2}$$

- Let $X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing:

Let $\mathsf{ML}(X_k) \in \{0,1\}$ be *maximum likelihood* (ML) decoder with probability of error

$$P_{\mathsf{ML}}^{(k)} riangleq \mathbb{P}\left(\mathsf{ML}(X_k)
eq X_{0,0}
ight)$$

- $P_{ML}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or *broadcasting*) possible if

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} < \frac{1}{2}$$

and reconstruction impossible if

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} = \frac{1}{2}$$

- Let $X_k \triangleq (X_{k,0}, \ldots, X_{k,L_k-1})$
- Question: Can we decode X_0 from X_k as $k \to \infty$?
- Binary Hypothesis Testing:

Let $ML(X_k) \in \{0,1\}$ be maximum likelihood (ML) decoder with probability of error

 $P_{\mathsf{ML}}^{(k)} \triangleq \mathbb{P}\left(\mathsf{ML}(X_k) \neq X_{0,0}\right)$

- $P_{ML}^{(k)}$ non-decreasing in k and bounded by $\frac{1}{2}$
- Reconstruction (or broadcasting) impossible if and only if

$$\lim_{k\to\infty} P_{\mathsf{ML}}^{(k)} = \frac{1}{2}$$

For which graph topologies, noise levels δ , and Boolean processing functions is reconstruction possible?

Background: Reconstruction on Trees

 Suppose DAG is tree T with identity processing and branching number br(T)

Background: Reconstruction on Trees

 Suppose DAG is tree T with identity processing and branching number br(T)

Background: Reconstruction on Trees

 Suppose DAG is tree T with identity processing and branching number br(T)

Phase Transition for Trees: [Kesten-Stigum 1966, Bleher-Ruiz-Zagrebnov 1995, Evans et al. 2000] • If noise level $\delta < \frac{1}{2} - \frac{1}{2\sqrt{\mathsf{br}(\mathcal{T})}}$, then reconstruction possible: $\lim_{k \to \infty} P_{ML}^{(k)} < \frac{1}{2}$ • If $\delta > \frac{1}{2} - \frac{1}{2\sqrt{br(T)}}$, then reconstruction impossible: $\lim_{k \to \infty} P_{ML}^{(k)} = \frac{1}{2}$

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \ge 3$ and all nodes use majority processing, and let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$:

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \ge 3$ and all nodes use majority processing, and let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$:

• If noise level $\delta < \delta_{maj}$ and $L_k = \Omega(\log(k))$, then reconstruction possible using majority voting decoder

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose $d \ge 3$ and all nodes use majority processing, and let $\delta_{maj} \triangleq \frac{1}{2} - \frac{2^{d-2}}{\lceil d/2 \rceil \binom{d}{\lceil d/2 \rceil}}$:

- If noise level $\delta < \delta_{maj}$ and $L_k = \Omega(\log(k))$, then reconstruction possible using majority voting decoder
- If $\delta > \delta_{maj}$ and L_k sub-exponential, then reconstruction impossible *G*-*a.s.*

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose d = 2 and all nodes use NAND gates, and let $\delta_{nand} \triangleq \frac{3-\sqrt{7}}{4}$:

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose d = 2 and all nodes use NAND gates, and let $\delta_{nand} \triangleq \frac{3-\sqrt{7}}{4}$:

 If δ < δ_{nand} and L_k = Ω(log(k)), then reconstruction possible using biased majority voting decoder

 Consider random DAG G with fixed layer sizes L_k and indegree d > 1, where nodes randomly select parents (with repetition)

Phase Transition for Random DAGs: [Makur-Mossel-Polyanskiy 2019, 2020]

Suppose d = 2 and all nodes use NAND gates, and let $\delta_{nand} \triangleq \frac{3-\sqrt{7}}{4}$:

- If δ < δ_{nand} and L_k = Ω(log(k)), then reconstruction possible using biased majority voting decoder
- If $\delta > \delta_{nand}$ and L_k sub-exponential, then reconstruction impossible G-a.s.

Outline

Introduction

2 Main Results

- 2D Regular Grid Model
- Impossibility Result for AND Processing
- Impossibility Result for XOR Processing
- Impossibility Result for NAND Processing

3 Conclusion

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_k = k + 1$

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_k = k + 1$
- Boundary nodes use identity processing
- Interior nodes use *common* Boolean processing function

2D Regular Grid Model

- Suppose DAG is 2D regular grid
- Layer size $L_k = k + 1$
- Boundary nodes use identity processing
- Interior nodes use *common* Boolean processing function

Conjecture: For all $\delta \in (0, \frac{1}{2})$ and all choices of processing functions, reconstruction impossible: $\lim_{k \to \infty} P_{ML}^{(k)} = \frac{1}{2}$

• Motivation: "Positive rates conjecture" on ergodicity of simple 1D probabilistic cellular automata (e.g., [Gray 2001])

Impossibility Result for AND Processing

• Common processing function = AND gate

X	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Impossibility Result for AND Processing

 \bullet Common processing function = AND gate

Theorem (Reconstruction with AND Gates)

Reconstruction impossible on 2D regular grid with AND processing functions for all $\delta \in (0, \frac{1}{2})$
- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain

- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain
 - Define Markov chains $\{X_k^+\}$ and $\{X_k^-\}$: Copies of $\{X_k\}$ with $X_0^+ = 1$ and $X_0^- = 0$

- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain
 - Define Markov chains $\{X_k^+\}$ and $\{X_k^-\}$: Copies of $\{X_k\}$ with $X_0^+ = 1$ and $X_0^- = 0$
 - Representation of BSC(δ): (Z is Bernoulli $(\frac{1}{2})$)

- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain
 - Define Markov chains $\{X_k^+\}$ and $\{X_k^-\}$: Copies of $\{X_k\}$ with $X_0^+ = 1$ and $X_0^- = 0$
 - Couple $\{X_k^+\}$ and $\{X_k^-\}$ to run on common 2D regular grid:

- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain
 - Define Markov chains $\{X_k^+\}$ and $\{X_k^-\}$: Copies of $\{X_k\}$ with $X_0^+ = 1$ and $X_0^- = 0$
 - Couple $\{X_k^+\}$ and $\{X_k^-\}$ to run on common 2D regular grid:

• AND gate is monotone $\Rightarrow X_{k,j}^+ \ge X_{k,j}^-$ for all k, j

- Step 1: Monotone Markovian coupling
 - Layers $\{X_k = (X_{k,0}, \dots, X_{k,k})\}$ form a Markov chain
 - Define Markov chains $\{X_k^+\}$ and $\{X_k^-\}$: Copies of $\{X_k\}$ with $X_0^+ = 1$ and $X_0^- = 0$
 - Couple $\{X_k^+\}$ and $\{X_k^-\}$ to run on common 2D regular grid:

- AND gate is monotone $\Rightarrow X_{k,j}^+ \ge X_{k,j}^-$ for all k, j
- Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$, where $0_c = (0,0)$, $1_u = (0,1)$, $1_c = (1,1)$

- Step 2: Reduction to coupled grid
 - Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$

- Step 2: Reduction to coupled grid
 - Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$
 - Maximal coupling characterization of *total variation distance* $\|\cdot\|_{TV}$:

$$\left\| P_{X_k}^+ - P_{X_k}^- \right\|_{\mathsf{TV}} \leq \mathbb{P} \big(X_k^+ \neq X_k^- \big) = 1 - \mathbb{P} (\forall j, \ Y_{k,j} \neq 1_{\mathsf{u}})$$

- Step 2: Reduction to coupled grid
 - Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$
 - Maximal coupling characterization of *total variation distance* $\|\cdot\|_{TV}$:

$$\left\| P_{X_k}^+ - P_{X_k}^- \right\|_{\mathsf{TV}} \leq \mathbb{P}ig(X_k^+
eq X_k^-ig) = 1 - \mathbb{P}(orall j, \ Y_{k,j}
eq 1_{\mathsf{u}})$$

• Using Step 1,
$$\lim_{k \to \infty} \left\| P_{X_k}^+ - P_{X_k}^- \right\|_{\mathsf{TV}} \leq 1 - \mathbb{P}(\exists k, \, \forall j, \, Y_{k,j} \neq 1_{\mathsf{u}})$$

- Step 2: Reduction to coupled grid
 - Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$
 - Maximal coupling characterization of *total variation distance* $\|\cdot\|_{TV}$:

$$\left\| egin{split} P^+_{X_k} - P^-_{X_k}
ight\|_{\mathsf{TV}} \leq \mathbb{P}ig(X^+_k
eq X^-_kig) = 1 - \mathbb{P}(orall j, \ Y_{k,j}
eq 1_{\mathsf{u}}ig) \end{split}$$

- Using Step 1, $\lim_{k \to \infty} \left\| P_{X_k}^+ P_{X_k}^- \right\|_{\mathsf{TV}} \leq 1 \mathbb{P}(\exists k, \, \forall j, \, Y_{k,j} \neq 1_{\mathsf{u}})$
- By Le Cam's relation,

$$\lim_{k \to \infty} \mathsf{P}_{\mathsf{ML}}^{(k)} = \frac{1}{2} \left(1 - \lim_{k \to \infty} \left\| \mathsf{P}_{X_k}^+ - \mathsf{P}_{X_k}^- \right\|_{\mathsf{TV}} \right) \geq \frac{1}{2} \, \mathbb{P}(\exists k, \, \forall j, \, Y_{k,j} \neq 1_{\mathsf{u}})$$

- Step 2: Reduction to coupled grid
 - Define coupled grid variables $Y_{k,j} = (X_{k,j}^-, X_{k,j}^+) \in \{0_c, 1_u, 1_c\}$ with source $Y_{0,0} = 1_u$
 - Maximal coupling characterization of *total variation distance* $\|\cdot\|_{TV}$:

$$\left\| P_{X_k}^+ - P_{X_k}^- \right\|_{\mathsf{TV}} \leq \mathbb{P} ig(X_k^+
eq X_k^- ig) = 1 - \mathbb{P} (orall j, \ Y_{k,j}
eq 1_{\mathsf{u}})$$

- Using Step 1, $\lim_{k \to \infty} \left\| P_{X_k}^+ P_{X_k}^- \right\|_{\mathsf{TV}} \leq 1 \mathbb{P}(\exists k, \, \forall j, \, Y_{k,j} \neq 1_{\mathsf{u}})$
- By Le Cam's relation,

$$\lim_{k \to \infty} \mathsf{P}_{\mathsf{ML}}^{(k)} = \frac{1}{2} \left(1 - \lim_{k \to \infty} \left\| \mathsf{P}_{X_k}^+ - \mathsf{P}_{X_k}^- \right\|_{\mathsf{TV}} \right) \geq \frac{1}{2} \, \mathbb{P}(\exists k, \, \forall j, \, Y_{k,j} \neq 1_{\mathsf{u}})$$

• To show $\lim_{k\to\infty} P_{ML}^{(k)} = \frac{1}{2}$, it suffices to prove that $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$

- Step 3: Bond percolation
 - Independently keep each edge
 open with probability p ∈ [0, 1],
 and *closed* with probability 1 − p

- Independently keep each edge
 open with probability p ∈ [0, 1],
 and *closed* with probability 1 − p
- For each level k, let Rk and Lk be the rightmost and leftmost node *indices* connected to Y_{0,0} by open paths

- Independently keep each edge
 open with probability p ∈ [0, 1],
 and *closed* with probability 1 − p
- For each level k, let R_k and L_k be the rightmost and leftmost node *indices* connected to Y_{0,0} by open paths
- Define event Ω_∞ ≜ {∃ infinite open path from Y_{0,0}}

- Independently keep each edge
 open with probability p ∈ [0, 1],
 and *closed* with probability 1 − p
- For each level k, let R_k and L_k be the rightmost and leftmost node *indices* connected to Y_{0,0} by open paths
- Define event Ω_∞ ≜ {∃ infinite open path from Y_{0,0}}

- Phase transition [Durrett 1984]: There is a critical threshold $\delta_{perc} \in (\frac{1}{2}, 1)$ such that:
 - If $p < \delta_{\mathsf{perc}}$, then $\mathbb{P}(\Omega_{\infty}) = 0$

• Step 3: Bond percolation

- Independently keep each edge
 open with probability p ∈ [0, 1],
 and *closed* with probability 1 − p
- For each level k, let R_k and L_k be the rightmost and leftmost node *indices* connected to Y_{0,0} by open paths
- Define event $\Omega_{\infty} \triangleq \{\exists \text{ infinite} \\ \text{open path from } Y_{0,0}\}$

• **Phase transition** [Durrett 1984]: There is a critical threshold $\delta_{perc} \in (\frac{1}{2}, 1)$ such that:

• If
$$p < \delta_{ extsf{perc}}$$
, then $\mathbb{P}(\Omega_\infty) = 0$

• If
$$p > \delta_{\mathsf{perc}}$$
, then $\mathbb{P}(\Omega_{\infty}) > 0$ and $\mathbb{P}\left(\lim_{k \to \infty} \frac{R_k - L_k}{k} > 0 \ \middle| \ \Omega_{\infty}\right) = 0$

A. Makur (MIT)

• Step 2: Suffices to prove $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$

- Step 2: Suffices to prove $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$
- Step 4: Case I (Noise level satisfies $p = 1 2\delta < \delta_{perc}$)
 - Bond percolation: Edge open $\Leftrightarrow BSC(\delta)$ copies input, i.e., $p = 1 2\delta$

- Step 2: Suffices to prove $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$
- Step 4: Case I (Noise level satisfies $p = 1 2\delta < \delta_{perc}$)
 - Bond percolation: Edge open $\Leftrightarrow BSC(\delta)$ copies input, i.e., $p = 1 2\delta$
 - Step 3 \Rightarrow There is no infinite open path from $Y_{0,0}$ almost surely

- Step 2: Suffices to prove $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$
- Step 4: Case I (Noise level satisfies $p = 1 2\delta < \delta_{perc}$)
 - Bond percolation: Edge open $\Leftrightarrow \mathsf{BSC}(\delta)$ copies input, i.e., $p = 1 2\delta$
 - \bullet Step 3 \Rightarrow There is no infinite open path from $\mathit{Y}_{0,0}$ almost surely
 - Markovian coupling of Step $1 \Rightarrow 1_u$'s only travel along open edges

- Step 2: Suffices to prove $\mathbb{P}(\exists k, \forall j, Y_{k,j} \neq 1_u) = 1$
- Step 4: Case I (Noise level satisfies $p = 1 2\delta < \delta_{perc}$)
 - Bond percolation: Edge open $\Leftrightarrow BSC(\delta)$ copies input, i.e., $p = 1 2\delta$
 - Step 3 \Rightarrow There is no infinite open path from $Y_{0,0}$ almost surely
 - $\bullet\,$ Markovian coupling of Step $1 \Rightarrow 1_u{}'s$ only travel along open edges
 - Hence, there exists level k such that $Y_{k,j} \neq 1_u$ for all j

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - Bond percolation: Edge open \Leftrightarrow BSC(δ) copies or generates random bit = 0, i.e., $p = 1 - \delta$

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - Bond percolation: Edge open \Leftrightarrow BSC(δ) copies or generates random bit = 0, i.e., $p = 1 - \delta$
 - Boundary BSC(δ)'s generate random bits = 0 independently with probability δ

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - Bond percolation: Edge open ⇔ BSC(δ) copies or generates random bit = 0, i.e., p = 1 − δ
 - Boundary BSC(δ)'s generate random bits = 0 independently with probability δ
 - Step $3 \Rightarrow 0_c$ nodes subtend infinite open subgraph with probability $\mathbb{P}(\Omega_{\infty}) > 0$

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - Bond percolation: Edge open ⇔ BSC(δ) copies or generates random bit = 0, i.e., p = 1 − δ
 - Boundary BSC(δ)'s generate random bits = 0 independently with probability δ
 - Step $3 \Rightarrow 0_c$ nodes subtend infinite *open subgraph* with probability $\mathbb{P}(\Omega_{\infty}) > 0$
 - Borel-Cantelli ⇒ There exists 0_c boundary node with infinite open path almost surely

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - For some levels k and m, $Y_{k,0} = Y_{m,m} = 0_c$ and both nodes have infinite open paths almost surely

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - For some levels k and m, $Y_{k,0} = Y_{m,m} = 0_c$ and both nodes have infinite open paths almost surely
 - Step 3 \Rightarrow Open paths from $Y_{k,0}$ and $Y_{m,m}$ meet

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - For some levels k and m, $Y_{k,0} = Y_{m,m} = 0_c$ and both nodes have infinite open paths almost surely
 - Step 3 \Rightarrow Open paths from $Y_{k,0}$ and $Y_{m,m}$ meet
 - Markovian coupling of Step 1 \Rightarrow Nodes enclosed by open paths are 0_c or 1_c

- Step 2: Suffices to prove $\mathbb{P}(\exists r, \forall j, Y_{r,j} \neq 1_u) = 1 \checkmark$
- Step 5: Case II (Noise level satisfies $p = 1 \delta > \delta_{perc}$)
 - For some levels k and m, $Y_{k,0} = Y_{m,m} = 0_c$ and both nodes have infinite open paths almost surely
 - Step 3 \Rightarrow Open paths from $Y_{k,0}$ and $Y_{m,m}$ meet
 - Markovian coupling of Step 1 \Rightarrow Nodes enclosed by open paths are 0_c or 1_c
 - Hence, there exists level r such that $Y_{r,j} \neq 1_u$ for all j

- Step 1: Monotone Markovian coupling
- Step 2: Reduction to coupled grid
- Step 3: Bond percolation
- Step 4: Case I Noise level $\delta > (1 \delta_{\mathsf{perc}})/2$
- Step 5: Case II Noise level $\delta < 1 \delta_{perc}$

Impossibility Result for XOR Processing

• Common processing function = XOR gate

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Impossibility Result for XOR Processing

 \bullet Common processing function = XOR gate

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all $\delta \in (0, \frac{1}{2})$

Impossibility Result for XOR Processing

 \bullet Common processing function = XOR gate

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all $\delta \in (0, \frac{1}{2})$

• Proof uses bit-wise ML decoding of linear codes

A. Makur (MIT)

Reconstruction on 2D Regular Grids

Impossibility Result for NAND Processing

• Common processing function = NAND gate

X	y	$\neg(x \land y)$
0	0	1
0	1	1
1	0	1
1	1	0

Impossibility Result for NAND Processing

 \bullet Common processing function = NAND gate

• Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in \left(0, \frac{1}{2}\right)$
Impossibility Result for NAND Processing

 \bullet Common processing function = NAND gate

• Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in \left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in (0, \frac{1}{2})$, if linear programming (LP) feasibility problem, $A(\delta) x \ge b$, has solution $x = x^*(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

Impossibility Result for NAND Processing

 \bullet Common processing function = NAND gate

• Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in \left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in (0, \frac{1}{2})$, if linear programming (LP) feasibility problem, $A(\delta) x \ge b$, has solution $x = x^*(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

• Proof uses martingale argument and LP solution generates desired martingale

Impossibility Result for NAND Processing

 \bullet Common processing function = NAND gate

• Fix known vector b and matrix $A(\delta)$ for any noise level $\delta \in \left(0, \frac{1}{2}\right)$

Theorem (Reconstruction with NAND Gates)

For all $\delta \in (0, \frac{1}{2})$, if linear programming (LP) feasibility problem, $A(\delta) x \ge b$, has solution $x = x^*(\delta)$, then reconstruction impossible on 2D regular grid with NAND processing functions

- Proof uses martingale argument and LP solution generates desired martingale
- LPs computationally solved for numerous values of $\delta \in (0, \frac{1}{2})$

A. Makur (MIT)

Reconstruction on 2D Regular Grids

Outline

Main Contribution:

• Reconstruction impossible in 2D regular grids with symmetric processing functions

Main Contribution:

• Reconstruction impossible in 2D regular grids with symmetric processing functions

Future Direction:

• Conjecture: For 2D regular grids, reconstruction impossible for all processing functions

Thank You!