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Motivation: Information Propagation in Networks

social networks

communication networks

How does information propagate through such large networks over time?

Can we invent processing functions so that far boundary has information about source bit?
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Formal Model: Bounded Indegree DAGs

Fix infinite directed acyclic graph (DAG) with single source node

Xk,j ∈ {0, 1} – node random variable at jth position in level k
Lk – number of nodes at level k
d – indegree of node

X0,0 ∼ Bernoulli
(
1
2

)
Edges independently flip bits
with probability δ ∈

(
0, 12

)
,

i.e., edges are binary symmetric
channels (BSC(δ))

Nodes combine inputs with
Boolean processing functions

This defines joint distribution of
{Xk,j}
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Formal Model: Bounded Indegree DAGs

Let Xk , (Xk,0, . . . ,Xk,Lk−1)

Question: Can we decode X0 from Xk as k →∞?

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

Binary Hypothesis Testing:
Let ML(Xk) ∈ {0, 1} be maximum likelihood (ML) decoder with probability of error

P
(k)
ML , P (ML(Xk) 6= X0,0)

P
(k)
ML non-decreasing in k and bounded by 1

2

Reconstruction (or broadcasting) possible if

lim
k→∞

P
(k)
ML

1

2

For which graph topologies, noise levels δ, and Boolean processing functions is
reconstruction possible?
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Background: Reconstruction on Trees

Suppose DAG is tree T with identity
processing and branching number br(T )
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Phase Transition for Trees:
[Kesten-Stigum 1966, Bleher-Ruiz-
Zagrebnov 1995, Evans et al. 2000]

If noise level δ < 1
2 −

1

2
√

br(T )
, then
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k→∞

P
(k)
ML <

1
2

If δ > 1
2 −

1

2
√

br(T )
, then reconstruction

impossible: lim
k→∞

P
(k)
ML = 1

2

, , , ,

,

, ,

, , , ,
level 

level 

level 

level 

A. Makur (MIT) Reconstruction on 2D Regular Grids ISIT 12-20 July 2021 6 / 21



Background: Reconstruction on Trees

Suppose DAG is tree T with identity
processing and branching number br(T )

Phase Transition for Trees:
[Kesten-Stigum 1966, Bleher-Ruiz-
Zagrebnov 1995, Evans et al. 2000]

If noise level δ < 1
2 −

1

2
√

br(T )
, then

reconstruction possible: lim
k→∞

P
(k)
ML <

1
2

If δ > 1
2 −

1

2
√

br(T )
, then reconstruction

impossible: lim
k→∞

P
(k)
ML = 1

2

, , , ,

,

, ,

, , , ,
level 

level 

level 

level 

A. Makur (MIT) Reconstruction on 2D Regular Grids ISIT 12-20 July 2021 6 / 21



Background: Reconstruction on Random DAGs

𝑋2,0 𝑋2,1 𝑋2,2 𝑋2,3

𝑋0,0

𝑋1,0 𝑋1,2𝑋1,1

𝑋𝑘,0 𝑋𝑘,1 𝑋𝑘,𝐿𝑘−2 𝑋𝑘,𝐿𝑘−1
level 𝑘

level 2

level 1

level 0 𝐿0 = 1

𝐿1 = 3

𝐿2 = 4

𝐿𝑘 vertices

𝑑 = 2

Consider random DAG G with fixed layer
sizes Lk and indegree d > 1, where nodes
randomly select parents (with repetition)
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𝑑 = 2

Consider random DAG G with fixed layer
sizes Lk and indegree d > 1, where nodes
randomly select parents (with repetition)

Phase Transition for Random DAGs:
[Makur-Mossel-Polyanskiy 2019, 2020]

Suppose d ≥ 3 and all nodes use majority
processing, and let δmaj , 1

2 −
2d−2

dd/2e( d
dd/2e)

:

If noise level δ < δmaj and Lk = Ω(log(k)),
then reconstruction possible using majority
voting decoder

If δ > δmaj and Lk sub-exponential, then
reconstruction impossible G -a.s.
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2D Regular Grid Model

Suppose DAG is 2D regular grid

Layer size Lk = k + 1

Boundary nodes use identity processing

Interior nodes use common Boolean
processing function

Conjecture: For all δ ∈
(
0, 12

)
and all choices

of processing functions, reconstruction

impossible: lim
k→∞

P
(k)
ML = 1

2

Motivation: “Positive rates conjecture” on
ergodicity of simple 1D probabilistic cellular
automata (e.g., [Gray 2001])
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Impossibility Result for AND Processing

Common processing function = AND gate

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

Theorem (Reconstruction with AND Gates)

Reconstruction impossible on 2D regular grid with AND processing functions for all δ ∈
(
0, 12

)
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Proof Sketch: AND Processing

Step 1: Monotone Markovian coupling

Layers {Xk = (Xk,0, . . . ,Xk,k)} form a Markov chain

Define Markov chains {X+
k } and {X−k }: Copies of {Xk} with X+

0 = 1 and X−0 = 0

AND gate is monotone ⇒ X+
k,j ≥ X−k,j for all k , j

Define coupled grid variables Yk,j = (X−k,j ,X
+
k,j) ∈ {0c, 1u, 1c} with source Y0,0 = 1u,

where 0c = (0, 0), 1u = (0, 1), 1c = (1, 1)
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Proof Sketch: AND Processing

Step 2: Reduction to coupled grid

Define coupled grid variables Yk,j = (X−k,j ,X
+
k,j) ∈ {0c, 1u, 1c} with source Y0,0 = 1u

Maximal coupling characterization of total variation distance ‖ · ‖TV:∥∥∥P+
Xk
− P−Xk

∥∥∥
TV
≤ P

(
X+
k 6= X−k

)
= 1− P(∀j , Yk,j 6= 1u)

Using Step 1, lim
k→∞

∥∥∥P+
Xk
− P−Xk

∥∥∥
TV
≤ 1− P(∃k, ∀j , Yk,j 6= 1u)

By Le Cam’s relation,

lim
k→∞

P
(k)
ML =

1

2

(
1− lim

k→∞

∥∥∥P+
Xk
− P−Xk

∥∥∥
TV

)
≥ 1

2
P(∃k , ∀j , Yk,j 6= 1u)

To show limk→∞ P
(k)
ML = 1

2 , it suffices to prove that P(∃k , ∀j , Yk,j 6= 1u) = 1
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Proof Sketch: AND Processing

Step 3: Bond percolation

Independently keep each edge
open with probability p ∈ [0, 1],
and closed with probability 1− p

For each level k , let Rk and Lk
be the rightmost and leftmost
node indices connected to Y0,0

by open paths

Define event Ω∞ , {∃ infinite
open path from Y0,0}

𝑌0,0 = 1𝑢

level 𝑘

Phase transition [Durrett 1984]: There is a critical threshold δperc ∈
(
1
2 , 1

)
such that:

If p < δperc, then P(Ω∞) = 0

If p > δperc, then P(Ω∞) > 0 and P
(

lim
k→∞

Rk − Lk
k

> 0

∣∣∣∣Ω∞

)
= 1
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Proof Sketch: AND Processing

Step 2: Suffices to prove P(∃k , ∀j , Yk,j 6= 1u) = 1

Step 4: Case I (Noise level satisfies p = 1− 2δ < δperc)

Bond percolation: Edge open ⇔ BSC(δ) copies input, i.e., p = 1− 2δ

Step 3 ⇒ There is no infinite open path from Y0,0 almost surely

Markovian coupling of Step 1 ⇒ 1u’s only travel along open edges

Hence, there exists level k such that Yk,j 6= 1u for all j
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Proof Sketch: AND Processing

Step 2: Suffices to prove P(∃r , ∀j , Yr ,j 6= 1u) = 1

X

Step 5: Case II (Noise level satisfies p = 1− δ > δperc)

Bond percolation: Edge open ⇔
BSC(δ) copies or generates
random bit = 0, i.e., p = 1− δ

Boundary BSC(δ)’s generate
random bits = 0 independently
with probability δ

Step 3 ⇒ 0c nodes subtend
infinite open subgraph with
probability P(Ω∞) > 0

Borel-Cantelli ⇒ There exists 0c
boundary node with infinite open
path almost surely

𝑌0,0 = 1𝑢
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Proof Sketch: AND Processing

Step 2: Suffices to prove P(∃r , ∀j , Yr ,j 6= 1u) = 1

X

Step 5: Case II (Noise level satisfies p = 1− δ > δperc)

For some levels k and m,
Yk,0 = Ym,m = 0c and both
nodes have infinite open paths
almost surely

Step 3 ⇒ Open paths from Yk,0

and Ym,m meet

Markovian coupling of Step 1 ⇒
Nodes enclosed by open paths
are 0c or 1c

Hence, there exists level r such
that Yr ,j 6= 1u for all j

𝑌0,0 = 1𝑢

𝑌𝑘,0 = 0𝑐

𝑌𝑚,𝑚 = 0𝑐

rightmost open 
path in 𝑌𝑘,0 grid 

leftmost open 
path in 𝑌𝑚,𝑚 grid 
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Proof Sketch: AND Processing

Step 1: Monotone Markovian coupling

Step 2: Reduction to coupled grid

Step 3: Bond percolation

Step 4: Case I - Noise level δ > (1− δperc)/2

Step 5: Case II - Noise level δ < 1− δperc
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Impossibility Result for XOR Processing

Common processing function = XOR gate

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Theorem (Reconstruction with XOR Gates)

Reconstruction impossible on 2D regular grid with XOR processing functions for all δ ∈
(
0, 12

)

Proof uses bit-wise ML decoding of linear codes
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Impossibility Result for NAND Processing

Common processing function = NAND gate

x y ¬(x ∧ y)

0 0 1
0 1 1
1 0 1
1 1 0

Fix known vector b and matrix A(δ) for any
noise level δ ∈

(
0, 12

)
Theorem (Reconstruction with NAND Gates)

For all δ ∈
(
0, 12

)
, if linear programming (LP) feasibility problem, A(δ) x ≥ b, has solution

x = x∗(δ), then reconstruction impossible on 2D regular grid with NAND processing functions

Proof uses martingale argument and LP solution generates desired martingale

LPs computationally solved for numerous values of δ ∈
(
0, 12

)
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Conclusion

Main Contribution:

Reconstruction impossible in 2D regular grids with symmetric processing functions

Future Direction:

Conjecture: For 2D regular grids, reconstruction impossible for all processing functions
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Thank You!
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