Reconstruction on 2D Regular Grids

Anuran Makur[†], Elchanan Mossel^{*}, and Yury Polyanskiy[†]

[†]Department of Electrical Engineering and Computer Science *Department of Mathematics Massachusetts Institute of Technology

IEEE International Symposium on Information Theory 2021

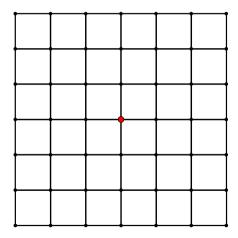
A. Makur (MIT)

Reconstruction on 2D Regular Grids

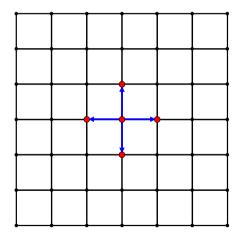
communication networks

social networks

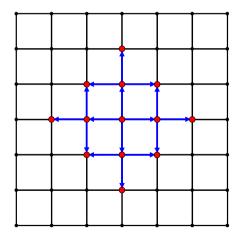
• How does information propagate through such large networks over time?



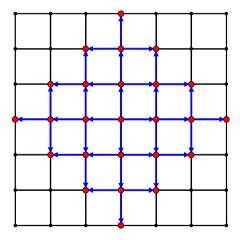
• How does information propagate through such large networks over time?

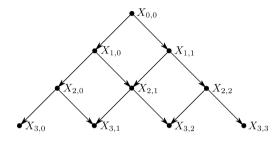


• How does information propagate through such large networks over time?

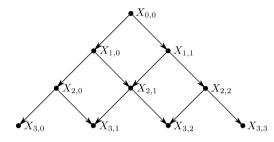


- How does information propagate through such large networks over time?
- Can we invent processing functions so that far boundary has information about source bit?

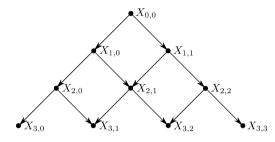




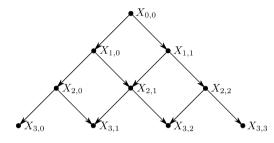
• Fix infinite 2D regular grid



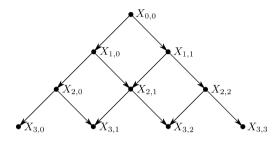
- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables



- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables
- $X_{0,0} \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability $\delta \in (0, \frac{1}{2})$ (binary symmetric channels)

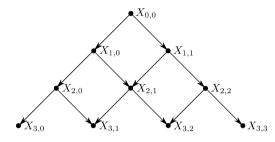


- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables
- $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$
- Edges independently flip bits with probability $\delta \in (0, \frac{1}{2})$ (binary symmetric channels)
- Interior nodes use *common* Boolean processing function



- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables
- $X_{0,0} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
- Edges independently flip bits with probability $\delta \in \left(0, \frac{1}{2}\right)$ (binary symmetric channels)
- Interior nodes use *common* Boolean processing function

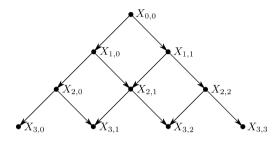
• Can we decode $X_{0,0}$ from $(X_{k,0},\ldots,X_{k,k})$ with probability of error $<\frac{1}{2}$ as $k \to \infty$?



- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables
- $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$
- Edges independently flip bits with probability $\delta \in \left(0, \frac{1}{2}\right)$ (binary symmetric channels)
- Interior nodes use *common* Boolean processing function

• Can we decode $X_{0,0}$ from $(X_{k,0},\ldots,X_{k,k})$ with probability of error $<\frac{1}{2}$ as $k \to \infty$?

Conjecture: Reconstruction impossible, i.e., minimum probability of error $\rightarrow \frac{1}{2}$, for all $\delta \in (0, \frac{1}{2})$ and all choices of processing functions



- Fix infinite 2D regular grid
- $X_{k,j} \in \{0,1\}$ binary random variables
- $X_{0,0} \sim \text{Bernoulli}(\frac{1}{2})$
- Edges independently flip bits with probability $\delta \in \left(0, \frac{1}{2}\right)$ (binary symmetric channels)
- Interior nodes use *common* Boolean processing function

• Can we decode $X_{0,0}$ from $(X_{k,0},\ldots,X_{k,k})$ with probability of error $<\frac{1}{2}$ as $k \to \infty$?

Conjecture: Reconstruction impossible, i.e., minimum probability of error $\rightarrow \frac{1}{2}$, for all $\delta \in (0, \frac{1}{2})$ and all choices of processing functions

• Motivation: "Positive rates conjecture" on ergodicity of simple 1D probabilistic cellular automata (e.g., [Gray 2001])

A. Makur (MIT)

Reconstruction on 2D Regular Grids

Theorem (Impossibility of Reconstruction for *Symmetric* Processing Functions)

For any noise level $\delta \in \left(0, \frac{1}{2}\right)$,

• Reconstruction impossible on 2D regular grid with AND processing functions

Theorem (Impossibility of Reconstruction for *Symmetric* Processing Functions)

For any noise level $\delta \in \left(0, \frac{1}{2}\right)$,

- Reconstruction impossible on 2D regular grid with AND processing functions
- Reconstruction impossible on 2D regular grid with XOR processing functions

Theorem (Impossibility of Reconstruction for Symmetric Processing Functions)

For any noise level $\delta \in (0, \frac{1}{2})$,

- Reconstruction impossible on 2D regular grid with AND processing functions
- Reconstruction impossible on 2D regular grid with XOR processing functions
- If linear programming (LP) feasibility problem, $A(\delta)x \ge b$, given by known matrix $A(\delta)$ and vector b has solution $x = x^*(\delta)$, then reconstruction *impossible* on 2D regular grid with NAND processing functions

Theorem (Impossibility of Reconstruction for Symmetric Processing Functions)

For any noise level $\delta \in (0, \frac{1}{2})$,

- Reconstruction impossible on 2D regular grid with AND processing functions
- Reconstruction impossible on 2D regular grid with XOR processing functions
- If linear programming (LP) feasibility problem, $A(\delta)x \ge b$, given by known matrix $A(\delta)$ and vector b has solution $x = x^*(\delta)$, then reconstruction *impossible* on 2D regular grid with NAND processing functions

Proof Ideas:

• AND proof based on oriented bond percolation

Theorem (Impossibility of Reconstruction for Symmetric Processing Functions)

For any noise level $\delta \in (0, \frac{1}{2})$,

- Reconstruction impossible on 2D regular grid with AND processing functions
- Reconstruction impossible on 2D regular grid with XOR processing functions
- If linear programming (LP) feasibility problem, $A(\delta)x \ge b$, given by known matrix $A(\delta)$ and vector b has solution $x = x^*(\delta)$, then reconstruction *impossible* on 2D regular grid with NAND processing functions

Proof Ideas:

- AND proof based on oriented bond percolation
- XOR proof exploits bit-wise maximum likelihood decoding of linear codes

Theorem (Impossibility of Reconstruction for *Symmetric* Processing Functions)

For any noise level $\delta \in (0, \frac{1}{2})$,

- Reconstruction impossible on 2D regular grid with AND processing functions
- Reconstruction *impossible* on 2D regular grid with XOR processing functions
- If linear programming (LP) feasibility problem, $A(\delta)x \ge b$, given by known matrix $A(\delta)$ and vector b has solution $x = x^*(\delta)$, then reconstruction *impossible* on 2D regular grid with NAND processing functions

Proof Ideas:

- AND proof based on oriented bond percolation
- XOR proof exploits bit-wise maximum likelihood decoding of linear codes
- NAND proof uses martingale argument and LP solution generates desired martingale

Thank You!