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Preliminaries

@ A channel is a set of conditional distributions Wyx that is

qxr

represented by a row stochastic matrix W € Rg;".

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3/17



Preliminaries

@ A channel is a set of conditional distributions Wyx that is

represented by a row stochastic matrix W € RZS".

@ Py = probability simplex of row vectors in R9.

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 3/17



Preliminaries

@ A channel is a set of conditional distributions Wyx that is
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Preliminaries

@ A channel is a set of conditional distributions Wyx that is

qxr

represented by a row stochastic matrix W € Rg;".

@ Py = probability simplex of row vectors in R9.

@ Recall that KL divergence is defined as:

D(Px1Qx) 2 Y Px(x) Iog( 8)

xXeX

Definition (Less Noisy Preorder [KM77])

W € RIS is less noisy than V € R%S®, denoted W =, V, iff:

VP)(, QX € Pq, D(PXWHQXW) > D(Px\/HQx\/)
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Guiding Question

Definition (g-ary Symmetric Channel)

The g-ary symmetric channel is defined as:

)
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where 0 € [0, 1] is the total crossover probability.

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 4 /17



Guiding Question

Definition (g-ary Symmetric Channel)

The g-ary symmetric channel is defined as:

o) o)
1-6 2% - &
b 1§ ... 5
N q—1 q X
Ws = : : . : equmq
5 5 L
2 o5 o 1-4

where 0 € [0, 1] is the total crossover probability.

Remark: For every channel V € RZ® Wy =, V and V >, Wig-1)/q-

sto
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Guiding Question

Definition (g-ary Symmetric Channel)

The g-ary symmetric channel is defined as:
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where 0 € [0, 1] is the total crossover probability.

Remark: For every channel V € RZ® Wy =, V and V >, Wig-1)/q-

sto

What is the g-ary symmetric channel with the largest § < [0, q%l]
that is less noisy than a given channel V?
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Motivation: Strong Data Processing Inequality

Data Processing Inequality: For any channel V € RZ°,

VPx, Qx € Pq, D(Px||Qx) > D(PxV||QxV)

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017 5/17



Motivation: Strong Data Processing Inequality

Strong Data Processing Inequality [AG76]: For any channel V € RZ>°,
VPx, Qx € Pq, 1 D(Px|[Qx) = D(Px VI[|Qx V)

where 1 € [0,1] is a channel dependent contraction coefficient.
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Strong Data Processing Inequality [AG76]: For any channel V € RZ5®

sto

VPx, @x € Pq, 1D(Px||Qx) > D(PxV||QxV)

where 1 € [0,1] is a channel dependent contraction coefficient.

Relation to Erasure Channels [PW16]:

A g-ary erasure channel £;_, € R;’tﬁ("“) erases its input with probability
1 — 1, and keeps it the same with probability 7.
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Motivation: Strong Data Processing Inequality

Strong Data Processing Inequality [AG76]: For any channel V € RZ5®

sto

VPx, @x € Pq, 1D(Px||Qx) > D(PxV||QxV)

where 1 € [0,1] is a channel dependent contraction coefficient.

Relation to Erasure Channels [PW16]:

A g-ary erasure channel £;_, € R;’tﬁ("“) erases its input with probability
1 — 1, and keeps it the same with probability 7.

What is the g-ary erasure channel with the smallest ) € [0, 1] that is less
noisy than a given channel V7

Prop: Ei_, =, V & VPx,Qx € Pg, nD(Px||Qx) > D(Px V||Qx V).

SDPI = »,, domination by erasure channel
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Motivation: Wyner's Wiretap Channel

yn _
Decoder — M

Xn
M — Encoder Py z1x

ZTL

Eavesdropper

Channel

e Py|x =V is the main channel.
o Pz x = Wj is the eavesdropper channel.
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e Py|x =V is the main channel.

o Pz x = Wj is the eavesdropper channel.

@ Secrecy capacity Cs = maximum rate that can be sent to the legal
receiver such that P(M # M) and %I(I\/I; Z"™) asymptotically vanish.
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M — Encoder Py z1x
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Channel

Py|x = V is the main channel.

Pz x = W; is the eavesdropper channel.

Secrecy capacity Cs = maximum rate that can be sent to the legal
receiver such that P(M # M) and %I(I\/I; Z"™) asymptotically vanish.
Prop [CK11]: Cs =0 if and only if W; =, V.
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Motivation: Wyner's Wiretap Channel

Decoder — M

Xn
M — Encoder Py z1x

ZTL

Eavesdropper

Channel

e Py|x =V is the main channel.
o Pz x = Wj is the eavesdropper channel.
@ Secrecy capacity Cs = maximum rate that can be sent to the legal
receiver such that P(M # M) and %I(I\/I; Z"™) asymptotically vanish.
e Prop [CK11]: Cs =0 if and only if W >, V.
@ Finding the maximally noisy Wy =, V establishes the
minimal noise on Pz x so that secret communication is feasible.
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Condition for Degradation by Symmetric Channels

What is the g-ary symmetric channel with the largest § € [0, q;l] J

q
that is less noisy than a given channel V?
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Condition for Degradation by Symmetric Channels

What is the g-ary symmetric channel with the largest § € [0, q%l]
that is less noisy than a given channel V?

o Def (Degradation) [Ber73]:
A channel V € RLS® is a degraded version of W € R%;",
denoted W =, V, if V = WA for some channel A € R’

sto
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Condition for Degradation by Symmetric Channels

What is the g-ary symmetric channel with the largest § € [0, q%l]
that is less noisy than a given channel V?

o Def (Degradation) [Ber73]:
A channel V € RLS® is a degraded version of W € R%;",

sto

denoted W =, V, if V = WA for some channel A € R’
@ Prop: W =,V = W=, V.

Theorem (Degradation by Symmetric Channels)

Given a channel V € R%X? with g > 2 and minimum probability

sto

v=min{[V];;:1<i,j<q} we have:

0<d5< v = W e, V.

S P )

v
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Condition for Degradation by Symmetric Channels

Theorem (Less Noisy Domination by Symmetric Channels)

Given a channel V € RS9 with g > 2 and minimum probability
v=min{[V];j:1<i,j<q} we have:

14

<
ST (g-Drt G

0<0

= W(S ideg V = W(S iln V

Tightness for Degradation: The condition is tight when no further
information about V is known. For example, suppose:

v 1—-(g—1w v -+ v
1—-(g—1)v v 2N 7

V= ( ) . . . . GRgtf,q-
1—(¢g—1)w v Voo v

Then, Ws =4, V if and only if 0 < § < y/(l —(g—1v+ ﬁ)
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Additive Noise Channels

e Fix a finite Abelian group (X, @) with order g as the alphabet.
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Additive Noise Channels

e Fix a finite Abelian group (X, @) with order g as the alphabet.
@ An additive noise channel is defined by:

Y=X®&Z  X1Z

where X, Y, Z € X are the input, output, and noise random variables.
@ It is characterized by a noise pmf Pz € Pg.

@ The channel transition probability matrix is a doubly stochastic

X-circulant matrix circy(Pz) € RZ57 defined entry-wise as:

Vx,y € X, [circx(Pz)],, £ Pz(—x® y) = Pyjx(y[x).

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017



Additive Noise Channels

Fix a finite Abelian group (X', @) with order g as the alphabet.

An additive noise channel is defined by:
Y=X&/Z, X1z

where X, Y, Z € X are the input, output, and noise random variables.

It is characterized by a noise pmf Pz € Py.

The channel transition probability matrix is a doubly stochastic

X-circulant matrix circy(Pz) € RZ57 defined entry-wise as:

Vx,y € X, [circx(Pz)],, £ Pz(—x® y) = Pyjx(y[x).

Symmetric channel: Py = (1 — 0, %, e ﬁ) for § € [0,1]

CirCX(Pz) = W5
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Less Noisy Domination and Degradation Regions

e Given a symmetric channel W € R&59 for § € [0, 1].
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Less Noisy Domination and Degradation Regions

e Given a symmetric channel W € R&59 for § € [0, 1].

@ The less noisy domination region of Wj is:

L 2 {P7 € Py : W =, circx(P2)} -
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Less Noisy Domination and Degradation Regions

e Given a symmetric channel W € R&59 for § € [0, 1].

@ The less noisy domination region of Wj is:
L& Py € Py Ws =, circx (P
Ly, ={Pz € 5 = circy(Pz)}.
@ The degradation region of W is:

Dyt 2 {Pz € Pg: W = circx(Pz)} .
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Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given W5 € RI59 with 6 € [0, %1} and g > 2, we have:

Dadd = conv (rows of W)
C conv (rows of Wjand W,)
C L C{Pz € Pq: [Pz —ull2 < [lws — |2}

where w; is the first row of W, v = (1 — 5)/( =@ F ﬁz) and
u € P, is the uniform pmf.

A. Makur & Y. Polyanskiy (MIT) Symmetric Channel Domination 3 February 2017

12 /17



Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given W5 € RI59 with 6 € [0, %1} and g > 2, we have:

Dadd = conv (rows of W)
C conv (rows of Wjand W,)

C LY S {Pz € Pq: [Pz —ullp < [[ws — ull}

where w; is the first row of W, v = (1 — 5)/( — 04

W) and
u € P, is the uniform pmf.

Furthermore, Eadd is a closed and convex set that is symmetric with
respect to permutations representing the group (X, ®).
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case: (0,0,1)

upper bound
Eadd

W
lower bound

=(0.3:3)

Wo = (17070) (07170)
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Log-Sobolev Inequalities

e Consider an irreducible Markov chain V € RZ57 with

uniform stationary distribution u € Pg.
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Log-Sobolev Inequalities

o Consider an irreducible Markov chain V € R%57 with
uniform stationary distribution u € P,.

@ Define the Dirichlet form £y : R x R — R™:

1 V+VvT
Ev(F, )2 qu</ . +2> f.
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Log-Sobolev Inequalities

o Consider an irreducible Markov chain V € R%57 with
uniform stationary distribution u € P,.

@ Define the Dirichlet form £y : R x R — R™:

1 V+vrT
Ev(f, )2 qu</ - +> f

2

@ The log-Sobolev inequality with constant o € R™ states that
for every f € R9 such that f7f = g:

q
S flog () < ~ £ (£, )
i=1 )

D (f?ul|u) =

Q|+
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Log-Sobolev Inequalities

o Consider an irreducible Markov chain V € R%57 with
uniform stationary distribution u € Pg.

@ Define the Dirichlet form £y : R x R — R™:

V+vT
_+> F

al T
Ev(f,f)—qf / >

@ The log-Sobolev inequality with constant o € R™ states that
for every f € R9 such that f'f = g:

q
> log () < - £ (F.1)
i=1

D (f?ul|u) =

Q|+~

where the largest possible constant « satisfying this inequality is
known as the log-Sobolev constant.
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Comparison of Dirichlet Forms

@ Log-Sobolev constant of the standard Dirichlet form:

q q 2
1 1
Eaa (FLF) 2VARY(F) =Y == (D =f
td( ) U() i:lq (i:lq )

is known [DSC96]. For every f € R9 with f7f = g:

D (fullu) < TE D e (r,1)
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Comparison of Dirichlet Forms

@ Log-Sobolev constant of the standard Dirichlet form:

q q 2
1 1
Eaa (FLF) 2VARY(F) =Y == (D =f
td( ) U() i:lq (i:lq )

is known [DSC96]. For every f € R9 with f7f = g:

D (Fullu) < ""(’(f(j;)l)gstd(f, ).

Theorem (Domination of Dirichlet Forms)

For any channels W5 € R&;7 with & € [0, qT_l] and V € R&59, that have
uniform stationary distribution, if W5 =, V, then &, > qq—_‘sl Estd pointwise.
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Comparison of Dirichlet Forms

@ Log-Sobolev constant of the standard Dirichlet form:

q q 2
1 1
Eaa (FLF) 2VARY(F) =Y == (D =f
td( ) U() i:lq (i:lq )

is known [DSC96]. For every f € R9 with f7f = g:

D (Fullu) < ""zj(_q;)l)gstd(f, ).

Theorem (Domination of Dirichlet Forms)

For any channels W5 € R&;7 with & € [0, qT_l] and V € R&59, that have
uniform stationary distribution, if W5 =, V, then &, > qq—_‘sl Estd pointwise.

@ This establishes a log-Sobolev inequality for V:
—1)log(q — 1)
D(F2ulju) < U9
(Pullu) < =50 88
for every f € RY satisfying f'f = q.
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