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Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?

Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Consider an ergodic Markov chain with n × n column stochastic transition
matrix W .

irreducible ⇒ unique stationary distribution π: Wπ = π

aperiodic ⇒W k → π1T (rank 1 matrix)

Rate of convergence?
Perron-Frobenius:

1 = λ1(W ) > |λ2(W )| ≥ · · · ≥ |λn(W )|

Rate of convergence determined by |λ2(W )| ←− coefficient of ergodicity

Want: A guarantee on the relative improvement
i.e. for any distribution p, W k+1p is “closer” to π than W kp.

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 3 / 32



Measuring Ergodicity

Let d : P × P → [0,∞] be a divergence measure on the simplex P.

Want: ∀p ∈ P, d(Wp,Wπ︸︷︷︸
=π

) ≤ ηd(π,W )d(p, π)

for some contraction coefficient ηd(π,W ) ∈ [0, 1].

This would mean that:

∀p ∈ P, d(W kp, π) ≤ ηd(π,W )kd(p, π).

ηd(π,W ) < 1 ⇒ W kp
d−→ π geometrically fast with rate ηd(π,W ).

So, ηd(π,W ) is a coefficient of ergodicity, and we define it as:

ηd(π,W ) , sup
p:p 6=π

d(Wp,Wπ)

d(p, π)
.
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Measuring Ergodicity

Can we define notions of distance between distributions which make
W a contraction?

Does the `2-norm work?

‖Wπ −Wp‖2 = ‖W (π − p)‖2 ≤ ‖W ‖2 ‖π − p‖2

where the spectral norm ‖W ‖2 is the largest singular value of W .

‖W ‖2 > 1 is possible.../
Dobrushin-Doeblin Coefficient of Ergodicity:

The `1-norm (total variation distance) works! ,
‖Wπ −Wp‖1 = ‖W (π − p)‖1 ≤ ηTV(π,W ) ‖π − p‖1

where ηTV(π,W ) , supp:p 6=π
‖Wπ−Wp‖1
‖π−p‖1

∈ [0, 1] is the Dobrushin-Doeblin

contraction coefficient.
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Csiszár f -Divergence

Definition (Csiszár f -Divergence)

Given distributions RX and PX on X , we define their f -divergence as:

Df (RX ||PX ) ,
∑
x∈X

PX (x)f

(
RX (x)

PX (x)

)

where f : R+ → R is convex and f (1) = 0.

Non-negativity: Df (RX ||PX ) ≥ 0 with equality iff RX = PX .

Data Processing Inequality: For a fixed channel PY |X :

∀RX ,PX , Df (RY ||PY ) ≤ Df (RX ||PX )

where RY and PY are output pmfs corresponding to RX and PX .
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Theorem [Amari and Cichocki, 2010]:
A decomposable divergence measure satisfies data processing
if and only if it is an f -divergence.

Definition: A divergence d is decomposable if it can be written as:

d(RX ,PX ) =
∑
x∈X

g (RX (x),PX (x))

for some function g : [0, 1]2 → R.
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Some Examples:

Total Variation Distance: f (t) = |t − 1| produces
Df (RX ||PX ) = ‖RX − PX‖1.

KL Divergence: f (t) = t log(t) produces

Df (RX ||PX ) = D(RX ||PX ) =
∑

x∈X RX (x) log
(
RX (x)
PX (x)

)
.

χ2-Divergence: f (t) = (t − 1)2 produces

Df (RX ||PX ) = χ2(RX ,PX ) =
∑

x∈X
(RX (x)−PX (x))2

PX (x) .
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Contraction Coefficients

Definition (Contraction Coefficient for f -Divergence)

For a fixed source distribution PX and channel PY |X , we define the
contraction coefficient for f -divergence as:

ηf
(
PX ,PY |X

)
, sup

RX :RX 6=PX

Df (RY ||PY )

Df (RX ||PX )

where RY is the output distribution when RX passes through PY |X .

Strong Data Processing Inequality
For fixed PX and PY |X , we have:

∀RX , Df (RY ||PY ) ≤ ηf
(
PX ,PY |X

)
Df (RX ||PX ).

We will use the following instances of contraction coefficients:

1 f (t) = t log(t): ηf
(
PX ,PY |X

)
= ηKL

(
PX ,PY |X

)
2 f (t) = (t − 1)2: ηf

(
PX ,PY |X

)
= ηχ2

(
PX ,PY |X

)
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Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X” given some data
Y1, . . . ,Ym∈Y about the person that is conditionally independent given U.

Y1

↗

U
...

↘
Ym

Assume U is binary with P(U = −1) = P(U = 1) = 1
2 .

Example: U ∈ {conservative, liberal} and Y = movies watched on Netflix
Log-likelihood Ratio Test: Construct sufficient statistic Z

U −→ (Y1, . . . ,Ym) −→ Z ,
m∑
i=1

log

(
PY |U(Yi |1)

PY |U(Yi | − 1)

)

Maximum Likelikood Estimate: Û = sign(Z )
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Maximum Likelikood Estimate: Û = sign(Z )
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A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 11 / 32



Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X” given some data
Y1, . . . ,Ym∈Y about the person that is conditionally independent given U.

Y1

↗

U
...

↘
Ym

Assume U is binary with P(U = −1) = P(U = 1) = 1
2 .

Example: U ∈ {conservative, liberal} and Y = movies watched on Netflix
Log-likelihood Ratio Test: Construct sufficient statistic Z

U −→ (Y1, . . . ,Ym) −→ Z ,
m∑
i=1

log

(
PY |U(Yi |1)

PY |U(Yi | − 1)

)

Maximum Likelikood Estimate: Û = sign(Z )
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Motivation: Unsupervised Model Selection

How do we learn PY |U?

Given i.i.d. training data (X1,Y1), . . . , (Xn,Yn):

U1 −→ X1 −→ Y1

U2 −→ X2 −→ Y2
...

...
...

Un −→ Xn −→ Yn

where each Xi ∈ X = {1, 2, . . . , |X |} and X indexes different people.
Training data gives us empirical distribution P̂n

X ,Y :

∀(x , y) ∈ X × Y, P̂n
X ,Y (x , y) ,

1

n

n∑
i=1

I(Xi = x ,Yi = y)

We assume that the true distribution PX ,Y = P̂n
X ,Y

(motivated by concentration of measure results).
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Motivation: Unsupervised Model Selection

Model Selection Problem:
Given U ∼ Bernoulli

(
1
2

)
and the joint pmf PX ,Y for the Markov chain:

PU PX |U PX PY |X PY

U −→ X −→ Y

Find PX |U

that maximizes the proportion of information that passes
through the Markov chain:

max
I (U;Y )

I (U;X )
.

Remark: I (U;Y )
I (U;X ) = 1⇒ I (U;Y ) = I (U;X )

which means Y is a sufficient statistic for U.
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Fix PX and PY |X . Then, for any RX :

D(RY ||PY ) ≤ D(RX ||PX )

where RY is the output when RX passes through PY |X .

Strong Data Processing Inequality for KL Divergence:
Fix PX and PY |X . Then, for any RX :

D(RY ||PY ) ≤ ηKL(PX ,PY |X )D(RX ||PX )

Data Processing Inequality for Mutual Information:
Given a Markov chain U → X → Y :

I (U;Y ) ≤ I (U;X )

Strong Data Processing Inequality for Mutual Information:
For fixed PX and PY |X :

I (U;Y ) ≤ ηKL(PX ,PY |X )I (U;X )
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Contraction Coefficient for KL Divergence

Definition (Contraction Coefficient for KL Divergence)

For a fixed source distribution PX and channel PY |X , we define the
contraction coefficient for KL divergence and mutual information as:

ηKL

(
PX ,PY |X

)
, sup

RX :RX 6=PX

D(RY ||PY )

D(RX ||PX )
= sup

PU ,PX |U :
U→X→Y

I (U;Y )

I (U;X )

where the second equality is proven in [Anantharam et al., 2013] and
[Polyanskiy and Wu, 2016].

This provides an optimization criterion which finds both PU and PX |U
for our model selection problem.

The problem is not concave. So, it is difficult to solve.

Observation: D(RY ||PY ) ≤ D(RX ||PX ) is tight when RX = PX , but
the sequence of pmfs RX achieving the supremum do not tend to PX .
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Local Approximation of KL Divergence

Idea: Find sequence of pmfs RX → PX that maximizes D(RY ||PY )
D(RX ||PX ) .

Consider the trajectory:

∀x ∈ X , R
(ε)
X (x) = PX (x) + ε

√
PX (x)KX (x)

where we can think of KX and
√
PX as vectors, and KT

X

√
PX = 0.

Taylor’s theorem:

D(R
(ε)
X ||PX ) =

1

2
ε2 ‖KX‖2

2︸ ︷︷ ︸
=χ2(R

(ε)
X ,PX )

+ o
(
ε2
)

D(R
(ε)
Y ||PY ) =

1

2
ε2 ‖BKX‖2

2︸ ︷︷ ︸
=χ2(R

(ε)
Y ,PY )

+ o
(
ε2
)

where R
(ε)
Y = PY |X · R

(ε)
X , and B captures the effect of the channel on KX :

B , diag
(√

PY

)−1
· PY |X · diag

(√
PX

)
.
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Local Contraction Coefficient

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf PX ,Y , we have:

lim
ε→0

sup
RX :RX 6=PX

D(RX ||PX )= 1
2
ε2

D(RY ||PY )

D(RX ||PX )
= max

KX :KX 6=~0
KT
X

√
PX =0

‖BKX‖2
2

‖KX‖2
2

= ηχ2

(
PX ,PY |X

)

where B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
, and the RHS is maximized

by K ∗X , which is the right singular vector of B corresponding to its
“largest” singular value.

The trajectory:

∀x ∈ X , R
(ε)
X (x) = PX (x) + ε

√
PX (x)K ∗X (x)

achieves the supremum in the LHS as ε→ 0.

This formulation admits an easy solution using the SVD.
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PY

)−1 · PY |X · diag
(√

PX

)
, and the RHS is maximized

by K ∗X , which is the right singular vector of B corresponding to its
“largest” singular value.

Model Selection Solution:

∀x ∈ X , PX |U(x |1) = PX (x) + ε
√

PX (x)K ∗X (x)

∀x ∈ X , PX |U(x | − 1) = PX (x)− ε
√
PX (x)K ∗X (x)

for fixed small ε.
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Local Contraction Coefficient

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf PX ,Y , we have:

lim
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= ηχ2

(
PX ,PY |X

)

where B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
, and the RHS is maximized

by K ∗X , which is the right singular vector of B corresponding to its
“largest” singular value.

ηχ2

(
PX ,PY |X

)
is also equal to the

squared Hirschfeld-Gebelein-Rényi maximal correlation.

Other singular vectors of B can be used to decompose information
into “mutually orthogonal” parts [Makur et al., 2015].
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Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf PX ,Y , we have:

lim
ε→0

sup
RX :RX 6=PX

D(RX ||PX )= 1
2
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)

where B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
, and the RHS is maximized

by K ∗X , which is the right singular vector of B corresponding to its
“largest” singular value.

Compare ηχ2

(
PX ,PY |X

)
and ηKL

(
PX ,PY |X

)
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Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηχ2

(
PX ,PY |X

)
≤ ηKL

(
PX ,PY |X

)
≤
ηχ2

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Remark: Our local model selection method cannot perform “too poorly.”
Lower Bound:

lim
ε→0

sup
RX :RX 6=PX

D(RX ||PX )= 1
2
ε2

D(RY ||PY )

D(RX ||PX )︸ ︷︷ ︸
ηχ2(PX ,PY |X )

≤ sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX )︸ ︷︷ ︸
ηKL(PX ,PY |X )

Result is known in the literature, and inequality can be strict,
as demonstrated in [Anantharam et al., 2013].
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Upper Bound on Contraction Coefficient of KL Divergence

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηχ2

(
PX ,PY |X

)
≤ ηKL

(
PX ,PY |X

)
≤
ηχ2

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Upper Bound Proof Sketch:

Suppose we have:

D(RY ||PY ) ≤ α ‖BKX‖2
2, for some α

D(RX ||PX ) ≥ β ‖KX‖2
2, for some β

where ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x).

Then, we can prove an upper bound because:

D(RY ||PY )

D(RX ||PX )
≤ α

β

‖BKX‖2
2

‖KX‖2
2

.
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Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:

convex set 𝑃

convex function 
𝐹(𝑥)

𝑥

𝑥0

tangent “plane”
𝐹 𝑥0 + 𝛻𝐹 𝑥0 𝑥 − 𝑥0

𝑥1

Bregman divergence:
𝐹 𝑥1 − 𝐹 𝑥0 − 𝛻𝐹 𝑥0 𝑥1 − 𝑥0

Bregman Divergence: Given F : P → R convex:

∀x1, x0 ∈ P, BF (x1, x0) , F (x1)− F (x0)−∇F (x0)T (x1 − x0)

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 25 / 32



Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:

convex set 𝑃

convex function 
𝐹(𝑥)

𝑥

𝑥0

tangent “plane”
𝐹 𝑥0 + 𝛻𝐹 𝑥0 𝑥 − 𝑥0

𝑥1

Bregman divergence:
𝐹 𝑥1 − 𝐹 𝑥0 − 𝛻𝐹 𝑥0 𝑥1 − 𝑥0

Bregman Divergence: Given F : P → R convex:

∀x1, x0 ∈ P, BF (x1, x0) , F (x1)− F (x0)−∇F (x0)T (x1 − x0)

A. Makur & L. Zheng (MIT) Local and Global Contraction Coefficients 5 November 2015 25 / 32



Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:
Let Hn : PX → R be the negative Shannon entropy function:

∀Q ∈ PX , Hn(Q) ,
∑
x∈X

Q(x) log (Q(x)).

KL divergence is a Bregman divergence [Banerjee et al., 2005]:

D(RX ||PX ) = Hn(RX )− Hn(PX )−∇Hn(PX )T (RX − PX ) .

Hn : PX → R is strongly convex because ∇2Hn(Q) = diag (Q)−1 � I ,
where I denotes the identity matrix.

Hn(RX ) ≥ Hn(PX ) +∇Hn(PX )T (RX − PX ) +
1

2
‖RX − PX‖2

2

D(RX ||PX ) ≥ 1

2
‖RX − PX‖2

2

Using ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x), we see that:

D(RX ||PX ) ≥ 1

2
‖RX − PX‖2

2 ≥
minx∈X PX (x)

2
‖KX‖2

2 .
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Bounding KL Divergence with χ2-Divergence

Lemma (KL Divergence Lower Bound)

Given pmfs PX and RX , we have:

D(RX ||PX ) ≥
min
x∈X

PX (x)

2
‖KX‖2

2

where ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x).

which can be improved to:

Lemma (KL Divergence Lower Bound)

Given pmfs PX and RX , we have:

D(RX ||PX ) ≥ min
x∈X

PX (x) ‖KX‖2
2

where ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x).
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Bounding KL Divergence with χ2-Divergence

Lemma (KL Divergence Upper Bound)

Given pmfs PX and RX , we have:

D(RX ||PX ) ≤ log
(

1 + ‖KX‖2
2

)
≤ ‖KX‖2

2

where ∀x ∈ X , RX (x) = PX (x) +
√

PX (x)KX (x).

Proof:

D(RX ||PX ) = ERX

[
log

(
RX (X )

PX (X )

)]
≤ log

(
ERX

[
RX (X )

PX (X )

])
[Jensen]

Simplify: ERX

[
RX (X )
PX (X )

]
=
∑

x∈X
RX (x)2

PX (x) = 1 + ‖KX‖2
2.

Hence, we have: D(RX ||PX ) ≤ log
(

1 + ‖KX‖2
2

)
≤ ‖KX‖2

2,

using the fact that: ∀x > −1, log(1 + x) ≤ x . �
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Contraction Coefficient Bound

For a fixed source distribution PX and channel PY |X , we have:

D(RX ||PX ) ≥ min
x∈X

PX (x) ‖KX‖2
2

D(RY ||PY ) ≤ ‖BKX‖2
2

where RY is the output when RX passes through PY |X , and

B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
.

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηχ2

(
PX ,PY |X

)
≤ ηKL

(
PX ,PY |X

)
≤
ηχ2

(
PX ,PY |X

)
min
x∈X

PX (x)
.
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Example of Contraction Coefficient Bound

Binary Symmetric Channel Bounds:

ηχ2

(
PX ,PY |X

)
≤ ηKL

(
PX ,PY |X

)
≤
ηχ2

(
PX ,PY |X

)
min
x∈X

PX (x)
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Conclusion

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηχ2

(
PX ,PY |X

)
≤ ηKL

(
PX ,PY |X

)
≤
ηχ2

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Summary:

Contraction coefficient for KL divergence can perform model
selection, but no simple algorithm to solve it.

Contraction coefficient for χ2-divergence performs (suboptimal)
model selection using the SVD.

Bounds exist between these contraction coefficients.
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