Permutation Channels

Anuran Makur

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

10 July 2020

Anuran Makur (MIT)

▶ ৰ≣ ▶ ≣ ∽িএে 10 July 2020 1/40

Outline

Introduction

- Three Motivations
- Permutation Channel Model
- Information Capacity
- Example: Binary Symmetric Channel
- 2 Achievability and Converse for the BSC
- General Achievability Bound
- General Converse Bounds

5 Conclusion

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

Anuran Makur (MIT)

> ব≣ > ≣ ∽ ৭.ে 10 July 2020 3 / 40

イロト イヨト イヨト イ

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets *do not have sequence numbers*

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

- DNA based storage systems
- Source data encoded into DNA molecules

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

- DNA based storage systems
- Source data encoded into DNA molecules
- Fragments of DNA molecules cached
- Receiver reads encoded data by shotgun sequencing (i.e., random sampling)

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

- Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
- Codes correct for transpositions of symbols
- Permutation channels with insertions, deletions, substitutions, or erasures
- Construction and analysis of *multiset codes*

• Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...

- Mobile ad hoc networks, multipath routed networks, etc.
- Out-of-order delivery of packets
- Correct for packet errors/losses when packets do not have sequence numbers

- DNA based storage systems
- Source data encoded into DNA molecules
- Fragments of DNA molecules cached
- Receiver reads encoded data by shotgun sequencing (i.e., random sampling)

Model communication network as a channel

Model communication network as a channel:

• Alphabet symbols = all possible *b*-bit packets \Rightarrow 2^{*b*} input symbols

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network or evolving network topology

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network \Rightarrow packets received with transpositions

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- \bullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired (e.g., deletions, substitutions, etc.)

Anuran Makur (MIT)

Model communication network as a channel:

- Alphabet symbols = all possible *b*-bit packets
- \bullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired \Rightarrow model using channel probabilities

Anuran Makur (MIT)

Permutation Channels

Consider a communication network where packets can be dropped:

Anuran Makur (MIT)

10 July 2020 5 / 40

Consider a communication network where packets can be dropped:

Abstraction:

• *n*-length codeword = sequence of *n* packets

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Equivalent Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers (packet size = $b + \log(n)$ bits, alphabet size = $n2^{b}$)

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques
- More refined coding techniques simulate sequence numbers [Mit06], [Met09]

Consider a communication network where packets can be dropped:

Abstraction:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet independently with prob $p \in (0,1)$
- Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?

Anuran Makur (MIT)

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- n = blocklength

Permutation Channel Model

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \ldots, X_n) = f_n(\mathcal{M})$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces \mathbb{Z}_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

• Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, \ldots, n\}$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- *n* = blocklength
- Randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \ldots, X_n) = f_n(\mathcal{M})$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets $\mathcal{X} \& \mathcal{Y}$ produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, \ldots, n\}$
- Randomized decoder $g_n : \mathcal{Y}^n \to \mathcal{M} \cup \{\text{error}\}$ produces estimate $\hat{\mathcal{M}} = g_n(Y_1^n)$ at receiver

Permutation Channel Model

What if we analyze the "swapped" model?

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Remarks:

• Proof follows from direct calculation.

Permutation Channel Model

What if we analyze the "swapped" model?

Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

Remarks:

- Proof follows from direct calculation.
- Can analyze either model!

Anuran Makur (MIT)

Coding for the Permutation Channel

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

Coding for the Permutation Channel

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• Multiset codes are studied in [KV13], [KV15], and [KT18].

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• Multiset codes are studied in [KV13], [KV15], and [KT18].

What are the fundamental information theoretic limits of this model?

• $|\mathcal{M}| = n^R$

• Average probability of error
$$P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$$

- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$ because number of empirical distributions of Y_1^n is poly(n)

- $|\mathcal{M}| = n^R$
- Rate $R \ge 0$ is achievable $\Leftrightarrow \exists \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{error}^n = 0$

 $C_{\text{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$

 $C_{\mathsf{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$

Main Question

What is the permutation channel capacity of a general $P_{Z|X}$?

Anuran Makur (MIT)

Example: Binary Symmetric Channel

• Channel is binary symmetric channel, denoted BSC(*p*):

• Channel is binary symmetric channel, denoted BSC(*p*):

$$orall z, x \in \{0,1\}, \ \ P_{Z|X}(z|x) = egin{cases} 1-p, & ext{for } z=x \ p, & ext{for } z
eq x \end{cases}$$

• Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$

• Channel is binary symmetric channel, denoted BSC(*p*):

- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- Assume crossover probability $p \in (0,1)$ and $p \neq \frac{1}{2}$

• Channel is binary symmetric channel, denoted BSC(*p*):

- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- Assume crossover probability $p \in (0,1)$ and $p \neq \frac{1}{2}$
- Question: What is the permutation channel capacity of the BSC?

Outline

Introduction

2 Achievability and Converse for the BSC

- Encoder and Decoder
- Testing between Converging Hypotheses
- Second Moment Method for TV Distance
- Fano's Inequality and CLT Approximation

General Achievability Bound

4 General Converse Bounds

5 Conclusion

• Fix a message $m \in \{0,1\}$

• Fix a message $m \in \{0, 1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Fix a message $m \in \{0, 1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 - q_m) + q_m(1 - p)$ is the convolution of p and q_m

• Fix a message $m \in \{0, 1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 q_m) + q_m(1 p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$

• Fix a message $m \in \{0, 1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 q_m) + q_m(1 p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$
- Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_i \geq \frac{1}{2}\right\}$ (for $p < \frac{1}{2}$)

• Fix a message $m \in \{0,1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 q_m) + q_m(1 p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$
- Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_i \geq \frac{1}{2}\right\}$ (for $p < \frac{1}{2}$)
- $\frac{1}{n} \sum_{i=1}^{n} Y_i \to p * q_m$ in probability as $n \to \infty$ \Rightarrow $\lim_{n \to \infty} P_{\text{error}}^n = 0$ as $p * q_0 \neq p * q_1$

• Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0

Anuran Makur (MIT)

· ▶ ◀ 볼 ▶ 볼 ∽ ९... 10 July 2020 13 / 40

イロト 人間ト イヨト イヨト

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- **Randomized encoder:** Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

• Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$ (as before)

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- **Randomized encoder:** Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^n}\right)$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n | \mathcal{M}}(y_1^n | m)$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^n}\right)$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n|\mathcal{M}}(y_1^n|m)$
- Challenge: Although ¹/_n ∑ⁿ_{i=1} Y_i → p * ^m/_{n^R} in probability as n → ∞, consecutive messages become indistinguishable, i.e. ^m/_{n^R} ^{m+1}/_{n^R} → 0

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^n}\right)$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max P_{Y_1^n | M}(y_1^n | m)}$
- Challenge: Although ¹/_n ∑ⁿ_{i=1} Y_i → p * ^m/_{n^R} in probability as n → ∞, consecutive messages become indistinguishable, i.e. ^m/_{n^R} ^{m+1}/_{n^R} → 0
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{\text{error}}^n = 0$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n|\mathcal{M}}(y_1^n|m)$
- Challenge: Although ¹/_n ∑ⁿ_{i=1} Y_i → p * ^m/_{n^R} in probability as n → ∞, consecutive messages become indistinguishable, i.e. ^m/_{n^R} ^{m+1}/_{n^R} → 0
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{\text{error}}^n = 0$

What is the largest R such that two consecutive messages can be distinguished?

Anuran Makur (MIT)

Binary Hypothesis Testing:

• Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

Let Âⁿ_{ML}(T_n) denote the ML decoder for H based on T_n with minimum probability of error Pⁿ_{ML} ≜ P(Âⁿ_{ML}(T_n) ≠ H)

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

• Let $\hat{H}_{ML}^n(T_n)$ denote the ML decoder for H based on T_n with minimum probability of error $P_{ML}^n \triangleq \mathbb{P}(\hat{H}_{ML}^n(T_n) \neq H)$

• Want: Largest R > 0 such that $\lim_{n \to \infty} P_{ML}^n = 0$?

Intuition via Central Limit Theorem

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions

- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$

Figure:

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions

•
$$|\mathbb{E}[T_n|H=0] - \mathbb{E}[T_n|H=1]| = 1/n^{h}$$

• Standard deviations are $\Theta(1/\sqrt{n})$

Figure:

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions

•
$$|\mathbb{E}[T_n|H=0] - \mathbb{E}[T_n|H=1]| = 1/n^{t}$$

• Standard deviations are $\Theta(1/\sqrt{n})$

Case $R < \frac{1}{2}$:

- For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R < \frac{1}{2}$: Decoding is possible \bigcirc

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions

•
$$|\mathbb{E}[T_n|H=0] - \mathbb{E}[T_n|H=1]| = 1/n^{t}$$

- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R > \frac{1}{2}$:

- For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R > \frac{1}{2}$: Decoding is impossible \odot

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\boldsymbol{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\boldsymbol{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\boldsymbol{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Let
$$T_n^+ \sim P_{T_n|H=1}$$
 and $T_n^- \sim P_{T_n|H=0}$
 $\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)\right)^2$

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Let
$$T_n^+ \sim P_{T_n|H=1}$$
 and $T_n^- \sim P_{T_n|H=0}$
 $\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)}{\sqrt{P_{T_n}(t)}}\right)^2$

$$\left\| \boldsymbol{P}_{\mathcal{T}_n \mid \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n \mid \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq rac{\left(\mathbb{E}[\mathcal{T}_n \mid \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n \mid \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Cauchy-Schwarz inequality

$$\left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)}{\sqrt{P_{T_n}(t)}} \right)^2 \\ \leq \left(\sum_t t^2 P_{T_n}(t) \right) \left(\sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)^2}{P_{T_n}(t)} \right)^2 \right)^2$$

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Recall that T_n is zero-mean

$$\left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)}{\sqrt{P_{T_n}(t)}} \right)^2 \\ \leq \mathbb{VAR}(T_n) \left(\sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)^2}{P_{T_n}(t)} \right)$$

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Hammersley-Chapman-Robbins bound

$$\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)}{\sqrt{P_{T_n}(t)}}\right)^2$$
$$\leq 4 \operatorname{VAR}(T_n) \underbrace{\left(\frac{1}{4}\sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)^2}{P_{T_n}(t)}\right)}_{\operatorname{Vincze-Le Cam distance}}$$

$$\left\| \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 1} - \boldsymbol{P}_{\mathcal{T}_n | \boldsymbol{H} = 0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 1] - \mathbb{E}[\mathcal{T}_n | \boldsymbol{H} = 0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof:

$$\begin{split} \left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 &= \left(\sum_t t \sqrt{P_{T_n}(t)} \, \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)}{\sqrt{P_{T_n}(t)}} \right)^2 \\ &\leq 4 \, \mathbb{VAR}(T_n) \left(\frac{1}{4} \sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)^2}{P_{T_n}(t)} \right) \\ &\leq 4 \, \mathbb{VAR}(T_n) \left\| P_{T_n|H=1} - P_{T_n|H=0} \right\|_{\mathsf{TV}} \end{split}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: Start with Le Cam's relation

$$oldsymbol{\mathcal{P}}_{\mathsf{ML}}^n = rac{1}{2} \left(1 - ig\| oldsymbol{\mathcal{P}}_{\mathcal{T}_n \mid \mathcal{H} = 1} - oldsymbol{\mathcal{P}}_{\mathcal{T}_n \mid \mathcal{H} = 0} ig\|_{\mathsf{TV}}
ight)$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: Apply second moment method lemma

$$egin{split} & \mathcal{P}_{\mathsf{ML}}^n = rac{1}{2} \left(1 - \left\| \mathcal{P}_{\mathcal{T}_n \mid \mathcal{H} = 1} - \mathcal{P}_{\mathcal{T}_n \mid \mathcal{H} = 0}
ight\|_{\mathsf{TV}}
ight) \ & \leq rac{1}{2} \left(1 - rac{\left(\mathbb{E}[\mathcal{T}_n \mid \mathcal{H} = 1] - \mathbb{E}[\mathcal{T}_n \mid \mathcal{H} = 0]
ight)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}
ight) \end{split}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: After explicit computation and simplification...

$$egin{split} & \mathcal{P}_{\mathsf{ML}}^n = rac{1}{2} \left(1 - \left\| \mathcal{P}_{\mathcal{T}_n \mid \mathcal{H} = 1} - \mathcal{P}_{\mathcal{T}_n \mid \mathcal{H} = 0}
ight\|_{\mathsf{TV}}
ight) \ & \leq rac{1}{2} \left(1 - rac{\left(\mathbb{E}[\mathcal{T}_n \mid \mathcal{H} = 1] - \mathbb{E}[\mathcal{T}_n \mid \mathcal{H} = 0]
ight)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}
ight) \end{split}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|H=1} - P_{\mathcal{T}_{n}|H=0} \right\|_{\mathsf{TV}} \right)$$

$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|H=1] - \mathbb{E}[\mathcal{T}_{n}|H=0] \right)^{2}}{4 \mathbb{VAR}(\mathcal{T}_{n})} \right)$$

$$\leq \frac{3}{2n^{1-2R}}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$. Then, $\lim_{n \to \infty} P_{\text{ML}}^n = 0$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right)$$
$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right)$$
$$\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$. Then, $\lim_{n \to \infty} P_{\text{ML}}^n = 0$. This implies that: $C_{\text{perm}}(\text{BSC}(p)) \ge \frac{1}{2}$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right)$$

$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \mathbb{VAR}(\mathcal{T}_{n})} \right)$$

$$\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty$$

Outline

Introduction

2 Achievability and Converse for the BSC

- Encoder and Decoder
- Testing between Converging Hypotheses
- Second Moment Method for TV Distance
- Fano's Inequality and CLT Approximation

General Achievability Bound

4 General Converse Bounds

5 Conclusion

• Consider discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with joint distribution $P_{X,Y}$.

- Consider discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with joint distribution $P_{X,Y}$.
- Shannon Entropy:

$$H(X) riangleq - \sum_{x \in \mathcal{X}} P_X(x) \log(P_X(x))$$

- Consider discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with joint distribution $P_{X,Y}$.
- Shannon Entropy:

$$H(X) riangleq - \sum_{x \in \mathcal{X}} P_X(x) \log(P_X(x))$$

• Conditional Shannon Entropy:

$$H(X|Y) \triangleq -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log(P_{X|Y}(x|y))$$

- Consider discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with joint distribution $P_{X,Y}$.
- Shannon Entropy:

$$H(X) riangleq - \sum_{x \in \mathcal{X}} P_X(x) \log(P_X(x))$$

• Conditional Shannon Entropy:

$$H(X|Y) \triangleq -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log(P_{X|Y}(x|y))$$

• Mutual Information:

$$I(X;Y) \triangleq \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log \left(\frac{P_{X,Y}(x,y)}{P_X(y)P_Y(y)}\right)$$

- Consider discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with joint distribution $P_{X,Y}$.
- Shannon Entropy:

$$H(X) \triangleq -\sum_{x \in \mathcal{X}} P_X(x) \log(P_X(x))$$

• Conditional Shannon Entropy:

$$H(X|Y) \triangleq -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log(P_{X|Y}(x|y))$$

• Mutual Information:

$$I(X; Y) \triangleq \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x, y) \log\left(\frac{P_{X,Y}(x, y)}{P_X(y)P_Y(y)}\right)$$
$$= H(X) - H(X|Y)$$

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \rightarrow Y \rightarrow Z$.

< □ > < 凸

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \rightarrow Y \rightarrow Z$.

Lemma (Data Processing Inequality [CT06])

 $I(X;Z) \leq I(X;Y)$

with equality if and only if Z is a *sufficient statistic* of Y for X, i.e., $X \to Z \to Y$ also forms a Markov chain.

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \to Y \to Z$.

Lemma (Data Processing Inequality [CT06])

 $I(X;Z) \leq I(X;Y)$

with equality if and only if Z is a *sufficient statistic* of Y for X, i.e., $X \to Z \to Y$ also forms a Markov chain.

Lemma (Fano's Inequality [CT06])

If X takes values in the finite alphabet \mathcal{X} , then

 $H(X|Z) \leq 1 + \mathbb{P}(X \neq Z) \log(|\mathcal{X}|)$

where we perceive Z as an estimator for X based on Y.

• Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: *M* is uniform

 $R\log(n)=H(M)$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: Fano's inequality, data processing inequality

$$egin{aligned} R\log(n) &= H(M|\hat{M}) + I(M;\hat{M}) \ &\leq 1 + P_{ ext{error}}^n R\log(n) + I(M;Y_1^n) \end{aligned}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: sufficiency

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: data processing inequality

$$\begin{aligned} R\log(n) &= H(M|\hat{M}) + I(M;\hat{M}) \\ &\leq 1 + P_{\text{error}}^n R\log(n) + I(M;Y_1^n) \\ &= 1 + P_{\text{error}}^n R\log(n) + I(M;S_n) \\ &\leq 1 + P_{\text{error}}^n R\log(n) + I(X_1^n;S_n) \end{aligned}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(X_1^n; S_n)$$

• Divide by log(*n*)

$$R \leq \frac{1}{\log(n)} + P_{\text{error}}^n R + \frac{I(X_1^n; S_n)}{\log(n)}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(X_1^n; S_n)$$

• Divide by $\log(n)$ and let $n \to \infty$:

$$R \leq \lim_{n \to \infty} \frac{I(X_1^n; S_n)}{\log(n)}$$

BSC Converse Proof: CLT Approximation

Upper bound on $I(X_1^n; S_n)$: $I(X_1^n; S_n) = H(S_n) - H(S_n|X_1^n)$

ъ
Since
$$S_n \in \{0, ..., n\}$$
,
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(S_n | X_1^n = x_1^n)$

< □ > < □ > < □</p>

Given
$$X_1^n = x_1^n$$
 with $\sum_{i=1}^n x_i = k$, $S_n = bin(k, 1-p) + bin(n-k, p)$:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(bin(k, 1-p) + bin(n-k, p))$

· ▶ ◀ 볼 ▶ 볼 ∽ ९... 10 July 2020 22 / 40

Image: A math a math

Using [CT06, Problem 2.14], i.e., $\max\{H(X), H(Y)\} \le H(X + Y)$ for $X \perp Y$, $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$ $\le \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$ $\le \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$

Approximate binomial entropy using CLT [ALY10]: $I(X_1^n; S_n) = H(S_n) - H(S_n|X_1^n)$ $\leq \log(n+1) - \sum P_{X_1^n}(x_1^n) H(\operatorname{bin}(k,1-p) + \operatorname{bin}(n-k,p))$ $x_1^n \in \{0,1\}^n$ $\leq \log(n+1) - \sum P_{X_1^n}(x_1^n) H\left(\operatorname{bin}\left(\frac{n}{2}, p\right) \right)$ $x_1^n \in \{0,1\}^n$ $= \log(n+1) - \sum P_{X_1^n}(x_1^n) \left(\frac{1}{2}\log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)\right)$ $x_{1}^{n} \in \{0,1\}^{n}$

Jpper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(\frac{n}{2}, p))$
 $= \log(n+1) - \frac{1}{2}\log(\pi ep(1-p)n) + O(\frac{1}{n})$

メロト メポト メヨト メヨ

Upper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$
 $= \log(n+1) - \frac{1}{2}\log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)$
Hence, we have $R \leq \lim_{n \to \infty} I(X_1^n; S_n) / \log(n) = \frac{1}{2}$.

メロト メポト メヨト メヨ

Upper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$
 $= \log(n+1) - \frac{1}{2} \log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)$
Hence, we have $R \leq \lim_{n \to \infty} I(X_1^n; S_n) / \log(n) = \frac{1}{2}$.

Proposition (BSC Converse)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) \leq \frac{1}{2}$$

Anuran Makur (MIT)

Proposition (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Anuran Makur (MIT)

10 July 2020 23 / 40

Proposition (Pemutation Channel Capacity of BSC)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & ext{for } p = 0, 1 \ rac{1}{2}, & ext{for } p \in \left(0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight) \ 0, & ext{for } p = rac{1}{2} \end{cases}$$

Remarks:

• C_{perm}(·) is discontinuous and non-convex

Proposition (Pemutation Channel Capacity of BSC)

$$\mathcal{C}_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & ext{for } p = 0, 1 \ rac{1}{2}, & ext{for } p \in \left(0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight) \ 0, & ext{for } p = rac{1}{2} \end{cases}$$

Remarks:

- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel

10 July 2020 23 / 40

Proposition (Pemutation Channel Capacity of BSC)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & ext{for } p = 0, 1 \ rac{1}{2}, & ext{for } p \in \left(0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight) \ 0, & ext{for } p = rac{1}{2} \end{cases}$$

Remarks:

- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel
- Computationally tractable coding scheme in achievability proof

Anuran Makur (MIT)

10 July 2020 23 / 40

 $\exists \rightarrow$

Introduction

2 Achievability and Converse for the BSC

3 General Achievability Bound

- Coding Scheme
- Rank Bound

General Converse Bounds

5 Conclusion

Recall General Problem

• Average probability of error
$${\mathcal P}^n_{\operatorname{error}} riangleq \mathbb{P}(M
eq \hat{M})$$

- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- Rate $R \geq 0$ is achievable $\Leftrightarrow \exists \ \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{ ext{error}}^n = 0$

Definition (Permutation Channel Capacity)

$$C_{\text{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$$

Main Question

What is the permutation channel capacity of a general $P_{Z|X}$?

Anuran Makur (MIT)

• Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$

Anuran Makur (MIT)

:▶ ◀ 볼 ▶ 볼 ∽ ९... 10 July 2020 26 / 40

イロト 人間ト イヨト イヨト

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where $|\mathcal{M}| = \binom{k+r-1}{r-1} = \Theta(n^{\frac{r-1}{2}})$

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where $|\mathcal{M}| = \binom{k+r-1}{r-1} = \Theta(n^{\frac{r-1}{2}})$

• Randomized Encoder:

$$\forall p \in \mathcal{M}, \ f_n(p) = X_1^n \stackrel{\text{i.i.d.}}{\sim} P_X \quad \text{where} \quad P_X(x) = \begin{cases} \frac{p(x)}{k}, & \text{for } x \in \mathcal{X}' \\ 0, & \text{for } x \in \mathcal{X} \setminus \mathcal{X}' \end{cases}$$

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \hat{P}_{y_1^n}(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \ \hat{P}_{y_1^n}(y) = rac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{\rho} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{\rho}(x) = \arg\min_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

- Let stochastic matrix $ilde{P}_{Z|X} \in \mathbb{R}^{r imes |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its *Moore-Penrose pseudoinverse*
- (Sub-optimal) Thresholding Decoder: For any y₁ⁿ ∈ 𝔅ⁿ, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \ \hat{\mathcal{P}}_{y_1^n}(y) = rac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{p} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{\rho}(x) = \arg\min_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

Step 3: Output decoded message

$$g_n(y_1^n) = egin{cases} \hat{p}, & ext{if } \hat{p} \in \mathcal{M} \ ext{error}, & ext{otherwise} \end{cases}$$

Achievability: Rank Bound

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$\mathcal{L}_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

Remarks about Coding Scheme:

• Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.

For any channel $P_{Z|X}$:

$$\mathcal{E}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.

For any channel $P_{Z|X}$:

$$\mathcal{P}_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$

- Showing $\lim_{n\to\infty} P_{error}^n = 0$ proves theorem.
- Intuition: Conditioned on M = p, $\hat{P}_{Y_1^n} \approx P_Z$ with high probability as $n \to \infty$. Hence, $\sum_{y \in \mathcal{Y}} \hat{P}_{Y_1^n}(y) [\tilde{P}_{Z|X}^{\dagger}]_{y,x} \approx P_X(x)$ for all $x \in \mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.
- Expurgation: Achievability bound holds under maximal probability of error criterion.

Introduction

- 2 Achievability and Converse for the BSC
- 3 General Achievability Bound

4 General Converse Bounds

- Output Alphabet Bound
- Effective Input Alphabet Bound
- Degradation by Symmetric Channels

5 Conclusion

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}$$
 .

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}\,.$$

Remarks:

• Proof hinges on Fano's inequality and CLT approximation of binomial entropy.

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}\,.$$

Remarks:

- Proof hinges on Fano's inequality and CLT approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

 $\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{|\mathcal{Y}|-1}{2}\,.$

Remarks:

- Proof hinges on Fano's inequality and CLT approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?
- Want: Converse bound in terms of input alphabet size.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{\mathsf{ext}(\mathcal{P}_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

• Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

Remarks:

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \le (\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1)/2$.
Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{C}_{\mathsf{perm}}(\mathcal{P}_{Z|X}) \leq rac{\mathsf{ext}(\mathcal{P}_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \le \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{\text{perm}}(P_{Z|X}) \leq \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $ext(P_{Z|X})$ denotes the number of *extreme points* of $conv\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}\}$.

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{perm}(P_{Z|X}) \le \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{\text{perm}}(P_{Z|X}) \leq \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1$.
- How do we prove above theorem?

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Theorem (Blackwell-Sherman-Stein [Bla51], [She51], [Ste51])

The observation model $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if and only if for every prior distribution P_X , and every loss function $L: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, the *Bayes risks* satisfy:

$$\min_{f(\cdot)} \mathbb{E}\left[L(X, f(Z_1))\right] \leq \min_{g(\cdot)} \mathbb{E}\left[L(X, g(Z_2))\right]$$

where the minima are over all randomized estimators of X.

Brief Digression: Symmetric Channels

Definition (q-ary Symmetric Channel)

A *q*-ary symmetric channel, denoted q-SC(δ), with total crossover probability $\delta \in [0, 1]$ and alphabet \mathcal{X} where $|\mathcal{X}| = q$, is given by the doubly stochastic matrix:

$$W_{\delta} riangleq \left[egin{array}{cccccccc} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{array}
ight]$$

Definition (*q*-ary Symmetric Channel)

A *q*-ary symmetric channel, denoted *q*-SC(δ), with total crossover probability $\delta \in [0, 1]$ and alphabet \mathcal{X} where $|\mathcal{X}| = q$, is given by the doubly stochastic matrix:

$$\mathcal{W}_{\delta} riangleq \left[egin{array}{cccc} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{array}
ight]$$

Proposition (Degradation by Symmetric Channels) Given channel $P_{Z|X}$ with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q-SC(δ).

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

Remarks:

• Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \le \nu / (1 (q 1)\nu + \frac{\nu}{q 1}).$

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \le \nu / (1 (q 1)\nu + \frac{\nu}{q 1})$.
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \le \nu / (1 (q 1)\nu + \frac{\nu}{q 1}).$
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.
 - Alternative bounds for Markov chains [MOS13].

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,
if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of q -SC(δ).

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \leq
 u/ig(1-(q-1)
 u+rac{
 u}{q-1}ig).$
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.
 - Alternative bounds for Markov chains [MOS13].
- Many applications in information theory, statistics, and probability [MP18], [MOS13].

Proof Idea: Degradation by Symmetric Channels

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{L}_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

Proof Sketch:

• Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow \quad I(X_1^n;Y_1^n) \leq I(X_1^n;\tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ), resp.

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{L}_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

Proof Sketch:

• Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow \quad I(X_1^n;Y_1^n) \leq I(X_1^n;\tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ), resp.

• *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to ext($P_{Z|X}$).

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$\mathcal{L}_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

Proof Sketch:

• Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow \quad I(X_1^n;Y_1^n) \leq I(X_1^n;\tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and q-SC(δ), resp.

- *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to ext($P_{Z|X}$).
- Fano argument of output alphabet bound \Rightarrow effective input alphabet bound.

1 Introduction

- 2 Achievability and Converse for the BSC
- General Achievability Bound
- 4 General Converse Bounds
- 5 Conclusion
 - Strictly Positive and "Full Rank" Channels

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is *"full rank"* in the sense that $r \triangleq \operatorname{rank}(P_{Z|X}) = \min\{\operatorname{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

 $C_{\mathsf{perm}}(P_{Z|X}) = rac{r-1}{2}$.

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is *"full rank"* in the sense that $r \triangleq \operatorname{rank}(P_{Z|X}) = \min\{\operatorname{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

 $C_{\mathsf{perm}}(P_{Z|X}) = rac{r-1}{2}$.

Recall Example: C_{perm} of non-trivial binary symmetric channel is $\frac{1}{2}$.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

.

イロト 人間ト イヨト イヨト

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Directions:

• Characterize C_{perm} of all (entry-wise strictly positive) channels.

.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Directions:

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).

.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Directions:

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Directions:

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).
- Perform finite blocklength analysis (i.e., exact asymptotics for maximum achievable $|\mathcal{M}|$).

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2}$$

Future Directions:

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).
- Perform finite blocklength analysis (i.e., exact asymptotics for maximum achievable $|\mathcal{M}|$).
- Analyze permutation channels with more complex probability models in the random permutation block.

This talk was based on:

- A. Makur, "Information capacity of BSC and BEC permutation channels," in *Proceedings of the 56th Annual Allerton Conference on Communication, Control, and Computing*, Monticello, IL, USA, October 2-5 2018, pp. 1112–1119.
- A. Makur, "Bounds on permutation channel capacity," in *Proceedings of the IEEE International Symposium on Information Theory* (ISIT), Los Angeles, CA, USA, June 21-26 2020.
- A. Makur, "Coding theorems for noisy permutation channels," accepted to *IEEE Transactions on Information Theory*, July 2020.

Thank You!

Anuran Makur (MIT)

 ▶ < ≣ ▶ ≣</th>
 ♡ < ○</th>

 10 July 2020
 40 / 40

イロト 不得 トイヨト イヨト