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Three Motivations

Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], . . .

Communication networks: [XZ02], [WWM09], [GG10], [KV13], . . .

Molecular/Biological Communications: [YKGR+15], [KPM16], [HSRT17], [SH19], . . .
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Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network
Packets are impaired
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SENDER RECEIVER

Model communication network as a channel:
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Motivation: Point-to-point Communication in Packet Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible b-bit packets
Multipath routed network ⇒ packets received with transpositions
Packets are impaired ⇒ model using channel probabilities
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

NETWORK

SENDER RECEIVER

Abstraction:

n-length codeword = sequence of n packets
:
Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?
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Permutation Channel Model

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Sender sends message M ∼ Uniform(M)

n = blocklength

Randomized encoder fn :M→ X n produces codeword X n
1 = (X1, . . . ,Xn) = fn(M)

Discrete memoryless channel PZ |X with input & output alphabets X & Y produces Zn
1 :

PZn
1 |X n

1
(zn1 |xn1 ) =

n∏
i=1

PZ |X (zi |xi )

Random permutation π generates Y n
1 from Zn

1 : Yπ(i) = Zi for i ∈ {1, . . . , n}
Randomized decoder gn : Yn →M∪ {error} produces estimate M̂ = gn(Y n

1 ) at receiver
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Permutation Channel Model

What if we analyze the “swapped” model?

ENCODER CHANNELRANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑉 𝑊 𝑀

Proposition (Equivalent Models)

If channel PW |V is equal to channel PZ |X , then channel PW n
1 |X n

1
is equal to channel PY n

1 |X n
1

.

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Remarks:

Proof follows from direct calculation.

Can analyze either model!
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Coding for the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

General Principle:
“Encode the information in an object that is invariant under the [permutation]
transformation.” [KV13]

Multiset codes are studied in [KV13], [KV15], and [KT18].

What are the fundamental
information theoretic limits of this model?

Anuran Makur (MIT) Permutation Channels 10 July 2020 8 / 40



Coding for the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

General Principle:
“Encode the information in an object that is invariant under the [permutation]
transformation.” [KV13]

Multiset codes are studied in [KV13], [KV15], and [KT18].

What are the fundamental
information theoretic limits of this model?

Anuran Makur (MIT) Permutation Channels 10 July 2020 8 / 40



Coding for the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

General Principle:
“Encode the information in an object that is invariant under the [permutation]
transformation.” [KV13]

Multiset codes are studied in [KV13], [KV15], and [KT18].

What are the fundamental
information theoretic limits of this model?

Anuran Makur (MIT) Permutation Channels 10 July 2020 8 / 40



Information Capacity of the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Average probability of error Pn
error , P(M 6= M̂)

“Rate” of coding scheme (fn, gn) is R ,
log(|M|)

log(n)

|M| = nR

Rate R ≥ 0 is achievable ⇔ ∃{(fn, gn)}n∈N such that lim
n→∞

Pn
error = 0

Definition (Permutation Channel Capacity)

Cperm(PZ |X ) , sup{R ≥ 0 : R is achievable}

Main Question

What is the permutation channel capacity of a general PZ |X?
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Cperm(PZ |X ) , sup{R ≥ 0 : R is achievable}

Main Question

What is the permutation channel capacity of a general PZ |X?
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Example: Binary Symmetric Channel

ENCODER BSC 𝒑 RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Channel is binary symmetric channel, denoted BSC(p):

∀z , x ∈ {0, 1}, PZ |X (z |x) =

{
1− p, for z = x

p, for z 6= x

Alphabets are X = Y = {0, 1}
Assume crossover probability p ∈ (0, 1) and p 6= 1

2

Question: What is the permutation channel capacity of the BSC?
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Warm-up: Sending Two Messages

ENCODER BSC 𝒑 RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Fix a message m ∈ {0, 1}

, and encode m as fn(m) = X n
1

i.i.d.∼ Ber(qm)

𝑞
1
3

𝑞
2
3

10

Memoryless BSC(p) outputs Zn
1

i.i.d.∼ Ber(p ∗ qm), where p ∗ qm , p(1− qm) + qm(1− p)
is the convolution of p and qm

Random permutation generates Y n
1

i.i.d.∼ Ber(p ∗ qm)

Maximum Likelihood (ML) decoder: M̂ = 1
{
1
n

∑n
i=1 Yi ≥ 1

2

}
(for p < 1

2)
1
n

∑n
i=1 Yi → p ∗ qm in probability as n→∞ ⇒ lim

n→∞
Pn
error = 0 as p ∗ q0 6= p ∗ q1
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Encoder and Decoder

Suppose M = {1, . . . , nR} for some R > 0

Randomized encoder: Given m ∈M, fn(m) = X n
1

i.i.d.∼ Ber
( m

nR

)

10
𝑛

Given m ∈M, Y n
1

i.i.d.∼ Ber
(
p ∗ m

nR

)
ML decoder: For yn1 ∈ {0, 1}n, gn(yn1 ) = arg max

m∈M
PY n

1 |M(yn1 |m)

Challenge: Although 1
n

∑n
i=1 Yi → p ∗ m

nR
in probability as n→∞, consecutive messages

become indistinguishable, i.e. m
nR
− m+1

nR
→ 0

Fact: Consecutive messages distinguishable ⇒ lim
n→∞

Pn
error = 0

What is the largest R such that two consecutive messages can be distinguished?
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Testing between Converging Hypotheses

Binary Hypothesis Testing:

Consider hypothesis H ∼ Ber
(
1
2

)
with uniform prior

For any n ∈ N, q ∈ (0, 1), and R > 0, consider likelihoods:

Given H = 0 : X n
1

i.i.d.∼ PX |H=0 = Ber(q)

Given H = 1 : X n
1

i.i.d.∼ PX |H=1 = Ber

(
q +

1

nR

)
Define the zero-mean sufficient statistic of X n

1 for H:

Tn ,
1

n

n∑
i=1

Xi − q − 1

2nR

Let Ĥn
ML(Tn) denote the ML decoder for H based on Tn with minimum probability of

error Pn
ML , P(Ĥn

ML(Tn) 6= H)
Want: Largest R > 0 such that lim

n→∞
Pn
ML = 0?
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ML(Tn) denote the ML decoder for H based on Tn with minimum probability of

error Pn
ML , P(Ĥn
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ML(Tn) denote the ML decoder for H based on Tn with minimum probability of

error Pn
ML , P(Ĥn
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Intuition via Central Limit Theorem

For large n, PTn|H(·|0) and PTn|H(·|1) are Gaussian distributions

|E[Tn|H = 0]− E[Tn|H = 1]| = 1/nR

Standard deviations are Θ
(
1/
√
n
)

Figure:

𝑡0

𝑃 | 𝑡|0 𝑃 | 𝑡|1

1
2𝑛

1
2𝑛
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Second Moment Method for TV Distance

Lemma (2nd Moment Method [EKPS00])∥∥PTn|H=1 − PTn|H=0

∥∥
TV
≥ (E[Tn|H = 1]− E[Tn|H = 0])2

4VAR(Tn)

where ‖P − Q‖TV = 1
2 ‖P − Q‖1 denotes the total variation (TV) distance between the

distributions P and Q.

Proof:
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[
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t
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E
[
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=
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t
√
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)√
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≤ 4VAR(Tn)

(
1

4

∑
t

(
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)2
PTn(t)
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Vincze-Le Cam distance
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BSC Achievability Proof

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with H ∼ Ber
(
1
2

)
, and

X n
1

i.i.d.∼ Ber
(
q + h

nR

)
given H = h ∈ {0, 1}.

Then, lim
n→∞

Pn
ML = 0. This implies that:

Cperm(BSC(p)) ≥ 1

2
.

Proof: Start with Le Cam’s relation

Pn
ML =

1

2

(
1−

∥∥PTn|H=1 − PTn|H=0

∥∥
TV

)
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Recall: Basic Definitions of Information Measures

Consider discrete random variables X ∈ X and Y ∈ Y with joint distribution PX ,Y .

Shannon Entropy:

H(X ) , −
∑
x∈X

PX (x) log(PX (x))

Conditional Shannon Entropy:

H(X |Y ) , −
∑
x∈X

∑
y∈Y

PX ,Y (x , y) log
(
PX |Y (x |y)

)
Mutual Information:

I (X ;Y ) ,
∑
x∈X

∑
y∈Y

PX ,Y (x , y) log

(
PX ,Y (x , y)

PX (y)PY (y)

)

= H(X )− H(X |Y )
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Recall: Two Information Inequalities

Consider discrete random variables X ,Y ,Z that form a Markov chain X → Y → Z .

Lemma (Data Processing Inequality [CT06])

I (X ;Z ) ≤ I (X ;Y )

with equality if and only if Z is a sufficient statistic of Y for X , i.e., X → Z → Y also forms a
Markov chain.

Lemma (Fano’s Inequality [CT06])

If X takes values in the finite alphabet X , then

H(X |Z ) ≤ 1 + P(X 6= Z ) log(|X |)

where we perceive Z as an estimator for X based on Y .
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BSC Converse Proof: Fano’s Inequality Argument

Consider the Markov chain M → X n
1 → Zn

1 → Y n
1 → Sn ,

∑n
i=1 Yi → M̂, and a

sequence of encoder-decoder pairs {(fn, gn)}n∈N such that |M| = nR and lim
n→∞

Pn
error = 0

Standard argument [CT06]:

R log(n)

= H(M|M̂) + I (M; M̂)

≤ 1 + Pn
errorR log(n) + I (M;Y n

1 )

= 1 + Pn
errorR log(n) + I (M;Sn)

≤ 1 + Pn
errorR log(n) + I (X n

1 ;Sn)

Divide by log(n)

and let n→∞:

R ≤ I (X n
1 ; Sn)

log(n)
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BSC Converse Proof: CLT Approximation

Upper bound on I (X n
1 ;Sn):

I (X n
1 ;Sn) = H(Sn)− H(Sn|X n

1 )

≤ log(n + 1)−
∑

xn1∈{0,1}n
PX n

1
(xn1 )H(bin(k , 1− p) + bin(n − k , p))

≤ log(n + 1)−
∑

xn1∈{0,1}n
PX n

1
(xn1 )H

(
bin
(n

2
, p
))

= log(n + 1)− 1

2
log(πep(1− p)n) + O

(
1

n

)
Hence, we have R ≤ lim

n→∞
I (X n

1 ; Sn)/log(n) = 1
2 .

Proposition (BSC Converse)

Cperm(BSC(p)) ≤ 1

2
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BSC Converse Proof: CLT Approximation
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BSC Converse Proof: CLT Approximation
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Information Capacity of the BSC Permutation Channel

Proposition (Pemutation Channel Capacity of BSC)

Cperm(BSC(p)) =


1, for p = 0, 1
1
2 , for p ∈

(
0, 12
)
∪
(
1
2 , 1
)

0, for p = 1
2

𝑝0

𝐶perm BSC 𝑝

0

1

11
2

1
2

Remarks:

Cperm(·) is discontinuous and
non-convex

Cperm(·) is generally agnostic to
parameters of channel

Computationally tractable coding
scheme in achievability proof
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Recall General Problem

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Average probability of error Pn
error , P(M 6= M̂)

“Rate” of coding scheme (fn, gn) is R ,
log(|M|)

log(n)

Rate R ≥ 0 is achievable ⇔ ∃{(fn, gn)}n∈N such that lim
n→∞

Pn
error = 0

Definition (Permutation Channel Capacity)

Cperm(PZ |X ) , sup{R ≥ 0 : R is achievable}

Main Question

What is the permutation channel capacity of a general PZ |X?
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Achievability: Coding Scheme

Let r = rank(PZ |X ) and k =
⌊√

n
⌋

Consider X ′ ⊆ X with |X ′| = r such that {PZ |X (·|x) : x ∈ X ′} are linearly independent

Message set:

M ,

{
p = (p(x) : x ∈ X ′) ∈ (Z+)X

′
:
∑
x∈X ′

p(x) = k

}

where |M| =
(k+r−1

r−1
)

= Θ
(
n

r−1
2

)

Randomized Encoder:

∀p ∈M, fn(p) = X n
1

i.i.d.∼ PX where PX (x) =

{
p(x)
k , for x ∈ X ′

0, for x ∈ X\X ′
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Achievability: Coding Scheme

Let stochastic matrix P̃Z |X ∈ Rr×|Y| have rows {PZ |X (·|x) : x ∈ X ′}
Let P̃†Z |X denote its Moore-Penrose pseudoinverse

(Sub-optimal) Thresholding Decoder: For any yn1 ∈ Yn,
Step 1: Construct its type/empirical distribution/histogram

∀y ∈ Y, P̂yn
1

(y) =
1

n

n∑
i=1

1{yi = y}

Step 2: Generate estimate p̂ ∈ (Z+)X
′

with components

∀x ∈ X ′, p̂(x) = arg min
j∈{0,...,k}

∣∣∣∣∣∣
∑
y∈Y

P̂yn
1

(y)
[
P̃†Z |X

]
y ,x
− j

k

∣∣∣∣∣∣
Step 3: Output decoded message

gn(yn1 ) =

{
p̂, if p̂ ∈M
error, otherwise
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Achievability: Rank Bound

Theorem (Rank Bound)

For any channel PZ |X :

Cperm(PZ |X ) ≥
rank(PZ |X )− 1

2
.

Remarks about Coding Scheme:

Showing limn→∞ Pn
error = 0 proves theorem.

Intuition: Conditioned on M = p, P̂Y n
1
≈ PZ with high probability as n→∞.

Hence,
∑

y∈Y P̂Y n
1

(y)
[
P̃†Z |X

]
y ,x
≈ PX (x) for all x ∈ X ′ with high probability.

Computational complexity: Decoder has O(n) running time.

Probabilistic method: Good deterministic codes exist.

Expurgation: Achievability bound holds under maximal probability of error criterion.
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Converse: Output Alphabet Bound

Theorem (Output Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤ |Y| − 1

2
.

Remarks:

Proof hinges on Fano’s inequality and CLT approximation of binomial entropy.

What if |X | is much smaller than |Y|?
Want: Converse bound in terms of input alphabet size.
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Converse: Effective Input Alphabet Bound

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2

where ext(PZ |X ) denotes the number of extreme points of conv
{
PZ |X (·|x) : x ∈ X

}
.

Remarks:

Effective input alphabet size: rank(PZ |X ) ≤ ext(PZ |X ) ≤ |X |.
For any channel PZ |X > 0, Cperm(PZ |X ) ≤

(
min{ext(PZ |X ), |Y|} − 1

)
/2.

For any general channel PZ |X , Cperm(PZ |X ) ≤ min{ext(PZ |X ), |Y|} − 1.

How do we prove above theorem?
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Brief Digression: Degradation

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels PZ1|X and PZ2|X with common input alphabet X , PZ2|X is a degraded version
of PZ1|X if PZ2|X = PZ1|XPZ2|Z1

for some channel PZ2|Z1
.

Theorem (Blackwell-Sherman-Stein [Bla51], [She51], [Ste51])

The observation model PZ2|X is a degraded version of PZ1|X if and only if for every prior
distribution PX , and every loss function L : X × X → R, the Bayes risks satisfy:

min
f (·)

E [L(X , f (Z1))] ≤ min
g(·)

E [L(X , g(Z2))]

where the minima are over all randomized estimators of X .
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Brief Digression: Symmetric Channels

Definition (q-ary Symmetric Channel)

A q-ary symmetric channel, denoted q-SC(δ), with total crossover probability δ ∈ [0, 1] and
alphabet X where |X | = q, is given by the doubly stochastic matrix:

Wδ ,


1− δ δ

q−1 · · · δ
q−1

δ
q−1 1− δ · · · δ

q−1
...

...
. . .

...
δ

q−1
δ

q−1 · · · 1− δ

 .

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).
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Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.
Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.
Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.
Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.

Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.
Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Brief Digression: Symmetric Channels

Proposition (Degradation by Symmetric Channels)

Given channel PZ |X with ν = min
x∈X , y∈Y

PZ |X (y |x),

if 0 ≤ δ ≤ ν

1− ν + ν
q−1

, then PZ |X is a degraded version of q-SC(δ).

Remarks:

Prop follows from computing extremal δ such that W−1
δ PZ |X is row stochastic.

Bound on δ can be improved when more is known about PZ |X :

Markov chain [MP18]: δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.

Additive noise channel on Abelian group X [MP18]: δ ≤ (q − 1)ν.
Alternative bounds for Markov chains [MOS13].

Many applications in information theory, statistics, and probability [MP18], [MOS13].

Anuran Makur (MIT) Permutation Channels 10 July 2020 34 / 40



Proof Idea: Degradation by Symmetric Channels

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel PZ |X > 0:

Cperm(PZ |X ) ≤
ext(PZ |X )− 1

2
.

Proof Sketch:

Degradation by symmetric channels + tensorization of degradation + data processing

⇒ I (X n
1 ;Y n

1 ) ≤ I (X n
1 ; Ỹ n

1 )

where Y n
1 and Ỹ n

1 are outputs of permutation channels with PZ |X and q-SC(δ), resp.

Convexity of KL divergence ⇒ Reduce |X | to ext(PZ |X ).

Fano argument of output alphabet bound ⇒ effective input alphabet bound.
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Outline

1 Introduction

2 Achievability and Converse for the BSC

3 General Achievability Bound

4 General Converse Bounds

5 Conclusion
Strictly Positive and “Full Rank” Channels
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Strictly Positive and “Full Rank” Channels

Achievability and converse bounds yield:

Theorem (Strictly Positive and “Full Rank” Channels)

For any entry-wise strictly positive channel PZ |X > 0 that is “full rank” in the sense that

r , rank(PZ |X ) = min{ext(PZ |X ), |Y|}:

Cperm(PZ |X ) =
r − 1

2
.

Recall Example: Cperm of non-trivial binary symmetric channel is 1
2 .
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Conclusion

Main Result:
For any entry-wise strictly positive channel PZ |X > 0:

rank(PZ |X )− 1

2
≤ Cperm(PZ |X ) ≤

min{ext(PZ |X ), |Y|} − 1

2
.

Future Directions:

Characterize Cperm of all (entry-wise strictly positive) channels.

Perform error exponent analysis (i.e., tight bounds on Pn
error).

Prove strong converse results (i.e., phase transition for Pn
error).

Perform finite blocklength analysis (i.e., exact asymptotics for maximum achievable |M|).

Analyze permutation channels with more complex probability models in the random
permutation block.
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