
New Results on the
Less Noisy Preorder over Channels

Anuran Makur and Yury Polyanskiy

EECS Department, Massachusetts Institute of Technology

10 November 2016

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 1 / 30



Outline

1 Introduction
Preliminaries
Channel Preorders in Information Theory
Relation to Strong Data Processing Inequalities
Symmetric Channels
Main Questions

2 Equivalent Characterizations of Less Noisy Preorder

3 Condition for Domination by a Symmetric Channel

4 Comparison of Additive Noise Channels

5 Less Noisy Domination and Log-Sobolev Inequalities

6 ConclusionA. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 2 / 30



Preliminiaries

Rq×r
sto = set of q × r row stochastic matrices

Pq = probability simplex of row vectors in Rq

Alphabets X = [q] , {0, 1, . . . , q − 1} and Y = [r ]

Input and output random variables X ∈ X and Y ∈ Y
A channel is the set of conditional distributions WY |X that associates
each x ∈ X with a conditional pmf WY |X (·|x) ∈ Pr
Represent a channel WY |X with a stochastic matrix W ∈ Rq×r

sto

so that PY = PXW
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Channel Preorders in Information Theory

Less Noisy [KM77]
W ∈ Rq×r

sto is less noisy than V ∈ Rq×s
sto :

W �ln V

if D(PXW ||QXW ) ≥ D(PXV ||QXV ) for every PX ,QX ∈ Pq.

Degradation [Ber73]
V ∈ Rq×s

sto is a degraded version of W ∈ Rq×r
sto :

W �deg V

if V = WA for some channel A ∈ Rr×s
sto .

Observation: W �deg V ⇒ W �ln V
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Less Noisy Preorder and Strong Data Processing

Data Processing Inequality: For any channel W ∈ Rq×r
sto ,

∀PX ,QX ∈ Pq, D(PX ||QX ) ≥ D(PXW ||QXW )

where η ∈ [0, 1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:

Let E1−η ∈ Rq×(q+1)
sto be an erasure channel with erasure probability 1− η.

E1−η �ln W

⇔ ∀PX ,QX , D(PXE1−η||QXE1−η) ≥ D(PXW ||QXW )

⇔ ∀PX ,QX , D(ηPX + (1− η)δe||ηQX + (1− η)δe) ≥ D(PXW ||QXW )

⇔ ∀PX ,QX , ηD(PX ||QX ) ≥ D(PXW ||QXW )

SDPI = �ln domination by erasure channel

When does a q-ary symmetric channel dominate another channel?
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Symmetric Channels

Definition (Symmetric Channel)

Given the alphabet X = Y = [q], the q-ary symmetric channel is given by
the stochastic matrix:

Wδ ,


1− δ δ

q−1 · · · δ
q−1

δ
q−1 1− δ · · · δ

q−1
...

...
. . .

...
δ

q−1
δ

q−1 · · · 1− δ

 ∈ Rq×q
sto

where δ ∈ [0, 1] is the total crossover probability.

Properties:

{Wδ ∈ Rq×q
sym : δ ∈ R} are symmetric, circulant, doubly stochastic

matrices that are jointly diagonalized by the DFT matrix.

{Wδ ∈ Rq×q
sym : δ ∈ R\{q−1q }} with the operation of matrix

multiplication is an Abelian group.
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Main Questions

1 Can we test �ln using a different divergence measure?

Yes

2 Given a channel V ∈ Rq×q
sto , is there a simple sufficient condition for

Wδ �ln V ?

Yes (via degradation Wδ �deg V )

3 Can we say anything stronger about �ln domination by a symmetric
channel when V ∈ Rq×q

sto is an additive noise channel?

Yes (picture!)

4 Why do we care about �ln domination by symmetric channels?

Dirichlet form domination ⇒ Log-Sobolev Inequality
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χ2-Divergence Characterization of �ln

Proposition (χ2-Divergence Characterization of �ln)

Given the channels W ∈ Rq×r
sto and V ∈ Rq×s

sto , W �ln V if and only if:

∀PX ,QX ∈ Pq, χ2 (PXW ||QXW ) ≥ χ2 (PXV ||QXV ) .

Proof: (⇒) Recall that for any PX ∈ Pq and QX ∈ P◦q [PW16]:

lim
λ→0+

2

λ2
D (λPX + (1− λ)QX ||QX ) = χ2 (PX ||QX ) .

So, for any PX ∈ Pq and QX ∈ P◦q , W �ln V implies:

D (λPXW + (1− λ)QXW ||QXW ) ≥ D(λPXV + (1− λ)QXV ||QXV )

χ2 (PXW ||QXW ) ≥ χ2 (PXV ||QXV )

after taking limits. Continuity completes this direction.
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Löwner and Spectral Characterizations of �ln

Theorem (Equivalent Characterizations of �ln)

Given channels W ∈ Rq×r
sto and V ∈ Rq×s

sto , the following are equivalent:

W �ln V

∀PX ,QX ∈ Pq, χ2 (PXW ||QXW ) ≥ χ2 (PXV ||QXV )

∀PX ∈ P◦q , W diag(PXW )−1W T �PSD V diag(PXV )−1 V T

∀PX ∈ P◦q , ρ
((
W diag(PXW )−1W T

)†
V diag(PXV )−1 V T

)
= 1

where X † denotes the Moore-Penrose pseudoinverse of any matrix X , and
ρ (X ) denotes the spectral radius of any square matrix X .

Löwner Characterization: For every PX ∈ Pq and every QX ∈ P◦q ,

χ2 (PXW ||QXW ) = (PX − QX )W diag(QXW )−1W T (PX − QX )T .

Spectral Characterization: Exercise in matrix analysis.

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 11 / 30
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Condition for Degradation by Symmetric Channels

Theorem (Degradation by Symmetric Channels)

Given a channel V ∈ Rq×q
sto with q ≥ 2 and minimum probability

ν = min {[V ]i ,j : 1 ≤ i , j ≤ q}, we have:

0 ≤ δ ≤ ν

1− (q − 1)ν + ν
q−1

⇒ Wδ �deg V ⇒ Wδ �ln V

where Wδ ∈ Rq×q
sto is a symmetric channel.
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Proof Sketch

Consider the channels W(q−1)ν ,V ∈ Rq×q
sto :

W(q−1)ν =

 − w1 −
...

− wq −

 , V =

 − v1 −
...

− vq −


where wi = (ν, . . . , ν, 1− (q − 1)ν, ν, . . . , ν) has 1− (q − 1)ν in the ith
position, and V has minimum entry ν.

Using majorization: ∀i ∈ {1, . . . , q} , vi =

q∑
j=1

pi ,j wj

for some convex weights pi ,j ≥ 0 such that
∑q

j=1 pi ,j = 1.
Stack rows of V and observe that:

V =
∑

1≤j1,...,jq≤q

(
q∏

i=1

pi ,ji

) − wj1 −
...

− wjq −


where

{∏q
i=1 pi ,ji : 1 ≤ j1, . . . , jq ≤ q

}
form a product pmf.
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Proof Sketch

Suffices to find δ ∈
[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

∃Mj1,...,jq ∈ Rq×q
sto , WδMj1,...,jq =

 − wj1 −
...

− wjq −



or equivalently, find δ ∈
[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

W−1
δ

 − wj1 −
...

− wjq −

 ∈ Rq×q
sto .

The rows of such matrices always sum to unity. Finally, we require the
minimum possible entry of such matrices to be non-negative, which gives:

δ ≤ ν

1− (q − 1) ν + ν
q−1

.

�

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 15 / 30



Proof Sketch

Suffices to find δ ∈
[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

∃Mj1,...,jq ∈ Rq×q
sto , WδMj1,...,jq =

 − wj1 −
...

− wjq −


or equivalently, find δ ∈

[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

W−1
δ

 − wj1 −
...

− wjq −

 ∈ Rq×q
sto .

The rows of such matrices always sum to unity. Finally, we require the
minimum possible entry of such matrices to be non-negative, which gives:

δ ≤ ν

1− (q − 1) ν + ν
q−1

.

�

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 15 / 30



Proof Sketch

Suffices to find δ ∈
[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

∃Mj1,...,jq ∈ Rq×q
sto , WδMj1,...,jq =

 − wj1 −
...

− wjq −


or equivalently, find δ ∈

[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

W−1
δ

 − wj1 −
...

− wjq −

 ∈ Rq×q
sto .

The rows of such matrices always sum to unity.

Finally, we require the
minimum possible entry of such matrices to be non-negative, which gives:

δ ≤ ν

1− (q − 1) ν + ν
q−1

.

�

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 15 / 30



Proof Sketch

Suffices to find δ ∈
[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

∃Mj1,...,jq ∈ Rq×q
sto , WδMj1,...,jq =

 − wj1 −
...

− wjq −


or equivalently, find δ ∈

[
0, q−1q

]
such that for every 1 ≤ j1, . . . , jq ≤ q:

W−1
δ

 − wj1 −
...

− wjq −

 ∈ Rq×q
sto .

The rows of such matrices always sum to unity. Finally, we require the
minimum possible entry of such matrices to be non-negative, which gives:

δ ≤ ν

1− (q − 1) ν + ν
q−1

.

�
A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 15 / 30



Tightness of Condition for Degradation

Theorem (Degradation by Symmetric Channels)

Given a channel V ∈ Rq×q
sto with q ≥ 2 and minimum probability

ν = min {[V ]i ,j : 1 ≤ i , j ≤ q}, we have:

0 ≤ δ ≤ ν

1− (q − 1)ν + ν
q−1

⇒ Wδ �deg V .

Remark: The condition is tight when no further information about V is
known. For example, suppose:

V =


− w2 −
− w1 −

...
− w1 −

 ∈ Rq×q
sto .

Then, Wδ �deg V if and only if 0 ≤ δ ≤ ν/
(
1− (q − 1)ν + ν

q−1
)
.
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Additive Noise Channels

Fix a finite Abelian group (X ,⊕) with order q as the alphabet.

An additive noise channel if defined by:

Y = X ⊕ Z , X ⊥⊥ Z

where X ,Y ,Z ∈ X are the input, output, and noise random variables.

It is characterized by a noise pmf PZ ∈ Pq.

The channel transition probability matrix is a doubly stochastic
X -circulant matrix circX (PZ ) ∈ Rq×q

sto defined entry-wise as:

∀x , y ∈ X , [circX (PZ )]x ,y , PZ (−x ⊕ y) = PY |X (y |x).

Symmetric channel: PZ =
(

1− δ, δ
q−1 , . . . ,

δ
q−1

)
for δ ∈ [0, 1]

circX (PZ ) = Wδ

Cyclic group example: Z/qZ (X = [q] and ⊕ is addition modulo q)

(Z/qZ)-circulant matrix ⇒ circulant matrix
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Less Noisy Domination and Degradation Regions

Given a symmetric channel Wδ ∈ Rq×q
sto for δ ∈ [0, 1].

The less noisy domination region of Wδ is:

LaddWδ
, {v ∈ Pq : Wδ �ln circX (v)} .

The degradation region of Wδ is:

Dadd
Wδ
, {v ∈ Pq : Wδ �deg circX (v)} .

Dadd
Wδ
⊆ LaddWδ

.
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Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given Wδ ∈ Rq×q
sto with δ ∈

[
0, q−1q

]
and q ≥ 2, we have:

Dadd
Wδ

= conv (rows ofWδ)

⊆ conv (rows ofWδ andWγ)

⊆ LaddWδ
⊆ {v ∈ Pq : ‖v − u‖`2 ≤ ‖wδ − u‖`2}

where wδ is the first row of Wδ, γ = (1− δ)/
(

1− δ + δ
(q−1)2

)
, and

u ∈ Pq is the uniform pmf.

Furthermore, LaddWδ
is a closed and convex set that is symmetric with

respect to the regular permutation representation {Px ∈ Rq×q : x ∈ X} of
(X ,⊕) (i.e. v ∈ LaddWδ

⇒ vPx ∈ LaddWδ
for every x ∈ X ).

Remark: The first set inclusion is strict for δ ∈
(
0, q−1q

)
and q ≥ 3.
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Domination Structure of Additive Noise Channels

Illustration of the q = 3 case:
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Some Definitions

Consider an irreducible Markov chain on W ∈ Rq×q
sto on a state space

X = [q] with uniform stationary distribution u ∈ Pq.

Define a continuous-time Markov semigroup with generator
L = W − I and uniform stationary distribution:

∀t ≥ 0, Ht , exp (−t (I −W )) ∈ Rq×q
sto .

Let L2 (X ,u) (column vectors in Rq) be the Hilbert space of
functions on X endowed with the inner product:

∀f , g ∈ L2 (X ,u) , 〈f , g〉u ,
1

q

∑
x∈X

f (x)g(x) =
f Tg

q
.
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Log-Sobolev Inequalities

Dirichlet Form:
Define the Dirichlet form EW : L2 (X , π)× L2 (X , π)→ R+:

EW (f , f ) , 〈(I −W ) f , f 〉u =
1

q
f T
(
I − W + W T

2

)
f .

Log-Sobolev Inequality: [DSC96]
The LSI for the Markov semigroup Ht with constant α ∈ R states that
for every f ∈ L2 (X ,u) such that ‖f ‖u = 1,

D
(
f 2u ||u

)
=

1

q

∑
x∈X

f 2(x) log
(
f 2(x)

)
≤ 1

α
EW (f , f ) .

Log-Sobolev Constant:
The largest constant α in the LSI is called the log-Sobolev constant:

α(W ) , inf
f ∈L2(X ,u):
‖f ‖u=1

D(f 2u||u) 6=0

EW (f , f )

D (f 2u ||u)
.
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Log-Sobolev Inequalities

Some Consequences:

Continuous case: [DSC96]

LSI ⇒ ∀µ ∈ Pq,∀t ≥ 0, D (µHt ||u) ≤ e−2α(W )tD (µ||u).

Discrete case: [Mic97]

LSI ⇒ ∀µ ∈ Pq,∀n ∈ N, D (µW n||u) ≤
(
1− α

(
WW T

))n
D (µ||u).

Computing log-Sobolev Constants:

Difficult in general /
Easy for q-ary symmetric channels ,

α(Wδ) =

{
(q−2)δ

(q−1) log(q−1) , q > 2

δ , q = 2

α
(
WδW

T
δ

)
=

{
(q−2)(2q−2−qδ)δ
(q−1)2 log(q−1) , q > 2

2δ(1− δ) , q = 2
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Comparison of Dirichlet Forms

How do we prove an LSI for an irreducible channel V ∈ Rq×q
sto ?

Idea: Domination of Dirichlet forms

∀f ∈ L2 (X ,u) , EV (f , f ) ≥ EWδ
(f , f )

for some δ ∈
[
0, q−1q

]
implies an LSI:

D
(
f 2u ||u

)
≤ 1

α(Wδ)
EWδ

(f , f ) ≤ 1

α(Wδ)
EV (f , f )

for every f ∈ L2 (X ,u) with ‖f ‖u = 1.

Connection to channel comparison:

Less noisy domination ⇒ Dirichlet form domination
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Comparison of Dirichlet Forms

Theorem (Domination of Dirichlet Forms)

Let W ,V ∈ Rq×q
sto be channels with uniform stationary distribution.

If W �ln V , then:

∀f ∈ L2 (X ,u) , EVVT (f , f ) ≥ EWWT (f , f ) .

If W is positive semidefinite, V is normal (i.e. V TV = VV T ), and
W �ln V , then:

∀f ∈ L2 (X ,u) , EV (f , f ) ≥ EW (f , f ) .

If W = Wδ ∈ Rq×q
sto is any q-ary symmetric channel with δ ∈

[
0, q−1q

]
and Wδ �ln V , then:

∀f ∈ L2 (X ,u) , EV (f , f ) ≥ EWδ
(f , f ) .
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:

V =

 1/2 1/4 1/4
1/6 1/3 1/2
1/3 5/12 1/4


with q = 3, stationary pmf u =

(
1
3 ,

1
3 ,

1
3

)
, and minimum entry ν = 1

6 .

Generate 3-ary symmetric channel Wδ ∈ R3×3
sto such that Wδ �ln V :

δ =
ν

1− (q − 1)ν + ν
q−1

=
2

9
.

Compute the log-Sobolev constant of Wδ:

α(Wδ) =
(q − 2)δ

(q − 1) log (q − 1)
=

1

9 log (2)
≈ 0.1603 .

Use domination of Dirichlet forms to get the LSI:

D
(
f 2u ||u

)
≤ 1

0.3570
EV (f , f ) ≤ 1

0.1603
EV (f , f ) .
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Thank You!
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