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Preliminiaries

X . .
e RJZ" = set of g x r row stochastic matrices

@ P, = probability simplex of row vectors in RY
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Preliminiaries

o RIS = set of g x r row stochastic matrices

@ P, = probability simplex of row vectors in RY

o Alphabets X = [q] £ {0,1,...,9—1} and Y =[]
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Preliminiaries

o RIS = set of g x r row stochastic matrices

@ P, = probability simplex of row vectors in RY

o Alphabets X = [q] £ {0,1,...,9—1} and Y =[]

@ Input and output random variables X € X and Y € )

@ A channel is the set of conditional distributions Wy |x that associates
each x € X with a conditional pmf Wyx(:|x) € P,

@ Represent a channel Wy |x with a stochastic matrix W & RI5"

so that Py = Px W
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Channel Preorders in Information Theory

@ Less Noisy [KM77]
W € RIS is less noisy than V € RIS

thnv

if D(PxW||QxW) > D(PxV||QxV) for every Px, Qx € Pq.
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Channel Preorders in Information Theory

@ Less Noisy [KM77]
W € R%Z:" is less noisy than V € R%x®:

sto sto
W tln V
if D(PxW||QxW) > D(PxV||QxV) for every Px, Qx € Pq.

o Degradation [Ber73]
V € R5® is a degraded version of W € RI;":
W =4 V

L _deg

if V = WA for some channel A € RLS®.
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Channel Preorders in Information Theory

@ Less Noisy [KM77]
W € R%Z:" is less noisy than V € R%x®:

sto sto
W tln V
if D(PxW||QxW) > D(PxV||QxV) for every Px, Qx € Pq.

o Degradation [Ber73]
V € R5® is a degraded version of W € RI;":
W tdeg V

if V = WA for some channel A € RLS®.

Observation: W -,V = W =, V
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Less Noisy Preorder and Strong Data Processing

Data Processing Inequality: For any channel W € RS,

VPx, Qx € Pq, D(Px||Qx) > D(PxW||QxW)
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Less Noisy Preorder and Strong Data Processing

Strong Data Processing Inequality [AG76]: For any channel W € RZ",
VPx, Qx € Pq, nD(Px||Qx) = D(PxW||Qx W)

where 7 € [0,1] is a channel dependent contraction coefficient.
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Less Noisy Preorder and Strong Data Processing

Strong Data Processing Inequality [AG76]: For any channel W € RZ5"

sto
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.
Relation to Less Noisy Preorder [PW17]:

Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.

A. Makur & Y. Polyanskiy (MIT)

Results on the Less Noisy Preorder

10 November 2016 5 /30



Less Noisy Preorder and Strong Data Processing

Strong Data Processing Inequality [AG76]: For any channel W € RZ5"

sto
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:

Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.
El—?’] iln W
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Less Noisy Preorder and Strong Data Processing

Strong Data Processing Inequality [AG76]: For any channel W € RZ5"

sto
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:

Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.
El—?’] iln W

& VPx, Qx, D(PxE1—y||Qx E1—y) > D(PxW||Qx W)
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Less Noisy Preorder and Strong Data Processing

Strong Data Processing Inequality [AG76]: For any channel W € RZ5"

sto
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.
Relation to Less Noisy Preorder [PW17]:
Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.
Ey =0 W
& VPx, Qx, D(PxE1—y||Qx E1—y) > D(PxW||Qx W)
& VPx, Qx, D(nPx + (1 —n)de|nQ@x + (1 —n)de) = D(PxW||Qx W)
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Less Noisy Preorder and Strong Data Processing

gxr

Strong Data Processing Inequality [AG76]: For any channel W € RS,
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:
Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.

El—n Zin w
& VPx, Qx, D(PxE1—y||QxE1—y) > D(PxW||Qx W)
& VPx, Qx, D(nPx + (1 —n)de||nQx + (1 — n)de) > D(PxW||Qx W)
& VPx, Qx, n1D(Px||Qx) > D(PxW||QxW)

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 5 /30



Less Noisy Preorder and Strong Data Processing

gxr

Strong Data Processing Inequality [AG76]: For any channel W € RS,
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:
Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.

El—n Zin w
& VPx, Qx, D(PxE1—y||QxE1—y) > D(PxW||Qx W)
& VPx, @x, D(nPx + (1 —n)de|[nQx + (1 — n)de) > D(PxW||Qx W)
& VPx, Qx, n1D(Px||Qx) > D(PxW||QxW)

SDPI = >, domination by erasure channel
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Less Noisy Preorder and Strong Data Processing

gxr

Strong Data Processing Inequality [AG76]: For any channel W € RS,
VPx, Qx € Pq, nD(Px||@x) > D(PxW/||Qx W)
where n € [0,1] is a channel dependent contraction coefficient.

Relation to Less Noisy Preorder [PW17]:
Let £ € Rgti(qﬂ) be an erasure channel with erasure probability 1 — 7.

El—n Zin w
& VPx, Qx, D(PxE1—y||QxE1—y) > D(PxW||Qx W)
& VPx, Qx, D(nPx + (1 —n)de||nQx + (1 — n)de) > D(PxW||Qx W)
& VPx, Qx, n1D(Px||Qx) > D(PxW||QxW)

SDPI = >, domination by erasure channel

When does a g-ary symmetric channel dominate another channel?

10 November 2016 5 /30

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder



Symmetric Channels

Definition (Symmetric Channel)

Given the alphabet X = Y = [q], the g-ary symmetric channel is given by
the stochastic matrix:

o) o)
1-96 1 1
b 1§ ... 5
Wi 2 q—1 q-1 RI*9
9 = g : . c € Rsto
5 5 '
s S L Y 1-6

where 0 € [0, 1] is the total crossover probability.
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Symmetric Channels

Definition (Symmetric Channel)

Given the alphabet X = Y = [q], the g-ary symmetric channel is given by
the stochastic matrix:
[ [
o i
wpe | #3070 T | g
5 5 o
& 1=
where 0 € [0, 1] is the total crossover probability.
Properties:
o {Ws e R : § € R} are symmetric, circulant, doubly stochastic

matrices that are jointly diagonalized by the DFT matrix.
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Symmetric Channels

Definition (Symmetric Channel)

Given the alphabet X = Y = [q], the g-ary symmetric channel is given by
the stochastic matrix:

[ [
1-9§ 1 1
) [
A g—1 1—=6 - q—1 gxq
W5 = . . . . € Rsto
5 5 '
A A 1=

where 0 € [0, 1] is the total crossover probability.

Properties:
o {Ws e R : § € R} are symmetric, circulant, doubly stochastic
matrices that are jointly diagonalized by the DFT matrix.
o (WseRLY:6¢ R\{%}} with the operation of matrix
multiplication is an Abelian group.
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Main Questions

© Can we test =, using a different divergence measure?
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Main Questions

© Can we test =, using a different divergence measure?
Yes
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
Yes (via degradation W >4, V)
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
Yes (via degradation W >4, V)

© Can we say anything stronger about =, domination by a symmetric

channel when V € R%:9 is an additive noise channel?
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
Yes (via degradation W >4, V)

© Can we say anything stronger about =, domination by a symmetric
channel when V € R%:9 is an additive noise channel?
Yes (picture!)
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
Yes (via degradation W >4, V)

© Can we say anything stronger about =, domination by a symmetric
channel when V € R%:9 is an additive noise channel?
Yes (picture!)

@ Why do we care about >, domination by symmetric channels?
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© Can we test =, using a different divergence measure?
Yes

@ Given a channel V € RZ9, is there a simple sufficient condition for
W6 tln V?
Yes (via degradation W >4, V)

© Can we say anything stronger about =, domination by a symmetric
channel when V € R%:9 is an additive noise channel?
Yes (picture!)

@ Why do we care about >, domination by symmetric channels?
Dirichlet form domination = Log-Sobolev Inequality
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@ Introduction

© Equivalent Characterizations of Less Noisy Preorder
@ y2-Divergence Characterization of Less Noisy
@ Lowner and Spectral Characterizations of Less Noisy
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e Less Noisy Domination and Log-Sobolev Inequalities
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of >,)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Py, X° (PxW||QxW) > x? (PxV||Qx V).

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016



x2-Divergence Characterization of >,

Proposition (X'Q—Divergence Characterization of =)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Pg, x* (PxWI|QxW) > x* (PxV||Qx V).

Recall that for any two pmfs Px, Qx € Py, their \*-divergence is given by:

2
@ (Pxll0x) = Y = 20D

xeX QX(X)
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of >,)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Py, X° (PxW||QxW) > x? (PxV||Qx V).

Proof: (=) Recall that for any Px € P4 and Qx € Py [PW16]:

2
Jim 5D (APx + (1= ) Qx[1Qx) = x* (Px]|@x).
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of >,)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Py, X° (PxW||QxW) > x? (PxV||Qx V).

Proof: (=) Recall that for any Px € P4 and Qx € Py [PW16]:

2
Jim 5D (APx + (1= ) Qx[1Qx) = x* (Px]|@x).

So, for any Px € Pq and Qx € Py, W =, V implies:

D (APxW + (1 — M)QxW/||QxW) > D(APxV + (1 — \)Qx V||Qx V)
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of >,)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Py, X° (PxW||QxW) > x? (PxV||Qx V).

Proof: (=) Recall that for any Px € P4 and Qx € Py [PW16]:

2
Jim 5D (APx + (1= ) Qx[1Qx) = x* (Px]|@x).

So, for any Px € Pq and Qx € Py, W =, V implies:

D (APxW + (1 — M)QxW/||QxW) > D(APxV + (1 — \)Qx V||Qx V)
X (PxWI[|Qx W) > x* (PxV||Qx V)

after taking limits.
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of >,)

Given the channels W € RZ5" and V € RZ5°, W =, V if and only if:

VPx, Qx € Py, X° (PxW||QxW) > x? (PxV||Qx V).

Proof: (=) Recall that for any Px € P4 and Qx € Py [PW16]:

2
Jim 5D (APx + (1= ) Qx[1Qx) = x* (Px]|@x).

So, for any Px € Pq and Qx € Py, W =, V implies:

D (APxW + (1 — M)QxW/||QxW) > D(APxV + (1 — \)Qx V||Qx V)
X (PxWI[|Qx W) > x* (PxV||Qx V)

after taking limits. Continuity completes this direction.
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of =)

Given the channels W € RZs" and V € RZ5°, W =, V if and only if:

VPx, Qx € Pq, x* (PxW[|QxW) > x*(PxV||Qx V).

Proof: (<) Recall that for any Px, Qx € Py [PW17]:
D(PxQx) = [ 1 (PxlIk) ot
0

where Q% = 15 Px + t—l—%QX for t € [0, 00).
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x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of =)

Given the channels W € RZs" and V € RZ5°, W =, V if and only if:

VPx, Qx € Pq, x* (PxW[|QxW) > x*(PxV||Qx V).

Proof: (<) Recall that for any Px, Qx € Py [PW17]:
D(PxQx) = [ 1 (PxlIk) ot
0

where Q% = 15 Px + t—l—%QX for t € [0, 00).

Hence, for every Px, Qx € Pq, we have:

o0

/0 X2 (PxWI|Q5W) dtz/o X2 (PxV|Q4V) dt

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016



x2-Divergence Characterization of >,

Proposition (x?-Divergence Characterization of =)

Given the channels W € RZs" and V € RZ5°, W =, V if and only if:

VPx, Qx € Pq, x* (PxW[|QxW) > x*(PxV||Qx V).

Proof: (<) Recall that for any Px, Qx € Py [PW17]:
D(PxQx) = [ 1 (PxlIk) ot
0

where Q% = 15 Px + t—l—%QX for t € [0, 00).

Hence, for every Px, Qx € Pq, we have:
/ X2 (PxWI|Q5W) dtz/ X2 (PxV|Q4V) dt
0 0
D (PxW||QxW) = D (PxV||QxV)

which means that W >, V.
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10 / 30



Lowner and Spectral Characterizations of >,

Theorem (Equivalent Characterizations of =)
Given channels W € RZs" and V € RZ°, the following are equivalent:
o WX,V

e VPx,Qx € Pq, X2 (PxW||Qx W) > x2 (Px V||Qx V)
o VPx € PS, Wdiag(PxW) " WT =psp Vdiag(Px V)t VT
o VPx € P2, p((Wdiag(Px W)™ WT) Vdiag(Px V)1 VT) =1

where X1 denotes the Moore-Penrose pseudoinverse of any matrix X, and
p (X) denotes the spectral radius of any square matrix X.
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Lowner and Spectral Characterizations of >,

Theorem (Equivalent Characterizations of =)

Given channels W € RZs" and V € RZ°, the following are equivalent:
o WX,V
° VPx,Qx € Pg, X*(PxW/||QxW) > x* (PxV||Qx V)
o VPx € PS, Wdiag(PxW) " WT =psp Vdiag(Px V)t VT
o VPx € P2, p((Wdiag(Px W)™ WT) Vdiag(Px V)1 VT) =1

where X1 denotes the Moore-Penrose pseudoinverse of any matrix X, and
p (X) denotes the spectral radius of any square matrix X.

Lowner Characterization: For every Px € P, and every Qx € P,

Y2 (PxW[|QxW) = (Px — Qx) Wdiag(Qx W) WT (Px — Qx)" .
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Lowner and Spectral Characterizations of >,

Theorem (Equivalent Characterizations of =)

Given channels W € RZs" and V € RZ°, the following are equivalent:
o WX,V
° VPx,Qx € Pg, X*(PxW/||QxW) > x* (PxV||Qx V)
o VPx € PS, Wdiag(PxW) " WT =psp Vdiag(Px V)t VT
o VPx € P2, p((Wdiag(Px W)™ WT) Vdiag(Px V)1 VT) =1

where X1 denotes the Moore-Penrose pseudoinverse of any matrix X, and
p (X) denotes the spectral radius of any square matrix X.

Lowner Characterization: For every Px € P, and every Qx € P,

X2 (PxW||Qx W) = (Px — Qx) Wdiag(Qx W) WT (Px — Qx)" .
Spectral Characterization: Exercise in matrix analysis.
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Condition for Degradation by Symmetric Channels

Theorem (Degradation by Symmetric Channels)

Given a channel V € RS9 with g > 2 and minimum probability
v=min{[V];j:1<i,j<q}, we have:

14

0<6< Ws >4 V Ws =, V
= — 1—(q—1)]/+ﬁ = 5_deg = 6 Zin

where W5 € RZ57 is a symmetric channel.

A. Makur & Y. Polyanskiy (MIT)

Results on the Less Noisy Preorder 10 November 2016
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Proof Sket

Consider the channels W(4_1),,V € R&X9:

sto -
Wig-1), = : : V=

where w; = (v,...,v,1 — (g —1)v,v,...,v) has 1 — (¢ — 1)v in the jth
position, and V' has minimum entry v.
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Proof Sketch

Consider the channels W(4_1),,V € RI*9:

sto
Wig-1) = : : V=
where w; = (v,...,v,1 — (g —1)v,v,...,v) has 1 — (¢ — 1)v in the jth
position, and V' has minimum entry v.

q
Using majorization: Vi € {1,...,q}, vi = ZP"J w;
j=1

for some convex weights p; ; > 0 such that Eﬁ:l pij = 1.
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Proof Sketch

Consider the channels W(4_1),,V € RI*9:

sto
Wig-1) = : : V=
where w; = (v,...,v,1 — (g —1)v,v,...,v) has 1 — (¢ — 1)v in the jth
position, and V' has minimum entry v.

q
Using majorization: Vi € {1,...,q}, vi = ZP"J w;
j=1

for some convex weights p; ; > 0 such that Eﬁ:l pij = 1.
Stack rows of V and observe that:

q - Wj
V=) Piji :
1<j1,jg<q \i=1 — w -
q Wj,

where {H,q:1 pPiji i 1<j1,...,Jqg < q} form a product pmf.

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 14 / 30



Proof Sketch

Suffices to find § € [0, %] such that for every 1 < ji,...,jqg < g:

Whp —
X
HMJ.l,---,jq S RIx9 W5Mj1,.

sto » "1jq =
Wig  —
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Proof Sket

Suffices to find § € [O, %] such that for every 1 < ji,...,jqg < g:

Wiy

IM;,....j. € REST, WsM;, .

sto » "1jq =

Wiq

or equivalently, find 6 € [0, q%l} such that for every 1 < ji,...,jq < g:

- W
-1 . qgxq
W : e R,

Wi
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Proof Sket

Suffices to find § € [0, %] such that for every 1 < ji,...,jqg < g:

Wiy

. . axq . R
EI,wjly---,Jq S IRsto ’ W5Mjl,...dq -

Wiq

or equivalently, find 6 € [0, q%l} such that for every 1 < ji,...,jq < g:

- W
-1 . qgxq
W : e R,
Wig

The rows of such matrices always sum to unity.
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Proof Sket

Suffices to find § € [0, q;I] such that for every 1 < ji,...,jqg < g:

Wiy

IM;,....j. € REST, WsM;

sto Jl,---,jq =
Wiq

or equivalently, find 6 € [0, q%l} such that for every 1 < ji,...,jq < g:

Wiy
w; ! : € RIS,

sto

The rows of such matrices always sum to unity. Finally, we require the
minimum possible entry of such matrices to be non-negative, which gives:
v
0

<
Tl-(q-Dr+4
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Tightness of Condition for Degradation

Theorem (Degradation by Symmetric Channels)
Given a channel V € RS9 with g > 2 and minimum probability
v=min{[V];j:1<i,j<q} we have:

1%
0<6< = W V.
=0 I (- v+ o4 o~
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Tightness of Condition for Degradation

Theorem (Degradation by Symmetric Channels)

Given a channel V € RS9 with g > 2 and minimum probability

v=min{[V];j:1<i,j<q} we have:
v

<
ST-(q-Dr+ G

0<9

= W(S tdeg V.

Remark: The condition is tight when no further information about V is

known. For example, suppose:

V= e RIX9.

sto

Then, Ws >4, V if and only ing&gy/(l_(q_l)ijﬁ)_
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Additive Noise Channels

e Fix a finite Abelian group (X, @) with order g as the alphabet.
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Additive Noise Channels

e Fix a finite Abelian group (X, @) with order g as the alphabet.
@ An additive noise channel if defined by:

Y=X®&Z  X1UZ

where X, Y,Z € X are the input, output, and noise random variables.
@ |t is characterized by a noise pmf Pz € Pg.
@ The channel transition probability matrix is a doubly stochastic

X-circulant matrix circy(Pz) € RZ57 defined entry-wise as:

Vx,y € X, [circx(Pz)],, 2P (—xBy)= Py x(y[x)-
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Additive Noise Channels

Fix a finite Abelian group (X', @) with order g as the alphabet.

@ An additive noise channel if defined by:
Y=X&Z, X1z

where X, Y,Z € X are the input, output, and noise random variables.

It is characterized by a noise pmf Pz € Pg.
@ The channel transition probability matrix is a doubly stochastic

X-circulant matrix circy(Pz) € RZ57 defined entry-wise as:

Vx,y € X, [circx(Pz)],, 2P (—xBy)= Py x(y[x)-

Symmetric channel: Py = (1 -0, %, ce %) for § € [0,1]

CirCX(Pz) = W5
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Additive Noise Channels

e Fix a finite Abelian group (X, @) with order g as the alphabet.
@ An additive noise channel if defined by:

Y=X®&Z  X1UZ

where X, Y,Z € X are the input, output, and noise random variables.

It is characterized by a noise pmf Pz € Pg.
@ The channel transition probability matrix is a doubly stochastic
X-circulant matrix circy(Pz) € RZ57 defined entry-wise as:

Vx,y € X, [circx(Pz)],, 2P (—xBy)= Py x(y[x)-

@ Symmetric channel: Py = (1 -0, %, ce %) for 6 € [0,1]
CirCX(Pz) = W5
e Cyclic group example: Z/qZ (X = [q] and @ is addition modulo q)

(Z/qZ)-circulant matrix = circulant matrix
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Less Noisy Domination and Degradation Regions

o Given a symmetric channel Ws € R%59 for § € [0,1].

sto
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Less Noisy Domination and Degradation Regions

o Given a symmetric channel Ws € R%59 for § € [0,1].

sto
@ The less noisy domination region of Wjs is:

E?/dvg £ {v e Py: Ws =, circx(v)}.
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Less Noisy Domination and Degradation Regions

o Given a symmetric channel Ws € R%59 for § € [0,1].

@ The less noisy domination region of Wjs is:

£add A {V c ’Pq . W(; tln CirCX(V)} .

@ The degradation region of Wj is:

Dadd 2{ve Pg : Wi =ue circx(v)} .
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Less Noisy Domination and Degradation Regions

o Given a symmetric channel Ws € R%59 for § € [0,1].

@ The less noisy domination region of Wjs is:

£add A {V c ’Pq . W(; tln CirCX(V)} .

@ The degradation region of Wj is:

Dadd 2{ve Pg : Wi =ue circx(v)} .

add C L*add
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Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given W5 € RI57 with § € [0, q%l} and g > 2, we have:

Df/ﬂs = conv (rows of W)
C conv (rows of W and W,)

C LW C{vePy:|v—ulp<|ws—ule}

where w; is the first row of W;s, v = (1 — (5)/(1 — 4 ﬁ), and
u € Pq is the uniform pmf.
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Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given W5 € RI57 with § € [0, q%l} and g > 2, we have:

Df/ﬂs = conv (rows of W)
C conv (rows of W and W,)
dd :
C Liy; C{vePq:|v—ulp <|ws—ule}

where w; is the first row of W;s, v = (1 — 5)/(1 — 4 ﬁ), and
u € Pq is the uniform pmf.

Furthermore, E?/dvg is a closed and convex set that is symmetric with

respect to the regular permutation representation {Py € R9%9 : x € X'} of
(X,®) (ie. ve E?Ao}s = vP, € £?/dvg for every x € X).
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Domination Structure of Additive Noise Channels

Theorem (Less Noisy Domination and Degradation Regions)

Given W5 € RI57 with § € [0, q%l} and g > 2, we have:

Df/ﬂs = conv (rows of Wj)
C conv (rows of W and W,)
dd :
C Liy; C{vePq:|v—ulp <|ws—ule}

where w; is the first row of W, v = (1 — (5)/(1 -0+ ﬁ), and
u € Pq is the uniform pmf.

Furthermore, E?/dvg is a closed and convex set that is symmetric with

respect to the regular permutation representation {Py € R9%9 : x € X'} of
(X, @) (i.e. v e L = vP, € L3 for every x € X).

Remark: The first set inclusion is strict for § € (0, q;l) and g > 3.
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Domination Structure of Additive Noise Channels

lllustration of the g = 3 case: (0,0,1)

upper bound

lower bound

- (0.4.)

wy = (1 0,0) (0,1,0)
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Some Definitions

e Consider an irreducible Markov chain on W € R%:9 on a state space

X = [q] with uniform stationary distribution u € Pg.
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Some Definitions

e Consider an irreducible Markov chain on W € R%:9 on a state space

X = [q] with uniform stationary distribution u € Pg.

@ Define a continuous-time Markov semigroup with generator
L = W — I and uniform stationary distribution:

YVt >0, He = exp(—t(l —W)) e R
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Some Definitions

e Consider an irreducible Markov chain on W € R%:9 on a state space

= [g] with uniform stationary distribution u € Pj.

@ Define a continuous-time Markov semigroup with generator
L = W — I and uniform stationary distribution:

YVt >0, He = exp(—t(l — W)) e RII

sto -

o Let £2(X,u) (column vectors in R9) be the Hilbert space of
functions on X’ endowed with the inner product:

Vf,g € £2(X,u), Zf(x e
XEX
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Log-Sobolev Inequalities

Dirichlet Form:
Define the Dirichlet form Ey : £L2(X,7) x L2 (X, 7) — R*:

W+ wT
+> F

Ew (f,f) 2 (I - W)Ff, f), = :’fT<l 5
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Log-Sobolev Inequalities

Dirichlet Form:
Define the Dirichlet form Ey : £L2(X,7) x L2 (X, 7) — R*:
1 W+ wT
EW(ﬁf)é<U—wN)ﬂf%::qu(r—tz>f

Log-Sobolev Inequality: [DSC96]

The LSI for the Markov semigroup H; with constant o € R states that
for every f € £2(X,u) such that ||f|, =1,

1
§ == (F(x)) < =Ew (f,f).
D quu XEXf Iog )>—QEW(’ )
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Log-Sobolev Inequalities
Dirichlet Form:

Define the Dirichlet form &y : £2 (X, ) x £? (X, 7) — R

Ew (f, f) & (1 —W)Ff, f), = cl,fT<' — W+WT> f.

2
Log-Sobolev Inequality: [DSC96]

The LSI for the Markov semigroup H; with constant o € R states that
for every f € £2(X,u) such that ||f]|, =1

D (f2ul|u) = 1 > F(x)log (F(x)) < 15W(f, f).
q xeX .
Log-Sobolev Constant:

The largest constant « in the LSl is called the log-Sobolev constant

| Ew (£, F)
w) £ . S LA
W) feEIQTX,u): D (f2u]] u)

A. Makur & Y. Polyanskiy (MIT)
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Log-Sobolev Inequalities

Some Consequences:
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Log-Sobolev Inequalities

Some Consequences:
e Continuous case: [DSC96]
LSI = Vu € Pg,Vt > 0, D (uHe|ju) < e 2D (p||u).
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Log-Sobolev Inequalities

Some Consequences:
e Continuous case: [DSC96]
LSI = Vu € Pg,Vt > 0, D (uHe|ju) < e 2D (p||u).
@ Discrete case: [Mic97]
LSl = VYu € Pg,¥n €N, D (uW"|Ju) < (1 — a(WWT))" D (u|lu).
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@ Discrete case: [Mic97]
LSl = VYu € Pg,¥n €N, D (uW"|Ju) < (1 — a(WWT))" D (u|lu).

Computing log-Sobolev Constants:
e Difficult in general ®

A. Makur & Y. Polyanskiy (MIT) Results on the Less Noisy Preorder 10 November 2016 25 / 30



Log-Sobolev Inequalities

Some Consequences:
e Continuous case: [DSC96]
LSI = Vu € Pg,Vt > 0, D (uHe|ju) < e 2D (p||u).
@ Discrete case: [Mic97]
LSl = VYu € Pg,¥n €N, D (uW"|Ju) < (1 — a(WWT))" D (u|lu).

Computing log-Sobolev Constants:
e Difficult in general ®
o Easy for g-ary symmetric channels ©

_ (g=2)5
()é(W ) — ! (g—1)log(g—1) * q> 2
' 0 , q=2

(9—2)(29—2-gd)J
<W5W5) (a-1)log(a-1) * 972
25(1—0) , g=2
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Comparison of Dirichlet Forms

How do we prove an LSI for an irreducible channel V € RS9?
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Comparison of Dirichlet Forms

How do we prove an LSI for an irreducible channel V € RS9?

Idea: Domination of Dirichlet forms
Vf € L2(X,u), Ev(f,f) > Ew,(f,1)

for some § € [0, qT_l]
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Comparison of Dirichlet Forms

How do we prove an LSI for an irreducible channel V € RS9?

Idea: Domination of Dirichlet forms
Vf € L2(X,u), Ev(f,f) > Ew,(f,1)
for some § € [0, qT_l] implies an LSI:

1 1
o) S = o)

D (fPu||u) <

for every f € £2(X,u) with ||f||, = L.
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Comparison of Dirichlet Forms

How do we prove an LSI for an irreducible channel V € RS9?

Idea: Domination of Dirichlet forms
Vf € L2(X,u), Ev(f,f) > Ew,(f,1)
for some § € [0, qT_l] implies an LSI:

1 1
(,M(VVg) 5\/\/(S (f. f) < a(W(;)

D (f?u|u) < Ev (f,f)
for every f € £2(X,u) with ||f||, = L.

Connection to channel comparison:

Less noisy domination = Dirichlet form domination
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Comparison of Dirichlet Forms

Theorem (Domination of Dirichlet Forms)
Let W,V € R%59 be channels with uniform stationary distribution.
o If W =, V, then:
Vf e L2(X,u), Eyyr (f,f) > Ewwr (F,f).

o If W is positive semidefinite, V is normal (i.e. VTV = VWT), and
W >, V, then:

Vf e L2(X,u), Ev(f,f)>Ew(f.f).
o If W= W;cRI5is any g-ary symmetric channel with 6 € {0, q%l}
and Wj >=,, V, then:

Vf € L2(X,u), Ev(f,f)>Ew, (f,f).

v
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:
1/2 1/4 1/4
V=|1/6 1/3 1)2
1/3 5/12 1/4

with g = 3, stationary pmf u = (%, %, %) and minimum entry v = %.
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:
1/2 1/4 1/4
V=|1/6 1/3 1)2
1/3 5/12 1/4

with g = 3, stationary pmf u = (%, %, %) and minimum entry v = %.

o Generate 3-ary symmetric channel W € R3%3 such that Ws =, V:

v 2
§= — = _.
l—(q-Lv+5 9
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:
1/2 1/4 1/4
V=|1/6 1/3 1)2
1/3 5/12 1/4
1

with g = 3, stationary pmf u = (%, %, %) and minimum entry v = 2.
@ Generate 3-ary symmetric channel Wj € Ri’tf’ such that Wy =, V:
5= v _2
1-(g-v+ 5 9
@ Compute the log-Sobolev constant of Wj:
(g—2)0 1

(q—1)log(g—1) 9log(2)

a(Ws) = ~ 0.1603.
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:
1/2 1/4 1/4
V=|1/6 1/3 1)2
1/3 5/12 1/4

111
37373

), and minimum entry v = 1

with g = 3, stationary pmf u = ( 5"

o Generate 3-ary symmetric channel W € R3%3 such that Ws =, V:

v 2
5 = 7 = —.
l—(q-Lv+5 9
@ Compute the log-Sobolev constant of Wj:
(9=2)0 1
(g—1)log(g—1) 9log(2)
@ Use domination of Dirichlet forms to get the LSI:

1
2
D (fPullv) < 53603

a(Ws) = ~ 0.1603.

Ev(f,f).
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Conclusion: Deriving Log-Sobolev Inequalities

Consider the irreducible channel:
1/2 1/4 1/4
V=|1/6 1/3 1)2
1/3 5/12 1/4

with g = 3, stationary pmf u = (%, %, %) and minimum entry v = %.

@ Generate 3-ary symmetric channel Wj € Ri’tf’ such that Wy =, V:
5= v _2
1-(g-v+ 5 9
@ Compute the log-Sobolev constant of Wj:
(9=2)0 1

a(Ws) = = ~ 0.1603.
() = (G=Dog(a=1) ~ 910g(2)
@ Use domination of Dirichlet forms to get the LSI:
1 1
D (f? f,f) < f,f
D (fullu) < g5 EviF ) < Giggz v 1)
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Thank Youl
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