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Abstract

Backdoor attacks have been shown to be a serious security
threat against deep learning models, and various defenses
have been proposed to detect whether a model is backdoored
or not. However, as indicated by a recent black-box attack,
existing defenses can be easily bypassed by implanting the
backdoor in the frequency domain. To this end, we propose a
new defense DTINSPECTOR against black-box backdoor at-
tacks, based on a new observation related to the prediction
confidence of learning models. That is, to achieve a high at-
tack success rate with a small amount of poisoned data, back-
door attacks usually render a model exhibiting statistically
higher prediction confidences on the poisoned samples. We
provide both theoretical and empirical evidence for the gener-
ality of this observation. DTINSPECTOR then carefully exam-
ines the prediction confidences of data samples, and decides
the existence of backdoor using the shortcut nature of back-
door triggers. Extensive evaluations on six backdoor attacks,
four datasets, and three advanced attacking types demonstrate
the effectiveness of the proposed defense.

1 Introduction
Deep learning models have been found to be vulnerable to
backdoor attacks (a.k.a. trojan attacks) (Gu, Dolan-Gavitt,
and Garg 2017). For example, by poisoning the training data,
a face recognition model can be easily manipulated to pre-
dict any person as the target person. Typically, a success-
ful backdoor attack poisons a small set of training data, and
renders a trained model satisfying the following two require-
ments: 1) stealthiness, the trojaned model does not have sig-
nificant accuracy degradation on benign inputs; 2) effective-
ness, it classifies a poisoned input (e.g., input stamped with
a trigger) to a target label with a high probability.

Up to date, several defenses have been proposed to inspect
whether a given model has been trojaned or not. Among
them, Neural Cleanse (NC) (Wang et al. 2019) leverages the
intuition that a backdoor trigger is usually of small size, and
learns to search for such small areas to detect triggers. How-
ever, NC is observed to be sensitive to the trigger size, per-
forming poorly when the trigger size is relatively large (Guo
et al. 2020). ABS (Liu et al. 2019) proposes to analyze the
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neuron activation, based on the assumption that stimulat-
ing one inner neuron of a trojaned model can easily lead
to the target label. However, ABS falls short against ad-
vanced attacks involving multiple triggers or multiple tar-
get labels (Gao et al. 2020). ULP (Kolouri et al. 2020) and
MNTD (Xu et al. 2021) propose to train a meta-classifier
based on a number of clean and trojaned models. Although
the trained meta-classifier can well recognize the triggers
that share similar patterns to those within the training data, it
may not generalize well to unseen attacks or triggers. More
importantly, a recent backdoor attack FTROJAN (Wang et al.
2022) shows that the above defenses can be easily bypassed
by breaking their underline assumptions and implanting the
backdoor in the frequency domain.

In this work, we propose a new backdoor defense DTIN-
SPECTOR against black-box backdoor attacks. Different
from the existing defenses, our method is motivated by the
observation that an effective black-box backdoor attack usu-
ally needs to achieve high prediction confidence on the small
amount of poisoned data at the training stage, so as to ensure
a high attack success rate (ASR) on the poisoned inputs at
the inference stage. We show that this observation generally
holds for black-box attacks with both theoretical and empir-
ical evidence. Moreover, this observation does not rely on
the trigger size, the neuron activation pattern, or the trigger
pattern, and thus has the potential to address the above limi-
tations. DTINSPECTOR then carefully examines the predic-
tion confidences of data samples, and decides the existence
of backdoor using the shortcut nature (Geirhos et al. 2020;
Li et al. 2021c) of backdoor triggers.

We evaluate DTINSPECTOR against six black-box back-
door attacks (from BADNET (Gu, Dolan-Gavitt, and Garg
2017) to FTROJAN (Wang et al. 2022)) and three advanced
attacking types on four datasets. The studied advanced at-
tacks (Wang et al. 2019) include partial attack (poisoning
data from a specific label), MTOT attack (multiple triggers
for one target label), and MTMT attack (multiple triggers
for multiple target labels). The results show that our defense
can accurately detect the trojaned models as well as the in-
fected labels. We also compare DTINSPECTOR with four ex-
isting defenses (i.e., NC (Wang et al. 2019), ABS (Liu et al.
2019), ULP (Kolouri et al. 2020), and MNTD (Xu et al.
2021)). The results show that DTINSPECTOR outperforms
these competitors: 1) it is less sensitive to the trigger size,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

274



2) it can successfully detect advanced attacks, 3) it can be
naturally applied to unseen attacks/triggers.

The main contributions of this paper include:
• A new perspective related to the prediction confidence

for detecting black-box backdoor attacks, which is both
theoretically and empirically supported.

• A new backdoor detection method DTINSPECTOR that
is more robust against trigger size, neuron activation pat-
tern, trigger pattern, and advanced attacking types.

• Extensive experimental evaluations showing the effec-
tiveness of DTINSPECTOR.

Threat Model. We consider the commonly-studied black-
box backdoor attacks (Gu, Dolan-Gavitt, and Garg 2017; Liu
et al. 2018; Turner, Tsipras, and Madry 2018; Wang et al.
2022). The adversary defines a trigger beforehand, injects it
into data samples, and then disseminates the data. The ad-
versary does not have access to the training process and the
model. We also assume that the adversary only attacks a mi-
nority of labels. For the defender, we assume she can access
both the training data and the model.

2 Key Observation
Our key observation is that an effective black-box backdoor
attack usually needs to achieve high prediction confidence
on the poisoned training data, so as to ensure a high ASR.

2.1 Theoretical Results
To verify our observation, we first analyze the relationship
between the prediction confidence on poisoned training sam-
ples and the ASR on poisoned testing inputs. Assume the
data point (X,Y ) is sampled uniformly at random from
X × Y , where X = Rd and Y = [c]. Take multi-class
learning as a typical example, which aims to optimize the
following risk,

R(g) = E(X,Y )∼p(x,y)[ℓ(g(X), eY )]

with a minimizer g∗: X → Rc. Here, eY is the standard
canonical vector with the Y -th entry to be one and all others
zero. ℓ is often defined to be the cross-entropy loss.

Given a backdoor attack which poisons some training data
in different labels to the target label t, and using az to denote
the poisoning rate in label z, the above risk becomes

Ra(g) =
∑
z∈[c]

az · p(Y = z)EX∼p(x|y=z)[ℓ(g(X), et)] +

∑
z∈[c]

(1− az)p(Y = z)EX∼p(x|y=z)[ℓ(g(X), ez)]

with a minimizer denoted as g∗
a. Here, we assume that the

trigger involves very small perturbations and can be approx-
imately ignored in the above equation. Based on the above
two equations, we have the following theorem.
Theorem 1 For an effective black-box backdoor attack that
does not change the prediction of clean data, with a proba-
bility at least 1− δ

R(g∗
a)−R(g∗) ≤ 4Rn(ℓ ◦ G) + 2M

√
log(2/δ)

2n
+

2
∑
z∈[c]

az

∑
xi∈Dz

|ℓ(g∗(xi), e
z)− ℓ(g∗

a(xi), e
t)|,

where Rn(·) is the Rademacher Complexity of a function
class for sample size n, M is the upper bound of the loss
function ℓ, and Dz is the subset of poisoned training data
with label z.

PROOF. See the supplementary material.
Remarks. R(g∗) and R(g∗

a) are the lowest risks we could
get on the given data distribution and function class. Higher
R(g∗

a) −R(g∗) essentially indicates that the trojaned clas-
sifier g∗

a incurs a higher risk than the clean classifier g∗.
In other words, higher R(g∗

a) − R(g∗) indicates the pos-
sibility of higher ASR. In the above theorem, ℓ(g∗(xi), e

z)
stands for the empirical loss of data sample xi before poi-
soning, and ℓ(g∗

a(xi), e
t) stands for its empirical loss after

poisoning. Therefore, the above theorem gives the insight
that, when the prediction confidence of a data sample before
poisoning is close to that after poisoning (i.e., ℓ(g∗(xi), e

z)
is close to ℓ(g∗

a(xi), e
t)), and the number of poisoned data∑

z az|Dz| is relatively small,1 it is less likely to have an
effective backdoor attack with a high ASR.

2.2 Empirical Results
To further verify our observation, we provide some em-
pirical evidence here. Specifically, we show that, when we
slightly increase the poisoning rate to ensure a highly ef-
fective backdoor attack, the confidence of poisoned data
becomes significantly higher than that of clean data. We
conduct experiments with various backdoor attacks includ-
ing BADNET (Gu, Dolan-Gavitt, and Garg 2017), TRO-
JANNN (Liu et al. 2018), CL (Turner, Tsipras, and Madry
2018), SIG (Barni, Kallas, and Tondi 2019), REFOOL (Liu
et al. 2020), and FTROJAN (Wang et al. 2022). The results
are shown in Figure 1.

In Figure 1a, we vary the poisoning rate and show the av-
erage results of benign accuracy (BA) on clean inputs, ASR
on poisoned inputs, and prediction confidences of poisoned
training data and clean training data in the target label. For
brevity, we show the results of BADNET here, and similar re-
sults are observed on the other attacks. We can first observe
that BA and prediction confidence of clean data are rela-
tively stable indicating the stealthiness of the backdoor at-
tack. Second, as the poisoning rate increases, along with the
increase of ASR, the average prediction confidence of poi-
soned data becomes significantly higher than that of clean
data. For example, when the ASR increases up to 85%, the
average prediction confidence of poisoned data is already
3.3% higher than that of clean data (0.95 vs. 0.92).

In Figure 1b, we further show the distributions of predic-
tion confidences of poisoned data and clean data in the target
label. To ensure the effectiveness of each backdoor attack, in
this experiment, we gradually increase the poisoning rate by
0.1% each step until the ASR is above 95%. As we can see,
the confidences of most poisoned samples are significantly
higher than those of clean samples, for all the six backdoor
attacks and three advanced attacking types (i.e., partial at-
tack, MTOT attack, and MTMT attack).

1Note that a large amount of poisoned data may degenerate
the prediction accuracy of benign inputs, making the attack less
stealthy.
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(a) Prediction confidence and BA/ASR vs. poisoning rate.
BadNet TrojanNN SIG

Clean Label Refool FTrojan

MTOT MTMTPartial

(b) Prediction confidences of poisoned and clean data.

Figure 1: The empirical results for our observation: (a) as the
poisoning rate increases, the average prediction confidence
of poisoned data becomes significantly higher than that of
clean data; (b) the prediction confidences of most poisoned
data are significantly higher than those of clean data.

Overall, the above theoretical and empirical results show
that it is less likely for a backdoor attack to be highly ef-
fective, while keeping the prediction confidence of poisoned
data to be close to that of clean data.

3 The Proposed Defense
3.1 Overview
Effectively making use of the above observation is non-
trivial. A straightforward way is to sample some high-
confidence and low-confidence data and directly compare
their distributions. However, such comparison is less effec-
tive as the distributions between clean samples and poisoned
samples are difficult to distinguish, especially when the trig-
ger involves only a small perturbation (which is also sup-
ported by our results in Section 4.2). To overcome this issue,
we propose a technique to magnify their difference via using
the shortcut nature of triggers.

Figure 2: The overview of DTINSPECTOR. Squares and tri-
angles represent high-confidence and low-confidence sam-
ples, respectively. Colors indicate the prediction labels. The
key insight is that the transfer ratio of infected labels (e.g.,
Label c) would be significantly lower than that of clean la-
bels (e.g., Label 1).

The overview of DTINSPECTOR is shown in Figure 2.
Specifically, DTINSPECTOR first sorts the training data by
confidence for each label z, and selects top-K samples from
the high-confidence area and bottom-K samples from the
low-confidence area. Second, DTINSPECTOR learns a small
patch δ using only the high-confidence samples, with the
goal of changing their predictions to any other labels but the
current label z. Third, DTINSPECTOR applies the learned
patch δ to the low-confidence data, and records the transfer
ratio r meaning the ratio of samples whose prediction labels
changed after applying patch δ. Finally, DTINSPECTOR per-
forms anomaly detection on all the transfer ratios to spot the
trojaned model and the infected label. If the transfer ratios of
certain labels are significantly small, the model is suspected
of being trojaned.

The key intuition of DTINSPECTOR is as follows. For a
clean label, the learned patch from the high-confidence data
can be seen as a universal adversarial perturbation (Moosavi-
Dezfooli et al. 2017), and thus the transfer ratio of low-
confidence data will also be high (e.g., Label 1 in Figure 2).
In contrast, for an infected label, the learned patch tends to
destroy the trigger due to the shortcut nature of triggers. That
is, a trigger is a shortcut that leads the input to the target la-
bel (Geirhos et al. 2020; Li et al. 2021c), and destroying
this shortcut is the easiest way to change the predictions of
the high-confidence data (e.g., back to the original labels).
This patch will not largely affect the predictions of low-
confidence data that does not contain triggers, making the
transfer ratio significantly lower for low-confidence samples
in the infected label (e.g., Label c in Figure 2).

Note that DTINSPECTOR is also useful to mitigate the ef-
fect of backdoor. We can superimpose the learned patch to
each sample from the infected label and remove the sam-
ple if it is classified to a different label. We then retrain the
model, and find that such a strategy can significantly lower
down the ASR, and meanwhile preserves the accuracy in
most cases (see Section 4.2).
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Trigger Mask Trigger Mask

Figure 3: The poisoned images and the learned patches by
DTINSPECTOR. The six examples correspond to six attacks,
i.e., BADNET, TROJANNN, CL, SIG, REFOOL, and FTRO-
JAN, respectively.

3.2 Patch Learning
For patch learning, we define a patch as a tuple (M,P ),
where M is the 2D mask and P contains the 3D patch pix-
els. We then learn the patch that can lead the high-confidence
data to predict a different label. That is, for a certain label z
and high-confidence data Dh, we aim to optimize the fol-
lowing objective function,

max
M,P

∑
x∈Dh

f(g(x′), ez)− λ||M ||1, x ∈ Dh,

s.t. x′ = (1−M)⊙ x+M ⊙ P, (1)

where M controls the area to be patched, P controls the
value of the patch, and ⊙ is element-wise multiplication.
Mij ranges from 0 to 1 indicating how much of the original
pixel values will be retained or refilled with P . For function
f , since we aim to lead the prediction to any other label but
the current z, we use the mean square error on the z-th di-
mension. In other words, the above objective encourages the
z-th dimension of g(x′) to lean towards zero. λ is used to
balance the importance of M ’s L1 norm. Smaller λ tends to
yield larger patches. λ will be dynamically adjusted during
the optimization process in order to keep a relatively high
transfer ratio (e.g., no less than 95%).

Some poisoned images and the corresponding learned
patches (masks) are shown in Figure 3. We can observe that
the learned patches successfully identify the trigger areas.
Note that the learned patch does not necessarily need to
erase the entire trigger, but only needs to destroy the key
pixels, so as to lead the predictions of poisoned images from
the target label back to their original labels.

3.3 Anomaly Detection
When a patch is learned for a label z, we apply it to
the corresponding low-confidence data Dl, and calculate
the transfer ratio r. Specifically, r is defined as r =∑

x∈Dl
I(g(x′)̸=z)

n , x ∈ Dl, where g(x) is the predicted la-
bel of x, and I is an indicator function. Based on the trans-
fer ratio r for each label, we use the MAD outlier detec-
tion method to compute the anomaly index. Anomaly index

Dataset Train/Test Label Classifier

CIFAR10 50,000/10,000 10 6 Conv + 2 Dense
GTSRB 4772/293 13 ResNet34
PubFig 12,800/3,200 16 ResNet50

ImageNet 20,567/800 16 ResNet50

Table 1: Summary of datasets and classifiers.

larger than a certain threshold means that the corresponding
model is trojaned. In this work, we determine the thresh-
old following the three-sigma rule suggested by existing
work (Iglewicz and Hoaglin 1993).2 Further, if all the trans-
fer ratios are greater than 90% for all labels, we consider the
model to be clean even when the anomaly index is above the
threshold. This could happen when, e.g., one transfer ratio is
95% and the rest transfer ratios are all 100%.
Remarks. Our approach is similar to NC (Wang et al. 2019),
but bears several subtle and important differences. First,
DTINSPECTOR and NC are built upon different observa-
tions. NC assumes that the triggers are of small size while
we focus on the prediction behaviors related to confidence.
Second, DTINSPECTOR and NC use different optimization
objective functions. NC learns a shortcut on clean data that
leads to a specific label. In contrast, DTINSPECTOR learns
a patch on training data (can be both clean or poisoned)
in a certain label and the patch leads the prediction to any
other labels but the current one. Third, DTINSPECTOR and
NC compute anomalies on different metrics. NC applies
anomaly detection to the L1 norms of the reversed trig-
gers, while DTINSPECTOR applies anomaly detection on the
transfer ratios of low-confidence data.

4 Evaluation
4.1 Experimental Setup
Datasets. We use four commonly-studied datasets in our
experiments including CIFAR10 (Krizhevsky, Hinton et al.
2009), GTSRB (Stallkamp et al. 2011), ImageNet (Deng
et al. 2009), and PubFig (Kumar et al. 2009). All the datasets
are publicly available. For GTSRB, we use its subset with
13 labels provided by (Liu et al. 2020). For PubFig and Ima-
geNet, we randomly select a subset of them and each dataset
contains 16 labels. We also train different neural network
models for these datasets, and the details can be found in
Table 1.
Backdoor Attacks. We evaluate six black-box backdoor
attacks,3 including BADNET (Gu, Dolan-Gavitt, and Garg
2017), TROJANNN (Liu et al. 2018), CL (Turner, Tsipras,
and Madry 2018), SIG (Barni, Kallas, and Tondi 2019), RE-
FOOL (Liu et al. 2020), and FTROJAN (Wang et al. 2022).
We consider different combinations of the six attacks and
the four datasets. To ensure an effective attack, we gradu-

2The three-sigma rule suggests an anomaly index larger than
3.5 as the existence of anomalies.

3We consider black-box attacks and thus other recent attacks,
e.g., (Nguyen and Tran 2020, 2021; Souri et al. 2022), that require
the control of the training process are not included.
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Attack Dataset Original Benign ASR
Acc. (%) Acc. (%) (%)

BADNET CIFAR10 85.85 85.05 96.34
TROJANNN PubFig 83.88 79.75 98.25

CL CIFAR10 85.85 84.06 96.12
SIG ImageNet 84.00 77.00 97.75

REFOOL GTSRB 99.32 98.07 99.98
FTROJAN CIFAR10 85.85 85.47 99.95

Table 2: The evaluated backdoor attacks.

ally increase the poisoning rate by 0.1% each step until the
ASR is above 95%. The original accuracy of the model, the
benign accuracy on clean inputs, and the ASR are shown
in Table 2, where we show the results of BADNET on CI-
FAR10, TROJANNN on PubFig, CL on CIFAR10, SIG on
ImageNet, REFOOL on GTSRB, and FTROJAN on CIFAR10
for brevity.
Backdoor Defenses. We compare with four state-of-the-art
backdoor defenses that aim to detect whether a given model
is trojaned, i.e., NC (Wang et al. 2019), ABS (Liu et al.
2019), ULP (Kolouri et al. 2020), and MNTD (Xu et al.
2021). For all of them, we use the open source code pro-
vided by their authors, and use their default settings.4 For
DTINSPECTOR, there are two key hyper-parameters, i.e., λ
and |Dh| in Eq. (1). For λ, we initialize it to 0.0001 and dy-
namically adjust it to a proper value following (Wang et al.
2019). For the sampling size |Dh|, we empirically found that
50 high-confidence samples and 50 low-confidence sam-
ples are sufficient, and thus set it to 50 by default (i.e.,
|Dh| = |Dl| = 50). We will evaluate the performance of
DTINSPECTOR as this parameter varies. The experiments
are run on a machine with 20-cores Intel i9-10900KF CPU,
256GB RAM, and one NVIDIA GeForce RTX3090 GPU.

4.2 Experimental Results
(A) Detection against backdoor attacks. We first evaluate the
detection accuracy of DTINSPECTOR under the 21 attack-
dataset combinations. The results show that DTINSPECTOR
can accurately distinguish the trojaned/clean models as well
as identify the infected labels in 20 out of the 21 combina-
tions (the complete results are included in the supplemen-
tary material). As a comparison reference, existing attack
REFOOL (Liu et al. 2020) has reported that it cannot be de-
tected by NC, and FTROJAN (Liu et al. 2020) has reported
that it cannot be detected by NC and ABS. The only excep-
tion is the REFOOL and PubFig combination. The reason is
that the trigger of REFOOL covers the most influential ar-
eas (e.g., the central part) in the face images, and patching
such areas may easily change the predictions. This limitation
can be further addressed by, e.g., applying image restoration
techniques such as GANs, and we leave this as future work.

Here, we further show in Figure 4 the results of BADNET
on CIFAR10, TROJANNN on PubFig, CL on CIFAR10,

4Note that ABS and ULP only provide implementations for the
CIFAR10 dataset. That is, ABS provides executable binaries and
ULP provides the pre-trained meta-classifier for CIFAR10.
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Figure 4: The detection results against six existing backdoor
attacks. DTINSPECTOR can successfully detected trojaned
models and the infected labels.

SIG on ImageNet, REFOOL on GTSRB, and FTROJAN on
CIFAR10. We can observe that the anomaly indices of tro-
janed models are significantly larger than that of clean mod-
els, and DTINSPECTOR successfully distinguishes them.
Additionally, the infected label is identified as an outlier (de-
noted by red crosses), meaning that DTINSPECTOR can also
successfully identify the infected label.

(B) Detection against advanced types of backdoor attacks.
Next, we show the detection results against partial attack,
MTOT attack, and MTMT attack. Note that we build these
advanced attacks upon the basic BADNET attack, which has
been shown to be detected by all the compared defenses.
The detection results of different defenses are shown in Ta-
ble 3. We can see that DTINSPECTOR can detect these ad-
vanced backdoor attacks. In contrast, ABS fails to detect
them (the REASR scores from both feature space and pixel
space are zeros). This is probably due to the fact that ABS
analyzes only one neuron and these attacks may involve
multiple neurons. ULP and MNTD cannot successfully de-
tect the MTMT attack, and the possible reason is that the
trained meta-classifier cannot generalize well to the com-
plex model behavior after MTMT attack. NC also cannot
detect the MTMT attack. The reason is that NC identifies
multiple reversed triggers in this case, which tends to de-
crease the degree of abnormality. For the MTOT attack, we
further show the detected triggers in Figure 5. We can see
that although NC can detect the attack, it identifies only one
trigger; in contrast, DTINSPECTOR can detect all the three
triggers since all of them are needed to flip the predictions.
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Type NC ABS ULP MNTD DTINSPECTOR

Partial Y N Y Y Y (16.19)
MTOT Y N Y Y Y (36.74)
MTMT N N N N Y (62.72)

* For all the tables, unless otherwise stated, ‘Y’ means the
model is identified as trojaned and ‘N’ indicates otherwise;
numbers in the parentheses are anomaly indices, and the model
is considered to be trojaned if the index exceeds 3.5.

Table 3: Detection results against advanced types of back-
door attacks. Compared to the competitors, DTINSPECTOR
successfully detect all such attacks.

Figure 5: Detected triggers by NC and DTINSPECTOR un-
der the MTOT attack. NC reverse-engineers one trigger
while DTINSPECTOR finds all the three triggers (patches).

(C) Detection against unseen triggers. Next, we further
compare DTINSPECTOR with ULP and MNTD. As men-
tioned before, ULP and MNTD may not generalize well to
unseen triggers that are significantly different from those in
the training data. To this end, we still use the BADNET attack
on CIFAR10, and define two triggers that are not included in
the training data of ULP and MNTD, i.e., a randomly col-
ored 8 × 8 square and a red 12 × 12 square. The detection
results are shown in Table 4. We can see that both ULP and
MNTD cannot detect such attacks, while DTINSPECTOR
can still detect them.

(D) Comparison with straightforward data inspection.
Here, we compare DTINSPECTOR with a straightforward
data inspection method. This method is also built on the
prediction confidence observation, but directly compares the
distributions of high-confidence and low-confidence data in-
stead of using the proposed method described in Section 3.
To setup the method, we use the same set of high-confidence
and low-confidence data with DTINSPECTOR, but calculate
the KL divergence between their averaged representations
from the model’s penultimate layer (normalized by soft-
max) before applying the anomaly detection. The results are
shown in Table 5. We can observe that the data inspection
method has a high mis-detection rate especially for clean
models. This is due to the fact that the trigger is usually
of small size and thus difficult to distinguish. In contrast,
DTINSPECTOR performs much better as it uses a distribu-
tion transfer technique to magnify the differences between

New Trigger ULP MNTD DTINSPECTOR

8 × 8 colored square N N Y (122.00)
12 × 12 red square N N Y (39.23)

Table 4: Comparisons with ULP and MNTD on unseen trig-
gers. DTINSPECTOR can detect the trojaned models while
ULP and MNTD cannot.

Attack Data Inspection DTINSPECTOR

Clean Trojaned Clean Trojaned

BADNET Y (6.95) Y (31.90) N (2.47) Y (199.65)
TROJANNN N (1.88) Y (14.70) N (2.02) Y (4.47)

CL Y (6.95) Y (38.85) N (2.47) Y (77.34)
SIG N (1.76) N (2.82) N (0.98) Y (7.86)

REFOOL Y (27.36) Y (13.47) N (1.21) Y (6.34)
FTROJAN Y (6.95) Y (5.54) N (2.47) Y (144.50)

Partial Y (6.95) Y (152.48) N (2.47) Y (16.20)
MTOT Y (6.95) Y (21.42) N (2.47) Y (36.74)
MTMT Y (6.95) Y (48.78) N (2.47) Y (62.72)

Table 5: Comparisons with data inspection method. The
wrong detection results are underlined. Data inspection re-
sults in high mis-detection especially for the clean models.

clean data and poisoned data.
(E) Comparison with input filtering method. We also

adapt an input filtering method STRIP (Gao et al. 2019),
which is originally proposed to identify poisoned inputs at
the inference stage. We use the default setting,5 and apply
it on the training data. The results show that STRIP always
mis-classifies a relatively large set of clean data as poisoned.
This makes it less effective when the poisoning rate is low.
For example, on the clean CIFAR10 data, STRIP identi-
fies 163 poisoned samples. When we inject 250 poisoned
samples with poisoning rate 0.5% (ASR is larger than 90%),
STRIP identifies 225 poisoned samples, 65 out of which are
clean data.

(F) Sensitivity to trigger size. In Eq. (1), we use L1 norm
to restrict the size of the patch, which might cause our detec-
tion method to be sensitive to the trigger size. Here, we per-
form a sensitivity study by varying the trigger size, and the
results show that DTINSPECTOR is more robust to trigger
size than NC (see the supplementary material for details).

(G) Sensitivity to sampling size. Another parameter of
DTINSPECTOR is the sampling size, i.e., the number of
high- and low-confidence samples. We also evaluate the sen-
sitivity of this parameter and find that DTINSPECTOR is rel-
atively robust to it in a wide range (see the supplementary
material for details).

(H) Detection against adaptive attacks. Next, we conduct
an adaptive attack where the attacker can control the poi-
soning rate in a range to intentionally lower down the pre-
diction confidences of poisoned samples. The results show
that DTINSPECTOR is still effective as long as the backdoor
attack is effective (e.g., the ASR is above 70%; see the sup-

5We also tune STRIP’s two parameters of entropy boundary
and clean data size, and found little difference.
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Attack Original Acc. (%) Benign Acc. (%) ASR (%) Retrained Benign Acc. (%) Retrain ASR (%)

BADNET 85.85 85.05 96.34 84.65 7.66
TROJANNN 83.88 79.75 98.25 81.25 14.25

CL 85.85 84.06 96.12 84.12 8.93
SIG 84.00 77.00 97.75 82.88 0.02

REFOOL 99.32 98.07 99.98 97.92 0.11
Partial 85.85 85.65 90.80 84.51 1.90
MTOT 85.85 84.53 96.05 84.40 9.23
MTMT 85.85 84.26 98.21 70.05 7.06

Table 6: The mitigation results of DTINSPECTOR. After removing the suspected data and retraining the model, the ASR can be
reduced to less than 15%, while the benign accuracy can be preserved in most cases.

plementary material for details).
(I) Mitigation results using the proposed method. As men-

tioned before, the learned patch of DTINSPECTOR can also
be used to remove the backdoor. Specifically, we consider
the label whose transfer ratio is an outlier as the infected la-
bel. For all the training samples belonging to this infected
label, we superimpose the patch to each sample and remove
the sample if it is classified to a label different from the orig-
inal label. Otherwise, the sample is retained. We then retrain
the model on the cleaned dataset. The results are shown in
Table 6.

We can see that our mitigation method can mitigate most
of the attacks (significantly lowering down the ASR), and
meanwhile preserves the accuracy in most cases. One ex-
ception is from the MTMT attack, where the accuracy de-
creases with a relatively large margin. This is due to the fact
MTMT attack infects multiple labels; therefore, we have to
run the sample removing multiple times for MTMT attack,
which significantly shrinks the training data size. This issue
can be mitigated by, again, applying image restoration tech-
niques to fix some of the poisoned images instead of directly
deleting them, which is left as future work.

5 Related Work
Backdoor Attacks. Starting from the seminal work (Gu,
Dolan-Gavitt, and Garg 2017; Chen et al. 2017), various
backdoor attacks have been proposed, which can be divided
into black-box ones and white-box ones. This work focuses
on detecting against black-box attacks. Another major line
of such attacks is to improve the robustness against backdoor
defenses (Yao et al. 2019; Saha, Subramanya, and Pirsiavash
2020; Shokri et al. 2020; Lin et al. 2020; He et al. 2021).
Additionally, some researchers propose dynamic attacks that
generate different triggers for different inputs (Salem et al.
2020; Nguyen and Tran 2020), clean-label attacks that do
not change the labels of training data (Turner, Tsipras, and
Madry 2018; Barni, Kallas, and Tondi 2019; Zhao et al.
2020b; Liu et al. 2020; Nguyen and Tran 2021), physical
attacks that use physical objects as triggers (Wenger et al.
2021), invisible attacks that aim to hide the triggers (Nguyen
and Tran 2021; Li et al. 2021b; Souri et al. 2022; Wang et al.
2022), and data-free attacks that do not need the access to
training data (Liu et al. 2018; Tang et al. 2020; Costales et al.
2020; Pang et al. 2020; Qi et al. 2022).

Backdoor Defenses. Existing backdoor defenses can be di-
vided into four categories, i.e., model inspection, data in-
spection, input filtering, and backdoor removal. Our defense
belongs to the first category, which aims to detect whether
a given model is trojaned. Examples include those search
for triggers (e.g., (Wang et al. 2019; Chen et al. 2019b;
Guo et al. 2020; Shen et al. 2021), analyze neuron activa-
tions (Liu et al. 2019; Ma and Liu 2019), and build meta-
classifiers (Xu et al. 2021; Kolouri et al. 2020). Different
from these work, our defense is built on an observation that
is potentially universal for black-box backdoor attacks, mak-
ing it orthogonal and complementary to existing defenses.

Defenses in the rest three categories are built upon the
premise that the given model is trojaned. For example, data
inspection methods aim to distinguish poisoned training
samples from clean ones given that the current model is tro-
janed (Tran, Li, and Mądry 2018; Chen et al. 2019a; Hayase
et al. 2021); input filtering methods aim to detect whether an
input has been corrupted or how to erase triggers in the in-
put (Cohen, Rosenfeld, and Kolter 2019; Udeshi et al. 2019;
Gao et al. 2019; Doan, Abbasnejad, and Ranasinghe 2020);
backdoor removal methods aim to remove the backdoor in
the models (Liu, Dolan-Gavitt, and Garg 2018; Zhao et al.
2020a; Li et al. 2021a; Wu and Wang 2021; Guan et al. 2022;
Huang et al. 2020). However, how to effectively adapt them
to detect whether a model is trojaned still needs future ex-
ploration.

6 Conclusion
In this paper, we have proposed a new backdoor defense
DTINSPECTOR. Our key insight is that an effective back-
door attack usually results in high prediction confidence on
the poisoned training data, so as to ensure a high ASR. We
provide both theoretical and empirical evidence for this ob-
servation, and then propose a distribution transfer technique
to distinguish trojaned models from clean ones, using the
shortcut nature of triggers. Extensive experiments demon-
strate that the proposed defense: 1) can accurately detect the
trojaned model as well as the infected label, and 2) outper-
forms existing defenses in terms of robustness to trigger size
and effectiveness against advanced attacks and unseen trig-
gers. In the future, we plan to extend our idea into natural
language models and more computer vision tasks.
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