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Abstract. Deep neural networks (DNNs) have demonstrated effective-
ness in various fields. However, DNNs are vulnerable to backdoor attacks,
which inject a unique pattern, called trigger, into the input to cause
misclassification to an attack-chosen target label. While existing works
have proposed various methods to mitigate backdoor effects in poisoned
models, they tend to be less effective against recent advanced attacks. In
this paper, we introduce a novel post-training defense technique UNIT
that can effectively eliminate backdoor effects for a variety of attacks. In
specific, UNIT approximates a unique and tight activation distribution
for each neuron in the model. It then proactively dispels substantially
large activation values that exceed the approximated boundaries. Our
experimental results demonstrate that UNIT outperforms 7 popular de-
fense methods against 14 existing backdoor attacks, including 2 advanced
attacks, using only 5% of clean training data. UNIT is also cost efficient.
The code is accessible at https://github.com/Megum1/UNIT.
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1 Introduction

As deep learning (DL) continues to reshape industries, spanning from transporta-
tion to healthcare, the practical impact of DL is becoming increasingly apparent.
However, DL faces significant security issues, particularly backdoor attacks. Back-
door attacks typically embed a unique pattern (the backdoor trigger) into the
training data, which establish a correlation between this pattern and a specific
target label. Consequently, a model trained on such data misclassifies inputs
containing the trigger as the target label. Researchers have proposed a range
of backdoor attacks [3, 6, 7, 37,47,48,53], along with countermeasures aimed at
detecting and mitigating backdoors in poisoned models [21,23,35,64,66,69,71,78].
However, without knowing the trigger pattern, it’s challenging to accurately
identify whether a model or dataset has been compromised, and the trigger
pattern is typically not accessible until the attacker initiates the attack.

https://github.com/Megum1/UNIT
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This paper focuses on backdoor mitigation [35,38, 69]. The goal is to remove
the backdoor effect in a model such that trigger-inserted inputs cannot cause
the target prediction. Backdoor mitigation usually assumes access to a few clean
(usually ă 5%) training samples without knowledge of the trigger pattern. Existing
backdoor mitigation techniques [35, 38,66, 69, 74, 83] are effective against prior
attacks [3,6,20,40,47,48]. However, they fall short in eliminating backdoor effects
caused by advanced attacks [7, 51]. This is because these methods either retrain
the entire model without precise guidance for reducing backdoor effects [35,66,83]
or directly prune some specific neurons [38,69]. Such coarse-grained approaches
fail to counter recent advanced attacks. For instance, advanced attacks may
hide backdoor behavior within benign neurons that primarily process normal
features. In such cases, pruning these neurons would undesirably impact benign
utility. On the other hand, retaining these neurons would preserve the backdoor
behavior in the model. To address the above challenge, we propose a novel
backdoor mitigation method, UNIT. It is based on the observation that, for
various backdoored models, there exists a set of backdoor neurons, responsible
for backdoor behaviors. The activation values of these neurons for poisoned
inputs are significantly higher than those for clean samples. Note that backdoor
neurons may also play a role in benign feature extraction. Given the absence
of poisoned samples for accurately identifying backdoor neurons„ we propose
to approximate a clean distribution on each individual neuron using a small
set of clean samples. The approximation bounds the maximum activation value
on each neuron. During inference, our defense UNIT clips activations with a
substantially large value to the approximated boundaries. A straightforward
idea is to apply a uniform percentile boundary, e.g., a threshold covering 98%
values, to bound the activation for all neurons. Our result in Figure 4 (Section 4)
reveals its limitation against advanced attacks, because it overlooks the fact that
different neurons have various contributions. While some neurons might be fully
compromised, others could remain entirely benign. To address this challenge,
UNIT employs an optimization process that tailors a unique boundary for each
neuron. The optimization is guided by a proxy accuracy measure on a small set
of clean samples, serving as an approximation of the real accuracy on the test set.
This is to precisely bound the accuracy degradation caused by the clipping. This
approximation is generally accurate, as evidenced by a ablation study detailed in
Section A.5. The process allows UNIT to meticulously tighten the boundaries to
mitigate backdoor effects while ensuring the accuracy aligns with the defender’s
expectation.

Our main contributions are summarized as follows:

– We introduce UNIT (“AUtomated Neural DIstribution Tightening”), an
innovative backdoor mitigation method that approximates unique distribution
boundary for each neuron, which is used to effectively dispel maliciously large
activation caused by the backdoor.

– UNIT utilizes an optimization technique to dynamically refine and tighten
unique boundaries for different neurons. This process is guided by the proxy
accuracy on a few clean samples, which approximates the real test accuracy.
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– Extensive experiments demonstrate UNIT’s effectiveness against 14 existing
attacks, including 2 advanced attacks, outperforming 7 baseline defenses.
Additionally, UNIT is generalizable to different datasets, network structures,
and activation functions. We further show that UNIT is resilient to 3 adaptive
attacks.

Threat Model. Our threat model aligns with the existing literature [35, 38, 69],
where the adversary provides a model that may potentially contain a backdoor
to the user. The adversary holds the complete control over the training process
and can deploy advanced attacks [7, 51] to circumvent existing defenses. Prior to
utilizing the model, the user applies defense techniques to mitigate any potential
backdoor. The defender has access to a small portion (5%) of the clean training
data. She has no prior knowledge of the poisoned data. The defense objective is
to eliminate the backdoor effect without compromising the normal functionality,
such as classification accuracy.

2 Related Work

Backdoor Attack. Recent literature has introduced a variety of backdoor attacks
on image classification models. Early works [20,40] stamp static image patches on
a small portion of training samples and mislabel them as the target class to poison
the training dataset. Clean label attacks [52,59,65] manipulate backdoor samples
in feature space and leave their labels unchanged. Recently, more sophisticated
transformations are utilized as backdoor triggers [6, 10, 37, 41, 47, 63]. In addition,
sample-specific backdoors generate different triggers for different inputs via
generative models [7, 48,53], making them more stealthy and harder to detect.
Backdoor attacks can also be launched in a wide range of applications as well,
such as natural language processing [5, 50,57], self-supervised learning [18,30],
federated learning [2, 77,78] and even diffusion models [1, 11]. In this paper, we
focus on the image classification task.
Backdoor Defense. Various defenses have been proposed from multiple per-
spectives to safeguard AI models against backdoor attacks. Our approach falls
under the category of Backdoor Mitigation [35, 38,61, 62,69,70,74, 76], which is
widely acknowledged as a promising strategy. The primary goal is to cleanse the
backdoor effect while retain the benign functionality of a given model. Orthogonal
to this, training-time defense [23,28,34,64,68,72] defenses distinguish between
poisoned and clean samples based on their internal discrepancies/behaviors and
sanitize the training set. Trigger inversion [8,9,21,39,55,56,66,67] aims to detect
whether a given model is poisoned or not via reverse-engineering the backdoor
triggers. Running time defenses [14,19] are designed to reject samples potentially
carrying triggers during model inference.

3 Limitation of Existing Backdoor Mitigation Methods

Various methods have been proposed to address the challenge of mitigating the
backdoor effects in poisoned models. They primarily fall into two categories: (1)
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Unlearning / Pruning

Backdoor NeuronBenign Neuron Unlearned/Pruned Neuron Hybrid Neuron
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Fig. 1: Limitation of existing backdoor mitigation methods

Unlearning [35, 45, 66, 70, 74, 83] and (2) Pruning [38, 69, 80]. Unlearning methods
utilize training-based techniques, such as fine-tuning [45], distillation [35], and
cloning [70], to eradicate the backdoor behaviors. These approaches are grounded
in the catastrophe forgetting assumption [31], positing that neural networks
naturally tend to forget specific behaviors while continuously learning other
patterns. For example, NAD [35] employs standard fine-tuning to create a teacher
model and then conveys only benign knowledge to the student model through
knowledge distillation [25]. In contrast, pruning methods involve the identification
and removal of malicious neurons. They speculate that there exists a small subset
of neurons responsible for backdoor behaviors, and the removal of these neurons
eliminates the backdoor impact. For instance, ANP [69] identifies malicious
neurons based on sensitivity analysis on clean samples and effectively prunes
them. In the following, we delve into the limitations inherent to both unlearning
and pruning methods and introduce our idea to address the challenges.

Coarse-grained Repair. Recent advanced attacks [7, 51] manage to conceal
backdoor behavior within benign neurons, creating hybrid neurons that withstand
existing mitigation methods. A prevalent limitation in current techniques lies in
their coarse-grained nature, which is inadequate against advanced attacks. Essen-
tially, these methods struggle to operate inside individual neurons to eliminate the
backdoor component while preserving the benign portion. In addition, an implicit
requirement in backdoor mitigation is the preservation of benign functionality.
In other words, the benign accuracy of the repaired model should not suffer
significant degradation. This constraint limits the efficacy of both unlearning and
pruning methods. For example, pruning may either remove or leave an entire neu-
ron untouched. When dealing with hybrid neurons, directly pruning them would
significantly diminish clean classification performance. Conversely, retaining such
neurons would maintain the backdoor behaviors. Figure 1 conceptually illustrates
such limitation of existing methods. The left dashed box shows the mitigation
of an advanced attack [7, 51]. The left half presents the process of a poisoned
image (depicted as a panda with a red trigger at the top-left) in a backdoored
model. Notably, the model comprises three types of neurons: (1) Benign neurons
(depicted as cartoon pandas) primarily extracting benign features, (2) Backdoor
neurons (depicted as red devils) processing backdoor behaviors, and (3) Hybrid
neurons (depicted as half panda and half devil) serving both purposes. Following
the model inference, the output corresponds to the misclassified attack target
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label, indicated by a red cross. The right half of the left figure portrays the model
after repair through unlearning and pruning. Observe that backdoor neurons
are effectively unlearned or pruned, whereas hybrid neurons, which exhibit both
benign and malicious behaviors, remain unaffected. This is because eliminating
these hybrid neurons could lead to a substantial decrease in accuracy for benign
tasks. However, the presence of these hybrid neurons can still contribute to the
persistence of a high attack success rate due to their involvement in backdoor
behaviors. This highlights the limitations of current mitigation techniques.

Heavily Dependent on Meticulous Parameter Tuning. Existing approaches
heavily rely on meticulous parameter tuning to achieve optimal performance
against various attacks. For instance, pruning techniques demand a careful
determination of the pruning rate, adjusted on a case-by-case basis. The extent of
neuron removal directly influences the model’s overall accuracy; excessive pruning
can deteriorate performance, while insufficient pruning may not adequately
counteract the backdoor effect. Our empirical analysis, detailed in Appendix A.3,
highlights the pronounced sensitivity of the existing methods to parameter
adjustments. This sensitivity presents a notable limitation, undermining the
generalizability and practical applicability of these methods.

Our Idea: Automated Neural Distribution Tightening. We introduce a novel
technique UNIT, which automatically approximates and tightens a unique dis-
tribution boundary for each neural activation. Subsequently during inference, it
clips activation values that exceed the boundary, targeting potential backdoor
activation. UNIT employs an optimization based method to automatically refine
the activation boundary for individual neurons. It is guided by a proxy accuracy
measured on a small set (<5%) of clean samples, which approximates the real test
accuracy. This approximation is generally accurate, as evidenced by a ablation
study detailed in Section A.5. The process involves a dynamic adjustment of
boundaries: if the observed proxy accuracy degradation is below the defender’s
expectation, the boundary is further tightened. Conversely, the boundary is
relaxed to restore the accuracy. This ensures a balanced approach to maintaining
benign accuracy while eliminating backdoors. UNIT operates with a high degree
of granularity, analyzing and adjusting unique boundaries for individual neurons.
The right figure in Figure 1 visualizes positive outcomes achieved through UNIT.
Notably, both backdoor neurons and the backdoor portion of hybrid neurons are
deactivated.

Moreover, compared with existing methods, UNIT is an automated technique
that does not require meticulous parameter tuning. The defender is only required
to specify a bound of accuracy degradation to balance benign accuracy and
backdoor mitigation. The parameter-efficient characteristic of UNIT emphasizes
the generalizability and practicality of UNIT.
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Fig. 2: Neural activation distribution for benign and poisoned samples

4 Design of UNIT

4.1 Notations

We provide formal notations of deep neural network operations before delving
into our methodology. Following existing works [80, 81], we consider a typical
neural network for a classification task of C classes. The dataset D is composed of
numerous pairs px, yq „ D, where each sample x P Rd and its corresponding label
y P t1, 2, ¨ ¨ ¨Cu. The input dimension d can be complex, e.g., d “ dc ˆ dw ˆ dh
for RGB images, where dc, dw, and dh represent the number of channels, width,
and height, respectively. The training objective is to derive a classifier M : Rd Ñ

t1, 2, ¨ ¨ ¨ , Cu. Consider a deep neural network consisting of L layers:

M “ g ˝ ϕ ˝ fL ˝ ¨ ¨ ¨ ˝ ϕ ˝ f l ˝ ¨ ¨ ¨ ˝ ϕ ˝ f1, (1)

where f l denotes the feature extraction function at l-th layer (1 ď l ď L),
ϕ represents the non-linear activation function, e.g., ReLU [46], and g is the
fully connected layer following the extraction layers, responsible for aggregating
features for class prediction.
Neural Activation. To analyze the internal statistics of the model, we further
define the sub-network that terminates at the l-th activation layer as F l:

F l “ ϕ ˝ f l ˝ ¨ ¨ ¨ ˝ ϕ ˝ f1 (2)

Therefore, given an input sample x, its activation value at l-th layer is F lpxq.
This activation value is typically multi-dimensional. If the l-th layer consists of
K neurons, the neural activation of the k-th neuron in this layer is denoted as
F l
kpxq.

4.2 Key Observations of Neural Activation

The backdoor behavior can be activated by the trigger on backdoored models. To
illustrate how such input pattern flips the output prediction, we delve into the
model internals, particularly examining the neural activation values of both clean
and poisoned samples. We use the CIFAR-10 dataset and ResNet18 architecture
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as our subject and visualize the neural activation distribution of a clean model
and a range of backdoored models by various attacks, including BadNets [20],
Trojan [40], IA [48], SIG [3], WaNet [47], ISSBA [37], LIRA [15], Reflection [41],
Instagram [40], DFST [7], and Adap-Blend [51]. To gain insights into the influence
of poisoned samples on model behavior, we utilize Shap [42], a deep learning
interpreter, to identify 1% of the most important neurons in the 12th layer of each
model when processing poisoned samples. These selected neurons, designated
as backdoor neurons, are responsible for the backdoor behavior. Subsequently,
our analysis involves comparing the activation values of these neurons across
1,000 clean and 1,000 poisoned samples. It’s worth noting that as there is no
predefined trigger for the clean model, we employ the BadNets trigger to generate
dummy poisoned samples for analysis. By applying PCA [44] for dimensionality
reduction, we visualize the neural activation distributions in Figure 2. The
blue plots represent the activation distributions of clean inputs, while the red
plots depict the distributions of poisoned samples. Observe that the neural
activation distributions of clean and poisoned samples are indistinguishable in
the clean model. Conversely, in models subjected to backdoor attacks, it is
evident that there exists a large distribution shift between clean and poisoned
samples. Notably, the neural activation values for poisoned inputs are significantly
greater than those for clean inputs. This disparity underscores that backdoor
triggers significantly change the neural activation distribution for specific backdoor
neurons, subsequently leading to the target misclassification.

Distinguished Fine-grained Observation. Existing papers [4, 51, 64] have
observed the latent separability between clean and poisoned samples, primar-
ily focusing on the features of the entire layer. Nonetheless, recent advanced
attacks [51] and the adaptive attacks detailed in Section A.4 manage to dimin-
ish this layer-level feature distinction. However, these approaches fall short in
eliminating separability at the neural activation level, as shown in Figure 2. This
highlights a clear distinction between our fine-grained observation and existing
literature.

4.3 Overview of UNIT

Our observation reveals a substantial increase in neural activation compared to
benign ones on backdoor neurons given poisoned samples. Building upon this
insight, we introduce UNIT, a novel approach that approximates a tight benign
distribution for each neuron based on a small subset of clean training data. UNIT
then strategically clips activation values that surpass the distribution boundary.
The necessity for this approximation stems from the unavailability of poisoned
samples in typical scenarios. Hence, it is challenging to precisely identify the
backdoor neurons. To deal with the problem, UNIT applies its approximation
across all neurons, including both benign and backdoor ones. Furthermore, we
refine the approximated benign distribution to be as tight as possible, aiming to
effectively mitigate the backdoor behavior. The overview of UNIT is depicted
in Figure 3, using a typical neuron as an example. The x-axis represents neural
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activation values for different samples, while the y-axis denotes sample density
corresponding to these values. In this depiction, the benign neural activation is
shown in blue, and the poisoned neural activation is in red. UNIT approximates
a tight distribution based on a few clean samples, as illustrated in the green
region. To mitigate the backdoor effect during model inference, UNIT constrains
the neural activation values by clipping those that exceed the approximated
boundary. In the zoomed-in plot, rather than allowing activation values to extend
along the red lines (which represent maliciously large values), UNIT ensures
that values remain within the green boundary. While this strategy might entail
a minor compromise in accuracy for clean samples, it is remarkably effective in
neutralizing the backdoor effects of poisoned samples, thereby enhancing the
model’s security and integrity.

4.4 Design Details

In this section, we formally present the design of UNIT. Specifically, we detail
the process of automatically tightening the neural distribution based on a small
portion of clean training samples. The goal is to effectively eliminate maliciously
high neural activation, which represents the backdoor behavior.

Objective. Following the notation of neural activation in Section 4.1, we formally
define the objective of UNIT. For any input x and its neural activation at l-th
layer and k-th neuron F l

kpxq, UNIT derives an upper bound value σl
k such that

its neuron activation is bounded as

F̂ l
kpxq “ bσl

k
pF l

kpxqq “

#

F l
kpxq if F l

kpxq ď σl
k,

σl
k otherwise.

(3)

Note that σl
k can be a feature map when F l is a convolution layer. Then the

classifier defined in Equation 1 can be reformatted as:

Mσ “ g ˝ bσL ˝ ϕ ˝ fL ˝ ¨ ¨ ¨ ˝ bσl ˝ ϕ ˝ f l ˝ ¨ ¨ ¨ ˝ bσ1 ˝ ϕ ˝ f1, (4)
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Algorithm 1 Automated Neural Distribution Tightening
1: Input: Subject model M , Accuracy drop expectation ϵ, Training data tpxt

i, y
t
iqu

nt
i“1,

Validation data tpxv
i , y

v
i qu

nv
i“1, Initial benign distribution boundary σ0, Initial trade-

off coefficient α0, Optimization steps S, and Learning rate η.
2: Initialize: σ “ σ‹

“ σ0, α “ α0

Ź Calculate original accuracy on validation samples
3: P0 “ 1

nv

řnv
i“1 1pMpxv

i q “ yv
i q

4: for s “ 1 to S do
Ź Cross-entropy loss plus boundary penalty

5: L “ 1
nt

řnt
i“1 LCEpMσpxt

iq, y
t
iq ` α ¨ ||σ||1

6: σ “ σ ´ η ¨ BL
Bσ

Ź Calculate accuracy when applying current bound
7: P 1

“ 1
nv

řnv
i“1 1pMσpxv

i q “ yv
i q

8: if P0 ´ P 1
ą ϵ then

9: α “ α{2
10: else
11: α “ α ¨ 2
12: end if

Ź Update the best boundary value
13: if P 1

ě P0 ´ ϵ and ||σ||1 ă ||σ‹
||1 then

14: σ‹
“ σ

15: end if
16: end for
17: Return: σ‹

where σl denotes the bounding value at the l-th layer. Suppose there are K
neurons at this layer, then σl “ tσl

1, σ
l
2, ¨ ¨ ¨ , σl

Ku. Similarly, σ “ tσ1, σ2, ¨ ¨ ¨ , σLu.
The objective of UNIT is to mitigate the backdoor effects while preserve the
benign utility. Therefore, for any input x of class y and its poisoned version x‘T
with the attack target label yT , where T denotes the backdoor trigger,

Mσpxq “ y, Mσpx ‘ T q ‰ yT . (5)

A straightforward idea is to employ a uniform percentile threshold for all neural
activation values. However, it can be inaccurate and coarse-grained as different
neurons vary in their contributions to backdoor effects. Figure 4 demonstrates the
effectiveness of this approach against the DFST [7] attack (launched using CIFAR-
10 and ResNet-18), where the original model achieves a clean accuracy of 92.25%
and an ASR of 99.77%. The x-axis represents various uniform clipping percentiles
while the y-axis shows the corresponding accuracy and ASR after clipping. "Max"
indicates setting the boundary at each neuron’s maximum activation value. In
other cases, we assume a Gaussian distribution of the activation and employ the
Z-score for percentile approximation. For example, "Z=3.0" signifies setting the
boundary at the mean activation value plus three times its standard deviation,
aligning with the 0.98 percentile. We can observe that even with a moderate clean
accuracy of 90% (Z=3.5), the ASR remains notably high at 20%. Conversely,
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reducing the ASR to 4% (Z=1.5) leads to a drastic decrease in accuracy, down
to 40%. This highlights the method’s limitation against advanced attacks.

Our approach, on the other hand, utilizes an optimization-based technique
to meticulously approximate and tighten a unique boundary for each individual
neuron, which outperforms the straightforward approach as illustrate in the blue
and red dashed lines in Figure 4. Note that UNIT is able to reduce the ASR
to 4.0% while maintain a high accuracy as 91.6%. The details of UNIT are
outlined in Algorithm 1, which comprises two main stages: (1) Initialization (Line
1-3), where clean training samples are gathered to approximate a loose benign
boundary, and (2) Automated Tightening (Line 4-16), dedicated to refining the
approximated boundary with the guidance of clean accuracy.

Initialization. Lines 1-3 present the initialization stage, where input variables
are defined, with M representing the model for defense, and ϵ indicating the
customized accuracy drop expectation (defaulted to 2%). Following the threat
model in Section 1, the defender has access to a small set of clean training
samples for the defense process. The data is further split into training samples
tpxt

i, y
t
iqu

nt
i“1 and validation samples tpxv

i , y
v
i qu

nv
i“1, where nt and nv denote the

number of training and validation samples, respectively. Typically, the ratio nv

nt

is set to 1
4 . The split training samples are used for optimization, while validation

samples guide the tightening strength. A loose distribution for clean samples
is approximated, initializing the distribution boundary of each neuron as σ0.
This initial boundary is set as the mean activation value over the training
sample plus four times the standard deviation (Z-score=4 in the straightforward
approach). The initial trade-off coefficient between benign accuracy and the
tightened distribution boundary is denoted as α0, with a default value set to
0.001. This value signifies that the tightening process starts with low strength.
Additionally, S represents the number of optimization steps, and η denotes
the learning rate. Typically, 50 steps prove sufficient to approximate a suitably
tight boundary. For optimization, we utilize the Adam optimizer with a learning
rate set to η “ 0.001, a standard configuration. Line 2 initializes the optimized
distribution boundary σ, optimal boundary σ‹, and trade-off coefficient α0 with
their default values. In Line 3 calculates the initial accuracy (P0) of model M on
validation samples, where 1pMpxv

i q “ yvi q denotes the number of samples which
are correctly classified by M .

Automated Tightening. Lines 4-16 outline the optimization procedure for
tightening the benign distribution. In each optimization step, the goal is to
tighten the boundary while maintaining benign accuracy within the specified
expectation ϵ. Line 5 calculates the loss, consisting of two terms: the cross-entropy
loss on the training samples and the penalty on boundary scale. We use L-1 norm
of σ to measure the tightness of the current boundary. A small value of ||σ||1

means a tight boundary. The trade-off between these two loss terms is controlled
by α. The boundary σ is optimized using gradient descent in Line 6. Lines 7-12
dynamically adjust the trade-off value α based on the accuracy on validation
samples. In Line 7, the current accuracy P 1 on validation samples is calculated
given the optimized σ. If the accuracy drop P0 ´ P 1 exceeds the expectation
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ϵ (Line 8), the trade-off coefficient α is reduced by half (Line 9), prioritizing
the restoration of benign accuracy. Otherwise, α is increased twice to further
tighten the benign distribution boundary (Line 11). Lines 13 to 15 update the
optimal boundary σ‹ if it maintains benign accuracy while being more tightened.
Finally, Line 17 returns the optimal boundary σ‹ and UNIT applies the optimal
boundary to the model (Mσ‹) during inference.

5 Evaluation

In this section, we comprehensively evaluate the performance of UNIT across
diverse scenarios. In Section 5.2, we assess the effectiveness of UNIT by comparing
it against 7 state-of-the-art backdoor mitigation baselines across 14 types of
backdoor attacks. In addition, we demonstrate the generalizability of UNIT by
the evaluation on four datasets and six network architectures. We assess the time
cost of UNIT in Section 5.3 and study the effect of UNIT on clean models in
Section 5.4. In Section 5.5, we present additional evaluations of UNIT against the
latest backdoor attacks and comparisons with recent baselines. We also include a
series of evaluations on adaptive attacks and ablation studies.

5.1 Experiment Setup

Baselines and Settings We employ 14 backdoor attacks, (1) BadNets [20], (2)
Trojan [40], (3) CL [65] (4) Dynamic backdoor [53], (5) IA [48], (6) Reflection [41],
(7) SIG [3], (8) Blend [6], (9) WaNet [47], (10) ISSBA [37], (11) LIRA [15],
(12) Instagram filter [40], (13) DFST [7], and (14) Adap-Blend [51]. We use the
default configuration following the original papers, such as trigger patterns, sizes,
poisoning strategies, etc. We compare UNIT with 7 state-of-the-art backdoor
mitigation methods, (1) standard fine-tuning (FT), (2) FP [38], (3) NAD [35],
and (4) ANP [69], (5) NC [66], (6) I-BAU [74] and (7) SEAM [83]. We follow
the configuration in the original papers to conduct experiments. All the methods
have access to the same amount of training data, e.g., 5%. Details of backdoor
attack and defense baselines can be found in Appendix A.1. For UNIT, we set
the expected accuracy degradation as 2%.
Evaluation Metrics. We use two metrics: (1) clean accuracy (Acc.), and (2)
attack success rate (ASR). Clean accuracy measures the normal functionality of
the subject model on classifying clean inputs. ASR measures the backdoor effect,
which is the ratio of poisoned samples correctly misclassified to the target label.
A good defense shall reduce the ASR while preserving the clean accuracy.

5.2 Effectiveness of UNIT

Comparison with Existing Baselines We conducted a comprehensive eval-
uation of UNIT by comparing it with 9 baseline methods across 14 distinct
backdoor attacks on the CIFAR-10 dataset using the ResNet18 architecture for
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Table 1: Comparison of UNIT with 7 backdoor mitigation baselines against 14 backdoor
attacks. Results are measured in percentages (%). All methods have access to 5% of
the clean training data. The best results are highlighted in bold.

Attacks Original FT FP NAD ANP NC I-BAU SEAM UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82 100.0 90.91 9.78 89.68 3.52 92.41 4.79 91.35 3.26 93.04 0.34 91.60 3.66 91.61 1.05 92.48 0.78
Trojan 94.73 100.0 91.63 35.11 90.76 31.14 91.52 22.30 92.37 58.88 91.89 4.01 90.73 11.58 92.28 12.69 92.38 2.17
CL 94.58 98.46 90.34 58.72 87.71 3.69 88.47 4.42 89.92 18.18 90.72 1.79 88.75 5.52 92.02 23.04 92.21 1.09
Dynamic 95.08 100.0 89.11 9.29 84.93 3.23 89.26 2.34 91.99 3.09 92.09 1.78 92.48 1.63 92.61 3.22 92.77 1.54
IA 91.15 97.96 88.44 2.92 89.71 82.20 88.51 2.67 89.05 5.49 89.32 1.12 89.79 62.45 89.77 1.23 89.93 1.03
Reflection 93.29 99.33 91.38 74.77 89.68 84.51 90.99 52.97 90.66 93.28 91.38 93.31 89.94 87.85 90.54 21.37 91.44 6.63
SIG 94.97 99.80 91.29 63.94 90.88 1.03 91.69 10.46 90.80 36.79 91.70 97.88 91.51 22.11 92.57 0.68 92.48 1.74
Blend 94.62 100.0 90.68 7.30 91.47 2.01 91.62 3.32 91.04 16.79 91.90 1.53 91.43 3.61 91.38 1.80 91.99 1.18
WaNet 94.36 99.80 90.32 2.85 91.48 1.48 92.36 1.91 91.99 0.61 90.60 0.97 89.67 12.01 91.34 1.44 91.02 2.44
ISSBA 94.55 100.0 91.40 4.17 90.79 2.11 92.45 2.43 92.42 2.98 92.52 0.46 83.03 84.58 91.17 3.00 91.84 1.57
LIRA 95.11 100.0 91.42 15.09 89.58 14.76 91.64 2.06 91.98 47.91 92.11 1.17 92.18 12.65 92.18 3.02 92.29 0.58
Instagram 94.62 99.59 91.40 29.25 90.38 8.03 89.50 7.17 90.10 5.10 90.19 15.88 89.25 7.24 91.35 5.89 91.43 4.98
DFST 93.25 99.77 90.88 35.22 90.66 14.03 91.05 14.59 89.70 20.51 91.22 24.77 89.12 6.19 91.22 12.93 91.64 4.02
Adap-Bl. 94.22 82.80 90.15 48.76 87.62 31.36 90.42 49.50 90.80 69.51 90.33 18.25 90.81 19.97 89.58 24.19 90.84 15.03

Average 94.26 98.39 90.57 28.37 89.67 20.22 90.85 12.92 91.01 27.31 91.36 18.80 90.02 24.36 91.48 8.08 91.77 3.20

evaluation, with all defenses having access to 5% of the training set. Table 1
summarizes the results. The first column enumerates different backdoor attacks,
while the “No Defense” column displays the original performance of backdoored
models. The subsequent columns detail the performance of models repaired by
various defenses, with “Acc.” denoting clean test accuracy and “ASR” representing
the attack success rate of backdoor attacks. Notably, UNIT consistently outper-
forms others in reducing ASR and maintaining high clean accuracy. In instances
such as Reflection, DFST, and Adap-Blend attacks, existing defense methods
struggle to eliminate the backdoor effect, often retaining over 20% ASR. The
sophistication of these attacks, characterized by larger triggers and specialized
poisoning strategies, poses a challenge to conventional defenses. For instance, the
state-of-the-art Adap-Blend attack relaxes the latent separability assumption
and utilizes asymmetric triggers to enhance backdoor resilience. Despite the
complexity, UNIT reduces the ASR to less than 7% for Reflection and DFST,
outperforming existing methods, even mitigating the Adap-Blend attack to 15%.
However, it’s worth noting that UNIT doesn’t outperform baselines in all scenar-
ios. For instance, ANP performs better on WaNet than UNIT. This is due to the
pervasive and sample-specific triggers of WaNet attacks. They resemble natural
features and hence make the poisoned activation distribution less distinguishable
from the clean one. Despite this, UNIT still demonstrates effectiveness by miti-
gating the backdoor effect to an ASR of under 2.5%. Furthermore, we evaluate
UNIT on two latest backdoor attacks, i.e., NARCISSUS [75] and COMBAT [29],
and compare the performance with five state-of-the-art baselines, i.e., CLP [80],
FST [45], RNP [36], FT-SAM [82] and Super-FT [54]. The results in Appendix A.2
demonstrate UNIT’s superior performance over these methods.

Evaluation on Various Datasets and Networks We extend the evaluation
of UNIT to include a diverse set of datasets and network architectures. The
experiments include four datasets: CIFAR-10 [33], CIFAR-100 [33], STL-10 [13],
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Fig. 5: Evaluation on different datasets and network architectures

and GTSRB [60], and six network architectures: VGG11 [58], ResNet18 [24],
Densenet [27], Mobilenet [26], WideResNet [73], and Pre-activation ResNet34
(PRN34) [24]. 5% of the clean training data is used for defense. Results are
presented in Figure 5, with each sub-figure depicting the outcomes for a specific
dataset-network pair. In each sub-figure, the left plot illustrates clean accuracy,
while the right plot displays the ASR. The x-axis represents different backdoor
attacks, and the y-axis denotes accuracy or ASR. Bar colors in the legend distin-
guish results before and after the defense. Notably, UNIT consistently reduces
ASR from 100% to near 0% across various datasets and network architectures.
Clean accuracy degradation is minimal in most cases, demonstrating the general
effectiveness of UNIT across diverse scenarios.
Application on Transformers. Although UNIT is primarily designed for CNN
models, we investigate its performance in eliminating backdoor effects in trans-
formers. We poison the CIFAR-10 dataset with BadNets [20] triggers and finetune
the ViT-base-patch16-224 [16] model on it. The model achieves 98.44% accuracy
and 100% ASR. We then apply UNIT to tighten the benign distribution bound-
ary on each attention layer, which successfully reduces the ASR to 5.78%, with a
slight accuracy drop of 3.23%. These results highlight Tech’s potential utility in
protecting transformers from backdoor attacks.

5.3 Defense Efficiency

We conducted a study on the time cost of various defenses, and the results are
illustrated in Figure 6. The x-axis represents different methods, and the y-axis
indicates the time cost measured in seconds, with each bar denoting the average
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Fig. 6: Time cost of different baselines

Table 2: Impact on clean models
Dataset Network Original UNIT Diff.

CIFAR-10 VGG11 91.88% 89.93% 1.95%
CIFAR-10 ResNet18 95.08% 92.25% 2.83%
CIFAR-100 Densenet 74.78% 73.07% 1.71%
CIFAR-100 Mobilenet 67.74% 67.42% 0.32%
STL-10 WideResNet 69.81% 69.45% 0.36%
GTSRB PRN34 97.12% 95.21% 1.91%

time cost. Notably, UNIT completes its process in approximately 20 seconds as
it only needs to estimate the benign activation distributions based on a small set
of clean samples. Other cost-efficient methods, such as I-BAU and fine-tuning,
exhibit similar time costs to UNIT. However, as shown in Table 1, they fall short
in defending against a few advanced attacks.

Since UNIT modifies the activation layers, we also measure its impact on
the model inference. We feed the whole test set containing 10,000 images to the
ResNet18 model on CIFAR-10 before and after applying UNIT. The experiment
is repeated 5 times. The time cost is 2.79 ˘ 0.35s for the original model, and
2.86 ˘ 0.20s for the model integrated with UNIT. The inference time difference
is negligible (around 2.5%). Such a small increase during inference is acceptable
as UNIT can effectively preclude all evaluated backdoor attacks.

5.4 Impact on Clean Models

We investigate the impact of UNIT on clean models, considering that defenders
may apply UNIT without prior knowledge of whether a model is poisoned.
Table 2 presents the accuracy before and after applying UNIT on various clean
models. Notably, the degradation of clean accuracy ranges from 0.32% to 2.83%,
highlighting the minimal impact.

5.5 Additional Evaluation of UNIT

We conduct evaluation on the latest backdoor attacks and compare UNIT with
a few more recent defenses in Appendix A.2. We evaluate UNIT’s performance
under three adaptive attack scenarios in Appendix A.4, showing its robustness
against them. We carry out a series of ablation studies to examine UNIT’s
resilience across various hyper-parameters and attack settings in Appendix A.5.

6 Conclusion

We present a novel backdoor mitigation technique designed to approximate a
tight distribution for each neuron. It then effectively reduce any high activation
that exceeds the established boundary. Our comprehensive evaluation illustrates
the high efficacy of UNIT, outperforming 7 baselines across 14 existing attacks.
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A Appendix

A.1 Details of Baseline Backdoor Attacks and Defenses

In this section, we provide the details of leveraged baseline backdoor attacks and
defense methods.
Backdoor Attacks. We evaluate on 14 prominent backdoor attacks, following
the original trigger patterns and poisoning strategies, with a fixed poisoning rate
of 10%. Figure 7 provides visualizations of different backdoor triggers, where
we displays images stamped with triggers in the first rows and the differences
between poisoned images and their source versions in the second rows.

BadNets Trojan CL Dynamic IA Reflection SIG

Blend WaNet ISSBA LIRA Instagram DFST Adap-Blend

Fig. 7: Backdoor trigger examples

– BadNets [20] introduces backdoor attacks by incorporating a small percentage
of poisoned samples into the training data using standard data-poisoning.
During inference, images stamped with the trigger are misclassified to the
specified target label.

– Trojan [40] injects the backdoor by manipulating selective internal neurons,
ensuring the trigger activates these neurons with high values, causing targeted
misclassification.

– CL [65] proposes a clean-label attack that poisons only samples of the target
class during training. It introduces adversarial perturbations to target inputs,
misclassifying them to other classes before applying data-poisoning.
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– Dynamic backdoor [53] leverages a trigger generator to inject various triggers
randomly into different inputs.

– IA [48] utilizes two trigger generation networks to create trigger masks and
patterns based on the inputs, establishing a unique one-to-one mapping
between the input and its trigger.

– Reflection [41] blends inputs with another image to produce a reflection effect.
– SIG [3] perturbs input images with strip effects. It also operates as a clean-

label attack.
– Blend [6] applies small random perturbations and blends them with the input

to create the trigger.
– WaNet [47] uses a complex wrapping function to induce a line-bending effect

on inputs as the trigger.
– ISSBA [37] injects an invisible trigger using an image-to-image transforming

network.
– LIRA [15] employs a network to inject sample-specific perturbations into

inputs as the trigger.
– Instagram [39] uses Instagram filters to introduce the trigger.
– DFST [7] utilizes a CycleGAN to apply a sunshine effect on inputs as the

trigger. It also incorporates a detoxification process to eliminate low-level
trigger features, directing the model’s focus to high-level features.

– Adap-Blend [51] leverages asymmetric and low-confidence training to reduce
the latent distance between clean and poisoned samples, enhancing the
stealthiness and robustness of the attack against existing defenses.

Backdoor Mitigation Baselines. We compare our technique UNIT with 7
state-of-the-art defenses given the same number of clean training data. We follow
the original implementation to conduct experiments and tuning parameters to
acquire best performance.

– Standard Fine-Tuning (FT) retrains the model using the given clean data.
We perform fine-tuning for 20 epochs with an initial learning rate of 10´2 and
reduce the learning rate by a factor of 10 every 4 epochs. Data augmentation
techniques, including random cropping, rotation, and horizontal flipping, are
applied to enhance model generalization.

– Fine-Pruning (FP) [38] first prunes dormant neurons with low activation
values on clean inputs (potential backdoor neurons) and then applies standard
fine-tuning to the model.

– NAD [35] distills the knowledge from the teacher model to the student model.
The teacher model is derived from the backdoored model after standard
fine-tuning. The backdoor effect is removed through the distillation to the
student model, only based on clean representations.

– ANP [69] observes that backdoor neurons are sensitive to small perturba-
tions in weight values. It prunes the most sensitive neurons based on this
observation.

– NC [66] reverse-engineers backdoor triggers and applies adversarial training
to neutralize the effectiveness of the generated triggers.
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– I-BAU [74] introduces a min-max formulation to eliminate backdoors and
leverages implicit hypergradients to optimize the balance between removal
efficiency and effectiveness.

– SEAM [83] leverages the catastrophe forgetting assumption [31] by first
retraining the model on clean samples with randomly assigned labels to forget
both clean and backdoor behaviors. It then fine-tune the model on samples
with the correct labels to restore the clean performance.

Table 3: Evaluation results on the latest backdoor attacks and defenses

Attacks No Defense CLP FST RNP FT-SAM Super-FT UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82 100.0 92.37 1.18 92.50 0.00 92.18 0.64 91.75 0.86 91.58 0.90 92.48 0.78
Instagram 94.62 99.59 91.69 48.08 91.93 8.55 90.05 14.50 90.96 9.91 90.55 6.83 91.43 4.98
Reflection 93.29 99.59 92.06 36.16 91.46 7.58 89.59 84.30 90.58 53.96 91.02 48.07 91.44 6.63

NARCISSUS 92.67 95.48 87.98 84.64 86.86 41.49 89.17 79.96 89.12 43.61 89.31 59.48 88.74 37.97
COMBAT 94.00 88.74 90.07 50.93 91.66 73.79 90.99 72.57 89.22 62.42 90.61 59.31 90.13 48.58

A.2 Additional Evaluation on the Latest Backdoor Attacks and
Defense Mechanisms

We compare UNIT with five additional state-of-the-art baselines, CLP [80],
FST [45], RNP [36], FT-SAM [82] and Super-FT [54]. CLP identifies and prunes
backdoor neurons by examining the channel Lipschitzness to reduce the backdoor
effect. It is based on the observation that backdoor neurons tend to have high chan-
nel Lipschitz values. FST actively deviates the weights of the classification layer
(e.g., the last fully connected layer in ResNet-18) from the originally compromised
weights. It then fine-tunes the feature extraction weights to calibrates the shifted
classification weights, aiming to destroy the backdoor correlation. RNP identifies
malicious neurons by unlearning using clean samples with randomly shuffled
labels and then recovering using the ground-truth labels. Malicious neurons
stand out as they are sensitive to this change and RNP prunes them accordingly.
FT-SAM leverages sharpness-aware minimization to achieve better unlearning
while Super-FT design a special learning rate scheduler to enhance the backdoor
unlearning. We consider three typical backdoor attacks, BadNets [20], Instagram
filter [39] and Reflection [41]. In addition, we include two latest backdoor attacks,
NARCISSUS [75] and COMBAT [29], which are both robust clean-label attacks.
The experiments are conducted using the ResNet-18 model and CIFAR-10 dataset,
with 5% of the original training samples available for defense. Results, presented
in Table 3, indicate that while all defense techniques are effective against conven-
tional attacks like BadNets, they perform less effectively against more complex
and recent attacks, particularly NARCISSUS and COMBAT. UNIT consistently
surpasses other state-of-the-art methods in mitigating backdoor effects, at the
comparable cost to clean accuracy. However, it is important to note that while
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UNIT demonstrates superior performance, it still falls short against the latest
clean-label attacks. This may be due to the extremely subtle distribution dif-
ferences between poisoned and clean activations introduced by these attacks,
making them difficult for UNIT to approximate. Our future work will focus on
improving UNIT’s effectiveness against these robust clean-label attacks.
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A.3 Parameter Sensitivity Analysis

We take three typical baselines to illustrate that existing methods are sensitive to
their parameters and require sophisticated parameter tuning to ensure the good
performance. However, UNIT is parameter-efficient and outperforms the existing
methods. We conduct experiments using CIFAR-10 dataset and ResNet-18 net-
work. We inject CL [65] backdoor into the model and apply FP [38], NAD [35] and
ANP [69] to mitigate the attack. For each defense, we take two key parameters
and evaluate the performance for different parameter values. Specifically, we take
the pruning ratio (pr) and learning rate (lr) for FP, distillation strength (β)
and learning rate (lr) for NAD, and adversarial perturbation (ϵ) and pruning
coefficient (α) for ANP. Results are presented in Figure 8, Figure 9 and Fig-
ure 10, where the y-axis denotes the parameter values while the x-axis presents
the performance in percentage (accuracy or ASR). For each parameter setting,
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we visualize the performance using two bars, i.e., resulting ASR (top bar) and
Acc. (lower bar). The red and blue dashed lines represents the resulting ASR
and accuracy after applying UNIT. Observe that the performance of existing
methods are significantly sensitive to parameter tuning, with large fluctuation
over slightly different parameters. On the contrary, UNIT is parameter-efficient
and outperforms the three baselines, indicating its practical applicability.

In addition, we take the state-of-the-art pruning method RNP [36] to defend
against the Reflection backdoor [41]. Figure 11 shows that as the pruning threshold
increases (more neurons are pruned), both accuracy (blue curve) and ASR (red
curve) degrade similarly. This indicates that some neurons handle both clean
and backdoor tasks, and no matter how the parameters are tuned to control
the pruning rate, it is fundamentally difficult to eliminate the backdoor effect
without a non-trivial accuracy cost (Section 3). In contrast, UNIT achieves
91.44% accuracy and reduces ASR to 6.63% by precisely tightening the neural
distribution.

A.4 Adaptive Attacks

In this section, we discuss three adaptive attack scenarios in detail.
Activation Suppression. To tamper UNIT’s effectiveness, an adversary may
attempt to bridge the gap between benign and backdoor activation. Specifically, an
adaptive loss is incorporated during training to suppress the backdoor activation:

Loss “ LpMpxq, yq ` LpMpx ‘ T q, yT q ` α ¨

L
ÿ

l“1

||F lpxq ´ F lpx ‘ T q||22, (6)

Here, M denotes the model, x and y denote clean images and their labels, x ‘ T
denote their poisoned versions and yT is the attack target class. F lpxq represents
the activation value of x at the l-th layer as defined in Section 4.1. The adaptive
loss term ||F lpxq ´ F lpx ‘ T q||22 uses Mean Squared Error (MSE) to reduce the
difference between benign and poisoned activation. The parameter α controls
the trade-off between the adaptive loss term and the normal cross-entropy loss
L. The experiment is conducted on CIFAR-10 and ResNet18 using BadNets
as the backdoor attack. We evaluate five α values: 0, 0.1, 1, 10, 100. Table 4
presents the results, where the first column shows α values, the second and third
columns present accuracy and ASR without defense, the fourth column shows the
adaptive loss, and the last two columns present accuracy and ASR after applying
UNIT. Observe that with the increase of α, the adaptive loss decreases, signifying
successful activation suppression. However, UNIT continues to effectively reduce
the ASR to less than 1.07%. The reason is that despite the reduced backdoor
activation, UNIT can still effectively clip the slightly higher malicious activation.
Label-specific Backdoor. Attackers may employ label-specific strategies to
impact the efficacy of UNIT. In label-specific backdoor attacks, the backdoor
exclusively influences samples belonging to the victim class. Samples stamped
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Table 4: Evaluation against activation suppression

α
No Defense UNIT

Acc. ASR Adap-Loss Acc. ASR

0 94.84% 100.00% 0.1108 93.05% 1.07%
0.1 94.25% 100.00% 0.0433 92.52% 0.84%
1 94.13% 100.00% 0.0137 92.42% 0.73%
10 93.77% 100.00% 0.0034 91.85% 1.02%
100 93.42% 100.00% 0.0015 91.35% 0.90%

with the trigger but not from the victim class will not be misclassified into
the attack target class. Consequently, label-specific backdoor attacks rely on
normal features and could potentially impact the difference between clean and
malicious activation distributions. We conduct experiments on CIFAR-10 using
ResNet18 and utilized BadNets as a representative attack. When poisoning
the model, we not only introduce images of the victim class stamped with the
trigger and labeled as the target class but also incorporate negative samples to
achieve label-specificity. Negative samples consist of images from classes other
than the victim class, stamped with the trigger and labeled as their source
labels. These negative samples aid the model in learning the correlation between
the backdoor trigger and the victim class. Table 5 presents the results, with
the first column denoting the attack victim-target pair, the second and third
columns representing clean accuracy and ASR without defense, the fourth column
illustrating the effectiveness of label-specificity (ASR of images stamped with the
trigger from non-victim classes), and the last two columns displaying the results
after applying UNIT. Observe that negative samples facilitate label-specificity,
reducing the ASR of non-victim classes from 100% to nearly 3%, while the ASR
of the victim class remains high at approximately 98%. After applying UNIT, the
clean accuracy remains high with only about a 2% degradation, while the ASR
decreases to less than 4.40%, demonstrating the effectiveness of UNIT against
label-specific attacks. The reason is that even if the backdoor relies on benign
features, it still necessitates reasonably large activation values to be triggered.
UNIT identifies and mitigates these large activation values, rendering it effective
against label-specific attacks.

Table 5: Adaptive attack through leveraging label specificity.

V-T Pair No Defense Specificity UNIT

Acc. ASR Non-victim ASR Acc. ASR

0-9 94.62% 98.60% 100.00% Ñ 2.88% 92.31% 1.50%
8-3 94.83% 98.60% 100.00% Ñ 2.51% 92.64% 0.90%
2-4 94.71% 97.90% 100.00% Ñ 3.20% 92.74% 4.40%
6-5 94.89% 98.40% 100.00% Ñ 3.04% 92.60% 0.00%
7-1 94.79% 98.20% 100.00% Ñ 2.06% 92.97% 0.00%

Trigger-specific Backdoor. Attackers may exploit trigger-specificity to dynam-
ically impact UNIT. Trigger-specificity entails that the backdoor is activated only
when a specific pattern is presented in the image. In other words, a ground-truth
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trigger stamped with some noise will not induce the backdoor effect. The potential
impact on the effectiveness of UNIT arises from the model’s potential use of
benign neurons to extract high-level features of the trigger pattern. This could
lead to a reduction in the difference between benign and backdoor activation
distributions. We conducte experiments on CIFAR-10 using ResNet18 and employ
BadNets as an example attack, utilizing a yellow flower as the backdoor trigger. In
addition to poisoned samples stamped with the trigger and relabeled as the target
class, we introduce negative samples to establish trigger-specificity. We added
Gaussian noise to the trigger pattern, stamping the noisy pattern onto certain
training images while keeping their ground-truth labels. This approach help the
model learn the high-level trigger pattern instead of some low-level features.
Table 5 presents the results, where the first column denotes the noise level added
to the negative samples, the second and third columns represent clean accuracy
and ASR without defense, the fourth column illustrates the effectiveness of
trigger-specificity (ASR of images stamped with noisy triggers), and the last two
columns display the results after applying UNIT. Observe that the noisy ASR in
the fourth column is significantly reduced when the noise level is 0.05, 0.1, 0.5, 1.0,
indicating that negative samples effectively realize trigger-specificity. Notably, in
the last two columns, UNIT still reduces the ASR from 100% to nearly 1%, while
maintaining high clean accuracy. UNIT proves effective against trigger-specific
attacks because even if the model learns the high-level backdoor trigger pattern,
it cannot circumvent the separation between clean and malicious distributions.
This discrepancy is leveraged by UNIT to mitigate the backdoor effect.

Table 6: Adaptive attack through leveraging trigger specificity.

Level No Defense Specificity UNIT

Acc. ASR Noisy Trigger ASR Acc. ASR

0.01 94.65% 100.00% 100.00% Ñ 99.98% 92.55% 1.01%
0.05 94.79% 100.00% 100.00% Ñ 6.84% 92.85% 0.86%
0.1 94.70% 100.00% 100.00% Ñ 0.59% 92.58% 1.06%
0.5 94.64% 100.00% 77.08% Ñ 0.64% 92.65% 0.87%
1 94.99% 100.00% 36.50% Ñ 0.76% 92.65% 0.92%

A.5 Ablation Study

In this section, we perform a series of experiments to assess the performance of
UNIT under different attack and defense settings. Additionally, we conduct an
ablation study on the design choices and hyper-parameters of UNIT.

Different Activation Functions There are different types of activation func-
tions used in deep neural networks. We evaluate UNIT on BadNets-poisoned
models using different activation functions. CIFAR-10 and ResNet18 are used
for the study. We replace the standard activation function (ReLU) with five
commonly used functions, LeakyReLU [43], SELU [32], ELU [12], TanhShrink [49],
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Table 7: Evaluation on different activation functions

Activation Original UNIT

Acc. ASR Accuracy ASR

ReLU 94.82% 100.00% 92.46% 0.78%
LeakyReLU 94.17% 100.00% 92.02% 0.96%
SELU 90.89% 99.93% 89.66% 1.06%
ELU 91.24% 99.98% 90.52% 0.99%
TanhShrink 89.80% 100.00% 89.21% 1.13%
Softplus 88.08% 99.97% 87.19% 1.58%
Sigmoid 80.43% 99.80% 77.62% 5.31%
Tanh 90.95% 99.98% 88.14% 6.03%

Table 8: Ablation study on different number given clean training samples

Attacks No Defense 10% 5% 1% 0.1%

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82% 100.00% 92.81% 1.09% 92.48% 0.78% 90.60% 1.59% 88.01% 2.63%
Trojan 94.73% 100.00% 92.44% 1.65% 92.38% 2.17% 91.07% 1.96% 89.93% 2.73%
CL 94.58% 98.46% 92.36% 0.93% 92.21% 1.09% 89.98% 1.81% 90.90% 8.09%
Dynamic 95.08% 100.00% 92.34% 1.28% 92.77% 1.54% 88.48% 2.01% 90.29% 2.14%
IA 91.15% 97.96% 90.78% 1.82% 89.93% 1.03% 87.66% 2.11% 89.38% 3.45%
Reflection 93.29% 99.33% 91.64% 2.74% 91.44% 6.63% 88.82% 7.47% 83.02% 0.46%
SIG 94.97% 99.80% 92.45% 0.41% 92.48% 1.74% 89.30% 0.46% 86.88% 1.18%
Blend 94.62% 100.00% 91.75% 1.55% 91.99% 1.18% 88.77% 2.06% 90.86% 0.61%
WaNet 94.36% 99.80% 91.09% 1.83% 91.02% 2.44% 89.53% 9.90% 82.96% 3.68%
ISSBA 94.55% 100.00% 91.96% 1.19% 91.84% 1.57% 89.53% 1.86% 88.10% 2.53%
LIRA 95.11% 100.00% 92.65% 0.82% 92.29% 0.58% 89.49% 1.93% 82.76% 1.17%
Instagram 94.62% 99.59% 91.71% 4.05% 91.43% 4.98% 91.07% 11.66% 86.25% 21.64%
DFST 93.25% 99.77% 91.83% 3.54% 91.64% 4.02% 88.59% 3.90% 88.97% 8.80%
Adap-Blend 94.22% 82.80% 91.35% 18.39% 90.84% 15.03% 88.78% 47.64% 87.64% 58.57%

Average 94.26% 98.39% 91.94% 2.95% 91.77% 3.20% 89.41% 5.88% 87.57% 8.41%

Softplus [79], Sigmoid [22], and Tanh [17]. Table 7 shows the results. UNIT is
effective in all the cases, reducing the ASR from near 100.00% to less than 1.6%.
The impact on the clean accuracy is negligible (less than 2% degradation). This
is attributed to the distinct separation between clean and poisoned activation
distributions, a phenomenon that persists across various activation functions.
Hence, UNIT is able to ensure robust performance irrespective of the activation
function utilized.

Different Numbers of Clean Training Data. We study the impact of different
numbers of given clean training samples on UNIT. Table 8 presents the results,
comparing UNIT’s performance when provided with 10%, 5% (default), 1%, and
0.1% of training data for defense. The experiments are conducted on CIFAR-10
and ResNet-18. Observe that in general, UNIT exhibits better performance
(higher clean accuracy and lower ASR) when given more clean samples. This is
expected as UNIT requires clean samples to approximate a tight distribution
and eliminate malicious activation. More samples allowing for a more precise
approximation of the real distribution. Obtaining clean samples is generally
feasible, even from the internet, supporting the argument that UNIT is generally
effective and suitable for real-world applications. Moreover, even with access
to only 0.1% of samples (totally 50 images in CIFAR-10 dataset), UNIT still
effectively reduces ASR to an average of 8.41%, albeit with a sacrifice of around
7% in accuracy.
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Table 9: Evaluation on different low poisoning rates

Attacks No Defense FP NAD ANP UNIT

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets (1%) 93.87 100.0 89.78 52.32 88.69 38.62 88.15 7.56 92.72 0.85
BadNets (0.1%) 94.05 100.0 89.66 99.84 89.72 49.05 86.45 37.27 90.22 1.44

Blend (1%) 93.92 99.92 89.43 29.69 89.64 0.07 88.16 0.10 92.96 0.00
Blend (0.1%) 93.88 99.89 88.87 41.56 88.64 0.20 87.51 0.48 92.14 0.11

WaNet (1%) 93.59 94.91 89.01 5.77 91.31 10.43 89.93 1.48 90.97 2.19
WaNet (0.1%) 93.80 93.75 89.79 9.89 90.22 21.39 90.26 1.44 90.08 4.07
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Different Poisoning Rates. We study the impact of various poisoning rates on
defense performance. Utilizing CIFAR-10 and ResNet-18, we introduce BadNets
triggers with poisoning rates of 1%, 5%, 10%, 25%, and 50%. Figure 12 illustrates
the results, with the x-axis representing poisoning rates and the y-axis denoting
performance. Notably, UNIT consistently reduces the ASR from 100.00% to
approximately 1%, with minimal accuracy sacrifice (less than 2%). This highlights
the robustness of UNIT across different data poisoning rates.

Additionally, we compared UNIT with three baselines on CIFAR-10 and
ResNet-18 at extremely low poison rates (1% and 0.1%). Table 9 shows that
while baseline performance degrades at lower poison rates, UNIT remains robust
and outperforms them.

Different Target Labels. We investigate the influence of different target labels
on defense performance of UNIT. We use CIFAR-10, ResNet-18 and BadNets
trigger to conduct the experiments and employ labels 1, 3, 5, 7, and 9 as the
targets. Figure 13 illustrates the results, where the x-axis represents the target
classes, and the y-axis indicates performance. Remarkably, UNIT consistently
reduces the ASR from 100.00% to 0.30%-2.47% without significantly impacting
clean accuracy, underscoring the robustness of UNIT across various target labels.

Time cost for different model scales. We evaluate the time cost of UNIT
for different model scales. Results are shonw in Figure 14. For larger models, e.g.,
ResNet-101, UNIT reduces ASR to below 2% with only a 3% accuracy drop. The



UNIT: Automated Neural Distribution Tightening 29

Ti
m

e 
C

os
t (

s)

0

20

40

60

ResNet18

ResNet50

ResNet50-BK

ResNet101

ResNet101-BK

Fig. 14: Ablation study on different model scales

Table 10: Ablation study on different design choices

Attacks No Defense Current Setting Act. Rejection First Two Layers Last Two Layers

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets 94.82% 100.00% 92.48% 0.78% 90.52% 1.97% 92.88% 3.19% 90.74% 1.42%
Trojan 94.73% 100.00% 92.38% 2.17% 90.93% 4.67% 91.88% 5.29% 90.95% 2.48%
Reflection 93.29% 99.33% 91.44% 6.63% 90.77% 23.89% 91.39% 74.80% 90.43% 7.95%
Instagram 94.62% 99.59% 91.43% 4.98% 91.10% 12.03% 91.93% 78.40% 91.34% 7.17%
DFST 93.25% 99.77% 91.64% 4.02% 91.39% 8.62% 92.14% 76.58% 90.99% 34.76%
Adap-Blend 94.22% 82.80% 90.84% 15.03% 90.82% 39.93% 91.84% 78.69% 90.39% 57.76%

Average 94.26% 98.39% 91.77% 3.20% 90.92% 15.19% 92.01% 52.83% 90.81% 18.59%

time cost increases with model size (blue bars), but even for ResNet-101, UNIT
completes in about 1 minute. To enhance efficiency, we can optimize only on key
layers, e.g., each residual block in ResNets. This adaptation reduces the time
cost by 25% (green bars) while still being effective. This demonstrates UNIT’s
efficiency even for large-scale models.

Comparison Between Clipping and Rejection. We conduct a comparison
of two approaches within UNIT for handling maliciously large activation values
after the distribution approximation, i.e., clipping and rejection. Clipping reduces
large values to the distribution boundary value, while rejection directly sets outlier
values to zero. Our experiment is performed on CIFAR-10 and ResNet-18, with
results presented in the first half of Table 10. The first column denotes different
attacks, Columns 2-3 present the attack performance without defense, Columns
4-5 denote the defense performance of the current setting of UNIT (activation
clipping), and Columns 6-7 show the performance using activation rejection.
Notably, clipping generally provides superior performance, resulting in higher
accuracy and lower ASR compared to rejection. The underlying reason is that
rejection, similar to neuron pruning, is coarse-grained. Specifically, for neurons
responsible for extracting both benign and backdoor features, rejection harms
accuracy while not rejecting retains the backdoor effect. In contrast, clipping
eliminates only the higher values while allowing the extraction of benign features.
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Table 11: Ablation study of different customized accuracy degradation.

Degradation Accuracy ASR

No Defense 94.73% 100.00%

0.01% 94.08% (-0.65%) 4.01%
0.1% 93.89% (-0.84%) 3.56%
2% 92.38% (-2.35%) 2.17%
5% 88.36% (-6.37%) 1.40%
10% 84.21% (-10.52%) 1.12%

Table 12: Ablation study of different optimization steps and learning rates.

Config No Defense 10 & 0.01 10 & 0.001 50 & 0.01 50 & 0.001

BA 93.51% 91.79% 91.31% 92.14% 91.41%
ASR 100.00% 4.76% 5.49% 3.82% 4.91%

Comparison of Operating on Different Layers. We examine the impact of
applying UNIT to different layers: (1) All layers (current setting), (2) Only the
first two layers, and (3) Only the last two layers. The results are presented in the
last half columns of Table 10. Observations indicate that applying UNIT to all
layers, the current setting, generally yields the best performance compared to
operating only on the first two or last two layers. Notably, for simple backdoors
such as BadNets and Trojan, where most features are extracted in the first
few layers, applying UNIT to the first two layers is sufficient to eliminate the
backdoor effect while preserving clean accuracy. However, for complex backdoors
like Reflection and Instagram, where backdoor features are extracted in later
layers of the network, applying UNIT to the last few layers achieves better
performance. Additionally, advanced attacks such as DFST and Adap-Blend,
which tend to hide backdoor extraction across almost all layers, can only be
effectively defended against by applying UNIT to all layers.

Effect of Setting Different Accuracy Degradation. We examine the impact
of different accuracy degradation expectations for UNIT. In our experiment,
we assess 5 accuracy degradation values (default is 2%). The evaluated attack
model is trained on CIFAR-10 using ResNet18 and injected with the Trojan [40]
backdoor. The results in Table 11 indicate that as the degradation increases,
both accuracy and ASR decrease. This reveals a trade-off between sacrificed
clean accuracy and remaining ASR. Users seeking high clean accuracy with some
tolerance for backdoor may opt for a low accuracy degradation, and vice versa.

Effect of Different Optimization Steps and Learning Rates. We study
the effect of different optimization steps (S) and learning rates (η). The evalu-
ated attack model is trained on CIFAR-10 using ResNet18 and injected with
the Blend [6] backdoor. The results are shown in Table 12, where “10 & 0.01”
means S “ 10 and η “ 0.01. We observe that UNIT demonstrates consistently
good performance across various reasonable parameter settings, showcasing its
robustness and efficiency in parameter tuning.
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