6.1.

Chapter 6

Test Generation from Finite
State Models

_ The purpose of this chapter is to introduce techniques for the genera-
tion of test data from finite state models of software designs. A fault
model and three test generation techniques are presented. The test gener-
ation techniques presented are: the W-method, the Unique Input/Output
method and the Wp method.

Software design and testing

Development of most software systems includes a design phase. In this phase the require-
ments serve as the basis for a design of the application to be developed. The design itself can
be represented using one or more notations. Finite state machines, state charts, and Petri nets
are three design notations that are used in this chapter.

A simplified software development process is shown in Figure 6.1. Software analysis and
design is a step that ideally follows requirements gathering. The end result of the design step is
the design artifact that expresses a high level application architecture and interactions amongst
low level application components. The design is usually expressed using a variety of notations
such as those embodied in the UML design language. For example, UML state charts are used
to represent the design of the real-time portion of the application and UML sequence diagrams
are used to show the interactions between various application components.

The design is often subjected to test prior to its input to the coding step. Simulation tools are
used to check if the state transitions depicted in the state charts do conform to the application
requirements. Once the design has passed the test, it serves as an input to the coding step.
Once the individual modules of the application have been coded, successfully tested, and
debugged, they are integrated into an application and another test step is executed. This test
step is known by various names such as system test and design verification test. In any case,
the test cases against which the application is run can be derived from the a variety of sources,

169

170
Foundations of Software Testing 6.1. Software design and testing

Pre-requirement tasks

Prepare for requirements gathering
Y

Requirements gathering

Application requirements
Y

Analysis and design

Design
Y
Coding and integration Test generator
Code l
Y
Testing

Figure 6.1: Design and test generation in a software development process. A design is an ar-
tifact generated in the Analysis and Design phase. This artifact becomes an input to the Test
Generator algorithm that generates tests for input to the code during testing.

design being one of the sources.

In this chapter we will show how a design can be serve as source of tests that are used to
test the application itself. As shown in Figure 6.1, the design generated at the end of the anal-
ysis and design phase serves as an input to a test generation procedure. This test generation
procedure generates a number of tests that serve as inputs to the code in the test phase. Note
that though Figure 6.1 seems to imply that the test generation procedure is applied to the entire
design, this is not necessarily true; tests can be generated using portions of the design.

We introduce several test generation procedures to derive tests from finite state machines,
and state charts. The finite state machine offers a simple way to model state-based behavior
of applications. The state chart is a rich extension of the finite state machine and needs to be
handled differently when used as an input to a test generation algorithm. The Petri net is a
useful formalism to express concurrency and timing and leads to yet another set of algorithms
for generating tests. All test generation methods described in this chapter can be automated
though only some have been integrated into commercial test tools.

There exist several algorithms that take a finite state machine and some attributes of its im-
plementation as inputs to generate tests. Note that the finite state machine serves as a source
for test generation and is not the item under test. It is the implementation of the finite state ma-
chine that is under test. Such an implementation is also known as Implementation Under Test

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

6.2.

171

Foundations of Software Testing Chapter 6. Test Generation: FSM Models

and abbreviated as IUT. For example, an FSM may represent a model of a communication pro-
tocol while an IUT is its implementation. The tests generated by the algorithms we introduce in
this chapter are input to the IUT to determine if the IUT behavior conforms to the requirements.

In this chapter we shall introduce the following methods: the W-method, the transition tour
method, the distinguishing sequence method, the unique input/output method, and the partial-
W method. In Section 6.9 we shall compare the various methods introduced. Before we pro-
ceed to describe the test generation procedures, we introduce a fault model for FSMs, the
characterization set of an FSM and a procedure to generate this set. The characterization set
is useful in understanding and implementing the test generation methods introduced subse-
quently.

Finite state machines

Many devices used in daily life contain embedded computers. For example, an automobile
has several embedded computers to perform various tasks, engine control being one example.
Another example is a computer inside a toy for processing inputs and generating audible and
visual responses. Such devices are also known as embedded systems. An embedded system
can be as simple as a child’'s musical keyboard or as complex as the flight controller in an
aircraft. In any case, an embedded system contains one or more computers for processing
inputs.

An embedded computer often receives inputs from its environment and responds with ap-
propriate actions. While doing so, it moves from one state to another. The response of an
embedded system to its inputs depends on its current state. It is this behavior of an embed-
ded system in response to inputs that is often modeled by a finite state machine. Relatively
simpler systems, such as protocols, are modeled using finite state machines. More complex
systems, such as the engine controller of an aircraft, are modeled using statecharts which can
be considered as a generalization of finite state machines. In this section we focus on finite
state machines; statecharts are described in Section 7.1. The next example illustrates a simple
model using a finite state machine.

EXAMPLE 6.1. Consider a traditional table lamp that has a three-way rotary switch. When
the switch is turned to one of its positions, the lamp is in the OFF state. Moving the switch
clockwise to the next position moves the lamp to an ON-DIM state. Moving the switch further
clockwise moves the lamp to the ON-BRIGHT state. Finally, moving the switch clockwise one
more time brings the lamp back to the OFF state. The switch serves as the input device that
controls the state of the lamp. The change of lamp state in response to the switch position is
often illustrated using a state diagram as in Figure 6.2(a).

Our lamp has three states OFF, ON_DIM, and ON_BRIGHT, and one input. Note that the
lamp switch has three distinct positions though from a lamp user’s perspective the switch can
only be turned clockwise to its next position. Thus “turning the switch one notch clockwise”
is the only input. Suppose that the switch also can be moved counterclockwise. In this latter
case, the lamp has two inputs one corresponding to the clockwise motion and the other to the
counterclockwise motion. The number of distinct states of the lamp remains three but the state
diagram is now as in Figure 6.2(b). m

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

172
Foundations of Software Testing 6.2. Finite state machines

Figure 6.2: Change of lamp state in response to the movement of a switch. (a) Switch can only
move one notch clockwise (CW). (b) Switch can move one notch clockwise and counterclock-
wise (CCW).

In the example above we have modeled the table lamp in terms of its states, inputs and
transitions. In most practical embedded systems, the application of an input might cause the
system to perform an action in addition to performing a state transition. The action might be
as trivial as “do nothing” and simply move to another state, or a complex function might be
executed. The next example illustrates one such system.

EXAMPLE 6.2. Consider a machine that takes a sequence of one or more unsigned dec-
imal digits as input and converts the sequence to an equivalent integer. For example, if the
sequence of digits input is 3, 2, and 1, then the output of the machine is 321. We assume that
the end of the input digit sequence is indicated by the asterisk (*) character. We shall refer to
this machine as the DIGDEC machine. The state diagram of DIGDEC is shown in Figure 6.3.

d/ADD(num, d)

d/INIT(num, d) */OUT(num)

Figure 6.3: State diagram of the DIGDEC machine that converts sequence of decimal digits to
an equivalent decimal number.

The DIGDEC machine can be any one of three states. It begins its operation in state ¢p.
Upon receiving the first digit, denoted by d in the figure, it invokes the function INIT to initialize
variable num to 4. In addition, the machine moves to state ¢, after performing the INIT operation.
In ¢; DIGDEC can receive a digit or an end-of-input character which in our case is the asterisk.
If it receives a digit, it updates num to 10 * num + d and remains in state ¢;. Upon receiving
an asterisk, the machine executes the OUT operation to output the current value of num and
moves to state ¢;. Notice the double circle around state ¢,. Often such a double circle is used
to indicate a final state of an FSM. m

Historically, FSMs that do not associate any action with a transition are known as Moore

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

173
Foundations of Software Testing Chapter 6. Test Generation: FSM Models

machines. In Moore machines, actions depend on the current state. In contrast, FSMs that do
associate actions with each state transition are known as Mealy machines. In this book we are
concerned with Mealy machines. In either case, an FSM consists of a finite set states, a set of
inputs, a start state, and a transition function which can be defined using the state diagram. In
addition, a Mealy machine has a finite set of outputs. A formal definition of a Mealy machine
follows.

Finite State Machine:
A finite state machine is a six tuple (X, Y, Q, q, 9, O) where
e X is afinite set of input symbols also known as the input alphabet,

e Y is a finite set of output symbols also known as the output alphabet,

Q is a finite set states,

g; € @ is the initial state,

0: @ x X — @ is a next-state or state transition function, and

0 : @ x X — Y is an output function.

In some variants of FSM more than one state could be specified as an initial state. Also,
sometimes it is convenient to add F' C @ as a set of final or accepting states while specifying
an FSM. The notion of accepting states is useful when an FSM is used as an automaton to
recognize a language. Also note that the definition of the transition function ¢ implies that for any
state ¢; in @, there is at most one next state. Such FSMs are also known as deterministic FSMs.
In this book we are concerned only with deterministic FSMs. The state transition function for
non-deterministic FSMs is defined as

§:Qx X —2¢9

which implies that such an FSM can have more than one possible transition out of a state on the
same symbol. Non-deterministic FSMs are usually abbreviated as NFSM or NDFSM or simply
as NFA for Non-deterministic Finite Automata. We will use variants of NFSMs in Chapter 8 in
the context of algorithms for generating test cases to test for the timing constraints in real-time
systems.

The state transition and the output functions are extended to strings as follows. Let ¢; and
¢; be two, possibly same, states in) and s = a14a2... a, a string over the input alphabet X
of length n > 0. §(g;,s) = ¢; if 6(gi, a1) = gx and 5(gx, azas ... a,) = g;. The output function
is extended similarly. Thus O(g;, s) = O(g;, a1).0(6(qi, a1), az, . .., a,). Also, §(g;,¢) = ¢ and
O(qi,€) = €.

Table 6.1 contains a formal description of the state and output functions of FSMs given in
Figures 6.2 and 6.3. There is no output function for the table lamp. Note that the state transition
function § and the output function O can be defined by a state diagram as in Figures 6.2 and
6.3. Thus, for example, from Figure 6.2(a), we can derive §(OFF, Turn_CW)=ON_DIM. As an
example of the output function, we get O = INIT(num, 0) from Figure 6.3.

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

174
Foundations of Software Testing 6.2. Finite state machines

i1/01,i2/02

N
>

Figure 6.4: Multiple labels for an edge connecting two states in an FSM.

A state diagram is a directed graph that contains nodes representing states and edges
representing state transitions and output functions. Each node is labeled with the state it rep-
resents. Each directed edge in a state diagram connects two states.

Each edge is labeled i/ o where i denotes an input symbol that belongs to the input alphabet
X and o denotes an output symbol that belongs to the output alphabet Y. i is also known as
the input portion of the edge and o its output portion. Both i and o might be abbreviations.
As an example, the edge connecting states ¢y and ¢; in Figure 6.3 is labeled d/INIT (num, d)
where d is an abbreviation for any digit from 0 to 9 and INIT(num,d) is an acttion.

Multiple labels can also be assigned to an edge. For example the label i1 /01, iz, / 02 associ-
ated with an edge that connects two states ¢; and ¢; implies that the FSM can move from ¢, to
¢g; upon receiving either i; or i;. Further, the FSM outputs o; if it receives input i; and outputs
oo if it receives os. The transition and the output functions can also be defined in tabular form
as explained in Section 6.2.2.

6.2.1. Excitation using an input sequence

In most practical situations an implementation of an FSM is excited using a sequence of input
symbols drawn from its input alphabet. For example, suppose that the table lamp whose state
diagram is in Figure 6.2(b) is in state ON-BRIGHT and receives the input sequence r where

r=Turn_CCW Turn_CCW Turn_CW

Using the transition function in Figure 6.2(b) it is easy to verify that the sequence s will move
the lamp from state ON_BRIGHT to state ON_DIM. This state transition can also be expressed
as a sequence of transitions given below.

5(ON_BRIGHT, Turn_CCW)= ON_DIM
5(ON_DIM, Turn_CCW)= OFF
§(OFF, Turn_CW)= ON_DIM

For brevity, we will use the notation T'(¢;,2) = ¢; to indicate that an input sequence z of
length one or more moves an FSM from state ¢, to state ¢;. Using this notation we can write
J(ON_BRIGHT,7)=ON_DIM for the state diagram in Figure 6.2(b).

We will use a similar abbreviation for the output function O. For example, when excited
by the input sequence 1001*, the DIGDEC machine ends up in state ¢ after executing the
following sequence of actions and state transitions:

O(Q(), 1)=|N|T(num,1), 5((](), 1) =q

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

175

Foundations of Software Testing Chapter 6. Test Generation: FSM Models

O(q1,0)=ADD(num,0), 6(¢1,0) = ¢

(
O(q1,0
(
(

)=

)=ADD(num,0), §(¢1,0) = ¢
O(q1,1)=ADD(num,1), §(q1,1) = ¢

)=

O(q1,*)=0OUT(num), 6(q1,*) = ¢

Once again, for brevity, we will use the notation O(q, r) to indicate the action sequence exe-
cuted by the FSM on input » when starting in state ¢q. We also assume that a machine remains
in its current state when excited with an empty sequence. Thus d§(gq,¢) = ¢. Using the ab-
breviation for state transitions we can express the above action and transition sequence as
follows

0O(qo,1001%)=INIT(num, 1) ADD(num,0) ADD(num,0) ADD(num, 1) OUT (num)

5(QO, 1001*) = @2

Table 6.1: Formal description of three FSMs from Figures 6.2 and 6.3.

Figure 6.2 (a) Figure 6.2 (b) Figure 6.3
X | {Turn-CW} {Turn-CW, Turn-CCW} {0, 1, 2, 3, 4, 5,
6,7,8,9, *}
Y | None None {INIT, ADD, OUT}
@ | {OFF, ON-DIM, {OFF, ON-DIM, {90, @1, @2}
ON-BRIGHT} ON-BRIGHT}
w | {OFF} {OFF) ©
None None Q2
0 | See Figure 6.2(a) See Figure 6.2(b) See Figure 6.3
O | Not applicable Not applicable See Figure 6.3

6.2.2. Tabular representation

A table is often used as an alternative to the state diagram to represent the state transition
function ¢ and the output function O. The table consists of two sub-tables that consist of one
or more columns each. The leftmost subtable is the output or the action sub-table. The rows
are labeled by the states of the FSM. The rightmost sub-table is the next state sub-table. The
output sub-table, that corresponds to the output function O, is labeled by the elements of the
input alphabet X. The next state sub-table, that corresponds to the transition function 4, is
also labeled by elements of the input alphabet. The entries in the output sub-table indicate
the actions taken by the FSM for a single input received in a given state. The entries in the
next state sub-table indicate the state to which the FSM moves for a given input and in a given
current state. The next example illustrates how the output and transition functions can be
represented in a table.

EXAMPLE 6.3. The table given below shows how to represent functions ¢ and O for the

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

176
Foundations of Software Testing 6.2. Finite state machines

DIGDEC machine. In this table the column labeled “Action”, defines the output function by
listing the actions taken by the DIGDEC machine for various inputs. Sometimes this column
is also labeled as “Output” to indicate that the FSM generates an output symbol when it takes
a transition. The column labeled “Next State” defines the transition function by listing the next
state of the DIGDEC machine in response to an input. Empty entries in the table should be
considered as undefined. However, in certain practical situations, the empty entries correspond
to an “error” action. Note that in the table below we have used the abbreviation d for the ten
digits, 0 through 9. m

Current Action Next

state state
d * d *

qo INIT (num, d) 0

q ADD (num, d) | OUT (num) | ¢1 | g0

q2

6.2.3. Properties of FSM

FSMs can be characterized by one or more of several properties. Some of the properties
found useful in test generation, are given below. We shall use these properties later in while
explaining algorithms for test generation.

Completely specified FSM: An FSM M is said to be completely specified if from each state
in M there exists a transition for each input symbol. The machine described in Example 6.1
with state diagram in Figure 6.2(a) is completely specified as there is only one input symbol
and each state has a transition corresponding to this input symbol. Similarly, the machine with
state diagram shown in Figure 6.2(b) is also completely specified as each state has transitions
corresponding to each of the two input symbols. The DIGDEC machine in Example 6.2 is not
completely specified as state ¢y does not have any transition corresponding to an asterisk and
state ¢» has no outgoing transitions.

Strongly connected: An FSM M is considered strongly connected if for each pair of states
(g, g;) there exists an input sequence that takes M from state ¢; to g¢;. It is easy to verify that
the machines in Example 6.1 are strongly connected. The DIGIDEC machine in Example 6.2 is
not strongly connected as it is impossible to move from state ¢, to ¢g, from ¢ to ¢;, and from ¢
to ¢o. In a strongly connected FSM, given some state ¢; # ¢o, one can find an input sequence
s € X* that takes the machine from its initial state to ¢;. We therefore say that in a strongly
connected FSM, every state is reachable from the initial state.

V-equivalence: Let My = (X,Y,Q,mt, T1,01) and My = (X, Y, Q2,m3, To, O2) be two
FSMs. Let V denote a set of non-empty strings over the input alphabet X, i.e. V C XT.
Let ¢; and g¢;, i # j, be the states of machines M; and M, respectively. Statesg; and ¢; are
considered V-equivalent if O;(u,s) = Oz(v, s) for all s € V. Stated differently, states ¢; and ¢;
are considered V-equivalentif M, and M, , when excited in states ¢; and g¢;, respectively, yield
identical output sequences. States ¢; and ¢; are said to be equivalent if Oi(q;,) = O2(g;, 1)
for any set V. If ¢; and ¢; are not equivalent then they are said to be distinguishable. This

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

6.3.

177

Foundations of Software Testing Chapter 6. Test Generation: FSM Models

definition of equivalence also applies to states within a machine. Thus machines M; and M,
could be the same machine.

Machine equivalence: Machines M; and M, are said to be equivalent if (a) for each state o
in M1 there exists a state ¢’ in M2 such that o and ¢’ are equivalent and (b) for each state o
in M2 there exists a state ¢’ in M1 such that ¢ and ¢’ are equivalent. Machines that are not
equivalent are considered distinguishable. If M1 and M2 are strongly connected then they are
equivalent if their respective initial states, m¢ and m2, are equivalent. We write M; = M, if
machines M; and M, are equivalent and M; # M, when they are distinguishable. Similarly, we
write ¢; = ¢; when statesg; and ¢; are equivalent and ¢; # g¢; if they are distinguishable.

k-equivalence: Let My = (X,Y,Qi,m}, T1,0:1) and My = (X, Y, Q2,mZ, Tz, O2) be two
FSMs. States ¢; € @1 and ¢; € Q. are considered k-equivalent if when excited by any in-
put of length k, yield identical output sequences. States that are not k-equivalent are con-
sidered k-distinguishable. Once again, M; and M> may be the same machines implying that
k-distinguishability applies to any pair of states of an FSM. It is also easy to see that if two
states are k-distinguishable for any k& > 0 then they are also distinguishable for any n > k. If
M, and M, are not k-distinguishable then they are said to be k-equivalent.

Minimal machine: An FSM M is considered minimal if the number of states in M is less than
or equal to any other FSM equivalent to M.

EXAMPLE 6.4. Consider the DIGDEC machine in Figure 6.3. This machine is not com-
pletely specified. However, it is often the case that certain erroneous transitions are not indi-
cated in the state diagram. A modified version of the DIGDEC machine appears in Figure 6.5.
Here we have labeled explicitly the error transitions by the output function ERROR(). m

d/ADD(num, d) (d|*)/ERROR()

d/INIT (num, d) */OUT(num)

(d|*)/ERROR()

Figure 6.5: State diagram of a completely specified machine for converting a sequence a one or
more decimal digits to their decimal number equivalent.

Conformance testing

The term conformance testing is used during the testing of communication protocols. An imple-
mentation of a communication protocol is said to conform to its specification if the implemen-

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 7, 2006

