PAGE
20
J-Listen

JListen 1.2

Prototype User Manual

Edited by Aditya Mathur: December 18, 2010

[image: image11.wmf]

Team Members

Vijaya Ganesh.V [Team leader]

Jagadish Prasath R

Pradap K V

Mudit Mathur

Gopinath M C

Nageswar Rao Katta

B.I.T.S Pilani, India

Client

Prof. Aditya P Mathur.

Purdue University. USA
TABLE OF CONTENTS
2Overview:

2Architecture:

2Auraliser:

2Configuration Server:

3Listener

4JListen Toolkit:

4Auraliser:

4LSL Editor:

6Instrumentor:

7Registration of Program:

8Configuration Server:

9Configuration Server - Network Info

10Listener:

11Program Registration:

12Event- Sound Mapping:

13Recorder:

14Deployment information:

14Software Requirements:

14Source File Structure:

14Batch Files:

14EXECUTING IN LINUX:

14INSTRUMENTOR

15CONFIGURATION SERVER

15LISTENER

15EXECUTION PLATFORM:

16Order of invocation:

18Auralisation Of Sample Programs

18Program 1:

19Auralization Procedure:

20Program 2:

20Auralisation Parameters:

LIST OF FIGURES
4Fig 1: Instrumentor – Select Java program

5Fig 2: LSL Editor – compose LSL Command

6FIG 3: LSL EDITOR – LSL Commands pane

7FIG 4: Auraliser - Network information pane

8FIG 5: configuration server – programs list & listener status pane

9FIG 6: Configuration Server – Network Information pane

10FIG 7: Listener – Registration & Login-Logout Pane

11FIG 8: Listener – Program Selection pane

12FIG 9: LISTENER – EVENT SOUND Mapping Pane

13FIG 10: configuration server – Recorder pane

JListen Prototype user manual

1. Overview:

Program auralization refers to the act of adding sounds to a program so that when the program executes the sounds added are played back. Doing so assists in the analysis of runtime behavior of the auralized program.

JListen is a toolset for the auralisation of Java programs. Using this toolset, a programmer can specify the activities and events in a Java program to be auralised. The activities and events to be auralized are specified using a specification in a language named Listen Specification Language (LSL) designed by Dave Boardman and Aditya Mathur originally for the LSL/C system. Based on an LSL specification, code is added to a given Java program. When executed this code plays back sounds as and the specified events and activities occur. The prototype described here implements the overall architecture of this toolset.

2. Architecture of JListen:

JListen has three components.

· Auraliser

· Configuration Server

· Listener

Auraliser:

Auraliser has an Editor to help create an LSL command file and an Instrumenter to instrument the Java source file according to the LSL specifications.

Using the Editor, a programmer can specify Events, Activities to be listened for a particular scope (entire program, specific class, function) and sound variables to signal the occurrence of events.

Instrumenter instruments specified Java Source file according to the LSL Specification. This involves inserting of calls to event generation routines, which in turn delegates requests to Configuration Server.

Configuration Server:

The decorated Java code when run by the auraliser sends event signals to the Configuration Server. This in turn delegates events or sound generation requests to all registered Listen Sound Servers distributed across the globe.

Configuration Server also takes care of registration of different Listeners for the list of available programs. Once registration is done, the Event-Sound mapping (.LSS) file is sent to the Listener.

Upon logging in a user gets connected to the Configuration Server. The Configuration Server sends the list of Registered Programs and New programs to the Listener. Listener in turn can register any new program or unregister registered programs.

Listener

Listen Sound Server waits for event requests from Configuration Server. When an event signal arrives, Listener checks for the particular program, the event’s current status (ON/ OFF), and its default sound variable or current sound variable (if default sound variable is overridden by current sound variable) and sends signals to synthesizer routines which in turn generates sound accordingly.

Listen Sound Server can listen to more than one program from different Configuration Servers at any point of time.

During the execution of a program (i.e., in run time), the user can change the sound mappings for any event in a program or even enable/ disable an event.

3. JListen Toolkit:

The Jlisten Toolkit has three components in correspondence with Jlisten architecture.

· Auraliser

· LSL Editor

· Instrumenter

· Configuration Server

· Listen Sound Server

Auraliser:

LSL Editor:

Figure shown below is used to make LSL commands.

The user has to select the Java program that need to be auralised.

[image: image1.png]ur

LSLEditor

~=lolx|

LSL EDITOR

Event-Activty List

if_body_begi
if_body_end

continue

for_body_begin E
for_body_end
while_body_begin
while_body_end

do_while_body_begin
do_while_body_end

in

Java Program

Instrumentor

Decorate

Register

ST
3 -MSSETUP.T

[atrack_testjava
[dtrack_testjava

D) Fnarmestiava

) methog_saijava

D

D) testestava

Fiename: [Fraostiovs

| | open

Files of ;| dava Files(*java)

cancel

Fig 1: Instrumentor – Select Java program

Adding LSL Instructions: To add an LSL command, click any event/ activity in the event/ activity pane, a window is shown with required LSL Parameters. The fields in the window are according to the activity/ event selected.

As shown in the figure below, the user has to select values for Scope, and the actual values that he wants to auralise, along with Instrument names.

[image: image2.jpg]LSLEdtor | Networkinfo.|

el 3|
LSL
Scope Instrument Names
0 Event.Activity List Class Name fatrack_test Piano
Continue = Bright Piano
break Electric Grand
method_all_bosn weadtome [] oy ok pano
Electric Piano 1
arameore Eloctric Piano 2
Harpsichord
|Clavinet
Return Tyve s
Return Type (Gickenspiel
Listen Specifictic
Values
Note
Wethodame e ©
pramets [|| —0——

[[men

Fig 2: LSL Editor – compose LSL Command

Once the user fills the LSL Command parameters, LSL command is generated and shown in LSL Editor.

[image: image3.png]LSLEditor

~=lolx|

LSL EDITOR

EventActivity List

continue
break
method_call_begin
method_call_end
constructor

dirack
atrack_method
alrack_class
fnalize

Java Program

Instrumentor

[piFinaimestjava

Register

Decorate

Listen Specifiction Language - Java

loegin auralspec
lspecmodule FinalTest
lbegin FinalTest

Inotty atrack when do_atrack_begin until do_atrack_end in class=atrack_{est using Vibraphone ;

lend FinalTest

FIG 3: LSL EDITOR – LSL Commands pane

Instrumentor:

After adding the LSL Instructions, the user can Decorate the Java program according to the LSL instructions specified.

Once Decoration is done successfully, Register button is enabled. [Register button is enabled only when; Configuration Server details are filled in Network Info Pane]. If Network info is not filled, the pane is shown as follows.

[image: image4.png]Auraliser i

(LSLEitor | Networkinfo

~=lolx|

Configuration Server Information

Configuration Server IP Address. localnost

Configuration Server Port No 1009

Update

) Coniuration Sorver I Adarss, Port o Successfuly Udatedt

oK

FIG 4: Auraliser - Network information pane

The user has to register IP address and Port No. of Configuration Server.

Registration of Program:

Once the program is auralised successfully, Register button will be enabled in the Instrumentor panel. User can register the program at the Configuration Server whose IP Address and Port No. are given in the Network Info Tab.
Configuration Server:

Configuration Server acts as mediator between Auraliser and Listeners.

Configuration Server has the list of decorated programs (“.PL Files” – ProgramList) for which it delegates event calls to registered Listeners. This “.PL” file is updated whenever a Program from Auraliser registers at Configuration Server.
It displays the list of registered Listeners, its current status (ON/OFF) for a particular program. This list is taken from a file (“.MAP_FILE”).

Whenever a Listener logs-in, Configuration Server responds with a list of Registered programs, New programs. If new programs are registered, corresponding event-sound mapping files (“.LSS Files”) are transferred to the Listener.

If an event request is sent by auraliser for particular program, Configuration Server checks from the list of registered Listeners in that particular Configuration File (“.MAP_FILE” Files with name <program-name>.MAP_FILE) and sends to those registered Listeners that are logged-in currently.

[image: image5.png][CONFIGURATION SERVER

Configuration Server | Network info |
CONFIGURATION SERVER

~=lolx|

Programs Listeners Status

atrack_test IP Address FortNo Availability

] locainost (1028 v

FinalTest

FIG 5: configuration server – programs list & listener status pane

By selecting a Program from Programs List box, user can view the list of listeners registered for the program. The list shows the IP Address and Port No of the listeners. This list also shows the status of the listeners, whether they are currently logged-in or not.

After the Configuration Server has started, New programs might have been registered. To view the latest updations, the user can press Refresh button that will display the entire set of programs and their listeners’ current status.

Configuration Server - Network Info

When the Configuration Server is started for first time, user has to fill-in details about IP Address, Port No., so that Auraliser, Execution platform, Listener can communicate with the Configuration Server through the IP Address, Port No.

[image: image6.png][Econricurarionserver_ -[olx|
(Confguration Server | Network nfo |

Network Information

1P Address localnost
Port Number 1099

Update

) Notworormaton Updated succosstuty?

oK

FIG 6: Configuration Server – Network Information pane

Listener:

Listener has to register at Configuration Server to receive events.

Every Listener has to login with its identity so as to get connected with the Configuration Server.

[image: image7.png]~=lolx|

Listener Network Information

HostIP Address [ocathost
Host Port No l1oaa
Configuration Server IP Address localnost
Configuration Server Port No l1oaa

Register Listener ux

Press ‘Al

¢ to Register Listener

FIG 7: Listener – Registration & Login-Logout Pane

Program Registration:

Once Listener is registered, it can login at Configuration Server and register for programs.

Once the connection is established between Configuration Server and Listener, Listener receives the list of registered and new decorated programs.

The lists of registered, new programs are shown in the Program details pane shown below.

User can register new programs, in which case, corresponding “.LSS” files are received from Configuration Server. Listener can unregister any existing programs after which it will not receive any events for that particular program.

[image: image8.png]Program Info

~=lolx|

Program Details

Registered Programs

UnRegistered Programs

FinalTest

[PROGRAM REGISTERED

Program ‘FinalTest Registered!

oK

Select a New Program, Press '<'to Register

FIG 8: Listener – Program Selection pane

Event- Sound Mapping:

User can select and view the event-sound mapping (“.LSS”) files for any registered program. This mapping shows the list of events, corresponding default sound mappings, and current sound mappings. The user can modify the sound mappings, enable/ disable an event even at run-time.

[image: image9.png](erticaton | Programfa | Ever-Sound oo | Recorder] sounp

Event-Sound Mapping Information piano
erightPiano
Electic Grand
Program atrack_test Horky Tonik Piano
Electic Piano 1
Elect Piano 2

EventiActiiy | taus Defaultvalue | Currentvaiue | Update

diack_test_do_ot 7 Electic Grand___[Electic Orand MHarsichord

constructor_atac 7] Gloskenspiel —[Glsckenspiel Clavinet

finalize_dtrack_test 7] Marimba Marimba Celesta

dtrack_test_do_dt. 7] Hylophone Hylophone Glockenspiel

arack est_atac. “ Vibraphone Vibrahone Miost B¢
Vibraphone
Mairiba
boophane
Tubular Bel
Dutimer
Harmmond Organ
Perc Organ

Rack Organ
Update (Church Organ =

o || cancer

BT=TE] |2 souro variaBLES U TE|

FIG 9: LISTENER – EVENT SOUND Mapping Pane

Recorder:

Programs can be recorded. Whenever events come from Configuration Server, they will be recorded and can be played offline. The Recorder Pane is used to set recording options for a program. User can select a Program to record, deselect a recorded program.
[image: image10.png]g =T
Recorder

atrack_test

[

FIG 10: configuration server – Recorder pane

When the Play button is pressed, the recorded program is played. All the Events received and recorded by the Recorder are played again. The user can change the Event Sound Mappings, and recorder will play sounds according to the current settings.

If the program is not recorded, message will be shown as “Program Not yet recorded”. Once the program is recorded, the user can play it.

Once the Listener finishes its operations, it logs out of the Configuration Server, either by closing the window or by pressing Logout button in login pane.

4. Deployment information:

Software Requirements:

Jdk1.4 or above.

Source File Structure:

Various components of J-Listen are

Auraliser(Instrumentor), Configuration Server, Listener

The files include

	COMPONENT
	Source Code
	Batch File
	RMI Registry Starter

	Instrumentor
	Instrumentor.zip
	Instrumentor.bat
	NOT REQUIRED

	Configuration Server
	ConfServer.zip
	ConfServer.bat
	RmiRegistry_ConfServer.bat

	Listener
	Listener.zip
	Listener.bat
	RmiRegistry_Listener.bat

We have used third party source code for parsing and instrumentation.

(http://www.glenmccl.com/instr/instr.htm).

Batch Files:

Batch files are provided separately to start the individual component.

(Auraliser, Configuration Server, Listener).

Batch file contents need to be changed according to your jdk path and application(source file) path.

$JAVA_HOME variable represents Java Path eg: d:\jdk1.4

$APPLICATION_PATH variable represents Base directory e.g: d:\JListen_1.2\

EXECUTING IN LINUX:

Use this following command to execute in Linux.

Java –DJava.library.path=.[packagename.Javafilename]

INSTRUMENTOR

Instrumentor.bat

Contents:

cd $APPLICATION_PATH\instrumentor\

set path=$JAVA_HOME\bin

set classpath=$APPLICATION_PATH\instrumentor\

Java view.AuraliserUI

CONFIGURATION SERVER

RmiRegistry_ConfServer.bat

Contents:

set path=$JAVA_HOME\bin

set classpath=$APPLICATION_PATH\confserver\

start $JAVA_HOME\bin\rmiregistry

ConfServer.bat

Contents:

cd $APPLICATION_PATH\confserver\

set path=$JAVA_HOME\bin

set classpath=$APPLICATION_PATH\confserver\

Java view.ConfigurationServerUI
LISTENER

RmiRegistry_Listener.bat

Contents:

set path=$JAVA_HOME\bin

set classpath=$APPLICATION_PATH\listener\

start $JAVA_HOME\bin\rmiregistry 2002

listener.bat

Contents:

cd $APPLICATION_PATH\listener

set path=$JAVA_HOME\bin

set classpath=$APPLICATION_PATH\listener\

start Java view.MainFrame

EXECUTION PLATFORM:

Once the program is auralised, decorated code will be created and stored in the following folder

JLISTEN\Decorated\PROGRAM_NAME\PROGRAM_NAME.Java
The exact location of JLISTEN Folder depends on the $APPLICATION_PATH.

Eg:

Consider the auralisation of the following program: dtrack_test.Java
If the application resides in d:\JListen_1.2\instrumentor

Then decorated code will be created in,

D:\JLISTEN_1.2\Decorated\dtrack_test\dtrack_test.Java
To run the decorated code in command prompt,

Set the path for jdk eg: set path=c:\jdk1.4\bin
Compile dtrack_test.Java as Javac dtrack_test.Java
Run dtrack_test as Java dtrack_test
Execution of the Auralised program will send events to Configuration Server, which in-turn will delegate events to listeners that are logged in at that moment.

Order of invocation:

· RmiRegistry_ConfServer.bat at Configuration Server.

· ConfServer.bat (Configuration Server need to be up first.)

· After starting ConfServer for the first time, enter Network Information in the Second Panel. (Enter the Host IP address and Port number in which RMIRegistry for ConfServer is running)
· Instrumentor.bat (Auraliser after decoration, can register program at Conf Server)

· RmiRegistry_Listener.bat at Listener

· Listener.bat
· After starting Listener for the first time, enter the Network Information (Host IP Address, Port number in which RMIRegistry for Listener is running, Configuration Server IP Address, Port number of Configuration server in which RMIRegistry for ConfServer is running). (To have both Configuration Server and Listener in same machine, use Listener with Port number 2002. See Batch file “rmiregistry_listener.bat”
· (After program registration, Listener can login and register/ unregister programs)

Then, the decorated code can be executed as explained in BATCH FILES – EXECUTION PLATFORM.

5. Auralisation Of Sample Programs

Program 1:

/*

atrack_test.Java

*/

public class atrack_test

{

public atrack_test()

{

}

public void do_atrack()

{

try

{

Thread.sleep(2000);

}

catch(Exception e)

{

}

int i=0;

for(;i<100;)

{

i+=10;

}

try

{

Thread.sleep(2000);

}

catch(Exception e)

{

}

}

public static void main(String args[])

{

atrack_test objDT = new atrack_test();

objDT.do_atrack();

}

In the above program, the Instrumentation points are,

· Data track of integer variable “i”

· Activity track of method “do_atrack()”

Auralization Procedure:

Select “atrack_test.Java”

Data track of “i”:

· Click on “dtrack” in “Event-Activity List”

· Enter the following details in “Auralisation Parameters” Window

In SCOPE Panel,

Class Name: atrack_test

Method Name: do_atrack

In VALUES Panel,

Identifier : i

· Select an INSTRUMENT and NOTES

· Press OK.

Activity Track of “do_atrack”:
· Click on “atrack_method” in “Event-Activity List”

· Enter the following details in “Auralisation Parameters” Window

In SCOPE Panel,

Class Name : atrack_test

In VALUES Panel,

Method Name: do_atrack

· Select an INSTRUMENT and NOTES

· Press OK.

· Press Decorate in MAIN WINDOW

· Press REGISTER to register program with Configuration Server.

· Start Listener Component, REGISTER and then LOGIN

· Check for New Programs.

· Select a program for Registration.

Whenever auralized program is executed, events will be sent to all the registered Listeners.
Program 2:

public class method_call

{

public void method_loop()

{

for(int iLoop=0; iLoop<10; iLoop++)

{

}

System.out.println("Test");

}

public static void main(String args[])

{

method_call objMC = new method_call();

objMC.method_loop();

}

}

In the above program, method call “method_loop” is the instrumentation point.

Auralisation Parameters:

In VALUES Panel,

Method Name: objMC.method_loop

� EMBED Word.Picture.8 ���

Prototype User Manual

 Team: Hexagun

[image: image12.png]

[image: image13.wmf]

_1109491199.doc
[image: image1.png]

