
EXPLAINER: Entity Resolution Explanations
Amr Ebaid∗, Saravanan Thirumuruganathan†, Ahmed Elmagarmid†, Mourad Ouzzani† and Walid G. Aref∗

∗Purdue University †Qatar Computing Research Institute, HBKU
{aebaid, aref}@cs.purdue.edu, sthirumuruganathan@acm.org, {aelmagarmid, mouzzani}@hbku.edu.qa

Abstract—Entity Resolution is a fundamental data cleaning
and integration problem that has received considerable attention
in the past few decades. While rule-based methods have been used
in many practical scenarios and are often easy to understand,
machine-learning-based methods provide the best accuracy. How-
ever, the state-of-the-art classifiers are very opaque. There has
been some work towards understanding and debugging the
early stages of the entity resolution pipeline, e.g., blocking and
generating features (similarity scores). However, there are no
such efforts for explaining the model or its predictions. In
this demo, we propose EXPLAINER, a tool to understand and
explain entity resolution classifiers with different granularity
levels of explanations. Using several benchmark datasets, we will
demonstrate how EXPLAINER can handle different scenarios for
a variety of classifiers.

I. INTRODUCTION

Entity Resolution (ER, for short), a.k.a. Record Linkage,
Entity Matching, or Duplicate Detection, identifies pairs of
data instances that refer to the same real-world entity. ER has
been the subject of many investigations in both industry and
academia in the past few decades [1], [2]. Several recent stud-
ies [3]–[5] show that machine learning (ML)-based methods
often provide state-of-the-art results for ER.

A key impediment to using these ML-based solutions in
practice is that end-users are given the output (i.e., the
matching tuples) without sufficient explanation of why these
tuples are matching. This state of affairs may hinder the use
of these ML-based solutions even if they deliver the best
results. With ML affecting life-altering actions nowadays –
e.g., loan approval, job hiring, and medical diagnosis – comes
the critical need and motivation for explainability. Explana-
tions are necessary to build trust in the decision process,
and increase the adoption of (semi-)automated systems. They
allow for informed human involvement and obtaining user
feedback. They also help experts and developers debug errors,
compare approaches, and improve functionality. Besides, this
transparency is now required by new laws and regulations to
justify how these decisions are made.

A recent study of explainability in data integration sys-
tems [6] concurs that there have been several approaches
towards explaining systems (i.e., explicit causal explanations)
for tasks like schema matching, schema mapping, and data
fusion. However, none of the current ER systems explicitly
explain their results.

In this demo, we present EXPLAINER, a system that takes
two input datasets to be deduplicated along with an ML model
that is trained for such task, and in turn helps users understand
the outcome of the ML model from various angles.

For this purpose, we adapt general-purpose explanation
tools into the context of ER. While these tools provide
useful instance-level or model-level explanations, those are not
sufficient in the context of ER, and new techniques are needed
to enable new types of ER-specific analyses. In EXPLAINER,
we build upon them and extend their functionalities to provide
more profound explanations and deeper analyses of their
collective outcomes.

More specifically, EXPLAINER provides the following new
functionalities for explaining ML-based ER:

• Global Explanations: A typical user could be over-
whelmed by individual explanations. Hence, we post-
process these explanations to help explain the overall ML
model and how different features drive its predictions.
Furthermore, we also derive feature importance and vi-
sualize predictions (explanations) against features values
(contributions).

• Representative Tuple Pairs. Typically, the user is not
interested in manually inspecting the explanations of all
tuple pairs in order to validate the model. It is desirable
to identify a small set of representatives that provide a
meaningful and diverse perspective of the ML model.

• Model Analysis: We provide a mechanism to analyze
where the model works well (true positives and true
negatives), and where it does not (false positives and false
negatives).

• Differential Analysis: One can obtain meaningful in-
sights on how multiple ML models fare on ER task by
focusing on where they disagree. This can be achieved by
mining the explanations provided by each of the models
for these tuple pairs.

Several challenges arise when building this framework for
ER explanations. When it comes to interpretability, we need
to provide understandable explanations to the end-user. Yet,
we cannot assume any knowledge of the underlying model
internals, and have to provide model-agnostic explanations.
For interactivity, the framework should explain how the
model would behave if certain features were different, provide
flexibility to navigate through different granularity levels of
explanations, and allow for comparing between different un-
derlying models. Finally, the framework has to target different
audience types and levels of expertise, and provide different
functionalities for either regular users who want to visualize
explanations of an ER model on a specific dataset, or experts
who want to improve the model, engineer its features, or debug
its errors.



II. SYSTEM OVERVIEW

In this section, we give an overview of the typical ER
pipeline, and how EXPLAINER weaves in to explain the model
and its predictions. Notice that we are not investigating the
ER pipeline itself (e.g., blocking and feature selection), but
are rather focusing on interpreting its predictions.

A. Entity Resolution
Let R and R′ be two relations with aligned schema

{A1, A2, . . . , Am}. Furthermore, let t[Aj ] be the value of
Attribute Aj on Tuple t. Given all distinct tuple pairs (t, t′) ∈
R × R′, ER aims to identify the pairs of tuples that refer to
the same real-world entities.

Blocking. Typically, ER solutions run blocking methods first,
which generate a candidate set C ⊆ R×R′ that includes tuple
pairs that are likely to match.

Training/Testing Data. Most, if not all, ER solutions need
training/testing data, which can be formalized as follows: A
labeled dataset is a set of triplets L ⊆ R×R′×{0, 1}, where
Triplet (t, t′, 1) (resp. (t, t′, 0)) denotes that Tuples t and t′

are (resp. are not) duplicates.

B. Explanations for Entity Resolution
While machine learning provides amazing results in many

applications, a common reservation against its use is the lack
of transparency and understanding of why a decision is made
by a given ML algorithm. Thus, explaining ML algorithms has
been the subject of intense research activity.

Some models (e.g., Decision Trees and Linear Models) are
interpretable, but many other models are harder to understand.
To explain a black-box model, model-agnostic tools either
learn an interpretable model on the predictions of the under-
lying model, or alter the model inputs to monitor its changes.

Some tools focus on how different features contribute to
every single instance prediction (local explanations), while
other tools compute the combined feature importance, or
summarize the model as a whole (global explanations).

In this demo, we leverage various general-purpose expla-
nation tools for explaining ML-based ER. LIME [7] explains
the predictions of any classifier by approximating the classifier
locally with an interpretable model for perturbed inputs. It also
presents a set of representative instances, selected via sub-
modular optimization, as an explanation of the whole model.
Anchors [8] is another tool that targets local explanations by
providing explanations based on if-then rules (anchors) that
sufficiently anchors the prediction locally, such that changes
to the rest of the feature values of the instance do not change
its predicted class. BRL [9] aims to output global explanations
that consist of a series of if-then-else statements. These rules
discretize the feature space into a series of simple interpretable
decision statements. Finally, Skater [10], by datascience.com,
uses a combination of algorithms to clarify the relationships
between the data a model receives and the output it produces.

While these tools do provide local and global explana-
tions, we build upon their collective multiple-granularity ex-
planations to support further use-cases in the ER context.

Fig. 1. ER Pipeline and EXPLAINER Architecture

EXPLAINER takes in the tuple pairs, labeled data, features
and trained model, and processes the explanations from the
underlying tools to output more profound analyses. Several
examples will be highlighted in the demo. An overview of the
ER pipeline and EXPLAINER architecture is shown in Fig. 1.

III. DEMONSTRATION OVERVIEW

We propose to showcase EXPLAINER1 in action. The
audience will choose among various datasets and classifiers,
for which EXPLAINER will provide explanations at multiple
granularities. Different scenarios will help users understand the
dataset and the classifier, figure out the important features and
fine-tune them, and inspect when and why the model performs
badly and address such shortcomings.

Due to space limitations, we only show examples on the
DBLP-ACM dataset. However, in the actual demo, we will
showcase several multi-domain benchmark datasets [11], [12]
that have been frequently used in ER research, along with
different classifiers from Magellan [3]. Since EXPLAINER
deals with classifiers as black-boxes and does not assume any
knowledge of the underlying models, it can be easily extended
to work with others without loss of generality.

The different scenarios of the demo are as follows: 1) Global
Explanations to present a global interpretation of an ER model
via post-processing the instance-level explanations. 2) Model
Analysis to provide a deeper understanding and highlight when
the model works well and when it does not. 3) Differential
Analysis to compare two different classifiers with a focus on
where they differ.

A. Global Explanations

While several frameworks provide local explanations for
predictions on instance-level, our goal in this scenario is to
provide a global understanding of the ER model in whole. To

1https://dcx.cs.purdue.edu



that end, EXPLAINER uses different channels to communicate
various aspects and properties of the model to the end user
(examples are shown in Fig. 2):
• Feature Importance provided by Skater [10] or derived

from feature contributions over all local explanations
(Fig. 2a). This helps understand how significant each
feature is, and how much it affects the model decisions.

• Approximating the model as a BRL [9] (Fig. 2b). This
helps compare features importance and visualize how
each guides the model through the feature space.

• Plotting all predictions against feature values to visualize
different clusters and inspect predictions in each cluster.

• Plotting all local explanations against feature weights to
visualize how effectively different features can distin-
guish matches from non-matches.

• Choosing a set of representative explanations as a sum-
mary of all explanations (Fig. 2c), another shot at global

(a) Feature Importance

(b) Bayesian Rule List (BRL)

(c) Feature weights for representative explanations

Fig. 2. Global Explanations for Random Forest classifier on DBLP-ACM

understanding of the classification model. While SP-
LIME [7] calculates top-K diverse explanations, it as-
sumes equal contributions for features, and does not
distinguish between important and unimportant ones. We
use the K-Medoids algorithm [13] in order to take feature
weights into consideration as well. The K-Medoids algo-
rithm chooses representatives among explanations them-
selves, attempting to minimize the distance (in feature
weights) between those in the same cluster.

All of these can help the non-expert user have an overall
perspective of the ER model and identify important features
and their corresponding contributions to the classifier. They
also allow experts to carry out feature engineering and proceed
further with improving and fine-tuning the model.

B. Model Analysis

In this scenario, the goal is to have a deeper understanding
of the model and features via analysis on the explanations. Us-
ing individual basic explanations, we construct more advanced
informed interpretations (examples are shown in Fig. 3):
• Inspecting every individual explanation by LIME [7]

and Anchors [8]. This can help answer why a specific
instance is a match (true positive) or a non-match (true
negative), and more interestingly explain erroneous pre-
dictions (false positives and false negatives).

• Visualizing representative explanations of incorrect pre-
dictions, i.e., false positives and false negatives, to high-
light where the model fails (Fig. 3a).

• To highlight possible correlations between features and
explain which sets of features contributed together to-
wards a prediction, we mine frequent itemsets and asso-
ciation rules [14] from explanations formatted as vectors
of feature weights (Fig. 3b).

(a) Representative explanations of incorrect predictions

(b) Features Frequent Itemsets

Fig. 3. Model Analysis for Random Forest classifier on DBLP-ACM



TABLE I
WRONG LABELS IN DBLP-ACM DATASET

title authors venue year
Reminiscences on
Influential Papers

Richard T.
Snodgrass SIGMOD Record 1998

Reminiscences on
influential papers

Richard
Snodgrass ACM SIGMOD Record 1998

XPath processing in
a nutshell

Reinhard
Pichler et al SIGMOD Record 2003

XPath processing in
a nutshell

Georg Gott-
lob et al ACM SIGMOD Record 2003

• Mining FD (CFD) rules [15] from explanations’ feature
contributions formatted as binary feature vectors, to com-
pare against rule-based global explanations and feature
importance results.

The above approaches towards batch explanations allow to
zoom in beyond local explanations and contrast against global
explanations. Additionally, they can help spot and tackle issues
in the dataset itself, for example, dealing with heterogeneous
values in the same attribute, e.g., the currency of price at-
tributes in the Amazon-Google dataset, or detecting the more
serious issue of wrong labels. In Table I, we show a couple of
examples for pairs correctly classified as matches, although
wrongly labeled as non-matches in the dataset, discovered
while inspecting false positives explanations.

C. Differential Analysis

In this scenario, we have two different models M1 and M2,
and the goal is to understand how they compare against each
other. We investigate both models predictions, generate expla-
nations for each pair of tuples for both models, and highlight
where they disagree. The user specifies the input dataset and
two classifiers, and is then provided with different comparisons
of their predictions and explanations (Fig. 4a). Like other
scenarios, we can still explain each model from a global
perspective (e.g., feature importance, BRL and representative
explanations), or look closely at the explanations and the
model analysis (e.g., local explanations, incorrect predictions
and features frequent itemsets), but more importantly we can
easily inspect those predictions where the two models agree
and where they do not (Fig. 4b).

ACKNOWLEDGMENT

Walid G. Aref’s research is partly supported by the National
Science Foundation under Grant Number III-1815796.

REFERENCES

[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[2] P. Christen, Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer Science & Business
Media, 2012.

[3] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, H. Zhang, J. Naughton et al., “Magellan: Toward
building entity matching management systems,” Proceedings of the
VLDB Endowment, vol. 9, no. 12, pp. 1197–1208, 2016.

(a) One dataset and two ER models

(b) Predictions where the two models disagree

Fig. 4. Differential Analysis for RF and SVM classifiers on DBLP-ACM

[4] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching:
A design space exploration,” in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 19–34.

[5] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,
“Distributed representations of tuples for entity resolution,” Proceedings
of the VLDB Endowment, vol. 11, no. 11, pp. 1454–1467, 2018.

[6] X. Wang, L. Haas, and A. Meliou, “Explaining data integration,” Data
Engineering, p. 47, 2018.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[8] ——, “Anchors: High-precision model-agnostic explanations,” in AAAI
Conference on Artificial Intelligence, 2018.

[9] B. Letham, C. Rudin, T. H. McCormick, D. Madigan et al., “Inter-
pretable classifiers using rules and bayesian analysis: Building a better
stroke prediction model,” The Annals of Applied Statistics, vol. 9, no. 3,
pp. 1350–1371, 2015.

[10] P. Choudhary, A. Kramer, and c. datascience.com team, “Skater:
Model interpretation library,” Mar. 2018. [Online]. Available: https:
//doi.org/10.5281/zenodo.1198885

[11] H. Köpcke, A. Thor, and E. Rahm, “Benchmark datasets for entity reso-
lution,” https://dbs.uni-leipzig.de/en/research/projects/object matching/
fever/benchmark datasets for entity resolution.

[12] S. Das, A. Doan, P. S. G. C., C. Gokhale, and P. Konda, “The magellan
data repository,” https://sites.google.com/site/anhaidgroup/useful-stuff/
data.

[13] L. Kaufman and P. Rousseeuw, Clustering by means of medoids. North-
Holland, 1987.

[14] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proceedings of the 20th international conference on Very Large
Data Bases, VLDB, vol. 1215, 1994, pp. 487–499.

[15] W. Fan, F. Geerts, J. Li, and M. Xiong, “Discovering conditional
functional dependencies,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 5, pp. 683–698, 2011.


