
Module 1: Basic Logic

Overview

This module reviews the foundation of logic. The rules of logic give precise meaning of mathematical

statements and will be used throughout this course. Since our goal is to teach you how to construct

correct mathematical arguments, we start this course with an introduction to logic. Logic focuses

on the relationship among statements rather than on the content of any particular statement. Three

important topics are discussed: proposition logic, predicate logic and quantifiers.

Logic has numerous applications in computer science and engineering. Logic rules are used in

the design of computer circuits, computer programs, and verification of the correctness of programs.

Although practice exercises are included in many of the themes in this course, students are

strongly encouraged to complete some of the exercises at theend of each section in the textbook,

Discrete Mathematics. The exercises that are numbered in red have solutions in the back of the book;

these are the recommended ones. Completing these additional exercises will help ensure that you

understand the content and make the graded homework assignments easier. Completing the addi-

tional exercises will also help you become more comfortablewith the large number of new symbols,

terminology, and concepts.

Learning Outcomes

Upon completion of this module, you will be able to:

• Define and use basic mathematical terms of logic, including:proposition, conjunction, disjunction,

negation, implication (conditional proposition), logical equivalence, converse, contrapositive, inverse,

tautology, contradiction, propositional function, predicate, universal quantifier, existential quantifier,

universe of discourse.

• Interpret and use basic mathematical symbols of logic, including symbols for conjunction, dis-

junction, negation, implication (conditional proposition), logical equivalence, propositional function,

universal quantifier, existential quantifier.

• Construct and use truth tables to prove propositions.

Path to Complete the Module

1. Read Theme 1, ”Propositions,” in the online module. Complete Exercise 1A.

2. Read Theme 2, ”Truth Tables,” in the online module. Complete Exercise 1B. Off line, read Section

1.1, ”Propositions,” inDiscrete Mathematics.

3. Read Theme 3, ”Implications,” in the online module. Complete Exercises1C and 1D. Off line,

read Section 1.2, ”Conditional Propositions and Logical Equivalence,” inDiscrete Mathematics.
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4. Read Theme 4, ”Predicates and Quantifiers,” in the online module. Off line, read Section 1.3,

”Quantifiers,” inDiscrete Mathematics.

5. Complete Assignment 1.1, ”Basic Logic Problems.”
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Theme 1: Propositions

English sentences are either true or false or neither. Consider the following sentences:

1. Warsaw is the capital of Poland.

2. 2 + 5 = 3.

3. How are you?

The first sentence is true, the second is false, while the lastone is neither true nor false. A statement

that is eithertrue or false but not both is called aproposition. Propositional logic deals with such

statements andcompound propositionsthat combine together simple propositions (e.g., combining

sentences (1) and (2) above we may say “Warsaw is the capital of Poland and2 + 5 = 3”).

In order to build compound propositions we need rules on how to combine propositions. We

denote propositions by lowercase lettersp, q or r. Let us define:

• Theconjunction of p andq, denoted asp ∧ q, is the proposition

p and q,

and it istrue when bothp andq are true and false otherwise.

• Thedisjunction of p andq, denoted asp ∨ q, is the proposition

p or q,

and it isfalsewhen bothp andq are false and true otherwise.

• Thenegationof p, denoted either as¬p or p̄, is the proposition

It is not true thatp.

Example 1: Let p =“Hawks swoop” andq =“Gulls glide”. Thenp∨ q is the same as “Hawks swoop

or gulls glide”. We also can translate back. For example, theEnglish sentence “it is not true that

hawks swoop” can be written as¬p.

Exercise 1A: With the same notation as in the example above write the following propositions sym-

bolically:

• It is not true that “Hawks swoop and gulls glide”.

• “Hawks do not swoop or gulls do not glide”.
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Theme 2: Truth Tables

We can express compound propositions using atruth table that displays the relationships between

the truth values of the simple propositions and the compoundproposition. In the next three tables

we show the truth tables for the negation, conjunction, and disjunction. Observe that any proposition

p can take only two values, namelytrue, denotedT , or false, denotedF . Therefore, for a com-

pound proposition consisting of two propositions (e.g.,p ∧ q) we must consider only four possible

assignments ofT andF .

Table 1: The truth table for the negation.

p ¬p

T F

F T

Table 2: The truth table for the conjunction.

p q p ∧ q

T T T

T F F

F T F

F F F

Table 3: The truth table for the disjunction.

p q p ∨ q

T T T

T F T

F T T

F F F

In this module we will often use truth tables. To construct a truth table for a statement (e.g.,

¬p ∨ q) containing two propositions, sayp andq, one first builds two columns with all possible vales

of p andq (i.e., (T, T ), (T, F ), (F, T ), (F,F )), and then follows already accepted rules of inference

to determine the truth value of the compound statement (say¬p ∨ q).

Exercise 1B: Construct truth tables for the following statements:

• p ∧ ¬p;

• p ∨ ¬q.
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Theme 3: Implications

In mathematics we often deal withconditional statementslike: “ if x = 2, then x2 = 4. The if–then

statement is calledimplication and it is denoted asp → q. It is false whenp is true andq is false and

true otherwise. The reader may inspect the truth table ofp → q in Table 4 below.

Table 4: The truth table for the implication.

p q p → q

T T T

T F F

F T T

F F T

It is important to emphasize thatp → q is false only whenp is true andq is false. In words,

truth cannot imply a falsestatement, butfalsecan implytruth . For example, consider the following

statement

if x = −2, then x2 = 4

which is true even if the first part of this compound statementis not true, say whenx = 2.

In the implicationp → q, the propositionp is calledhypothesisor antecedentand the proposition

q is known asconclusion or consequent. The conclusion expresses anecessary conditionfor p,

while the hypothesis expresses asufficient condition for q to hold. Some other common ways of

expressing the implicationp → q are:

• if p, thenq;

• p impliesq;

• if p, q;

• p only if q;

• p is sufficient forq;

• q if p;

• q wheneverp;

• q is necessary forp.

Exercise 1C: Make truth tables for the following statements:

1. p → ¬q;

2. (p ∧ ¬q) → r.
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There are some important related implications following from p → q, namely:

1. The propositionq → p is called theconverse.

2. Thecontrapositive of p → q is ¬q → ¬p;

3. Theinverse is¬p → ¬q.

In Table 5 we compare the truth values of these propositions.

Table 5: The truth table for the implication, contrapositive, converse, and inverse.

p q p → q ¬q → ¬p q → p ¬p → ¬q

T T T T T T

T F F F T T

F T T T F F

F F T T T T

We say that two compound propositionsP andQ arelogically equivalent if they have the same

truth values. We shall write

P ≡ Q

or

P ⇔ Q.

It should be observed from Table 5 that the implicationp → q has the same truth values as the

contrapositive¬q → ¬p, but not as the converse and the inverse. Thus we can write

p → q ≡ ¬q → ¬p,

p → q 6≡ ¬p → ¬q,

p → q 6≡ q → p.

Example 2: Prove that

p → q ≡ ¬p ∨ q.

We use the truth table. Our computation is shown in Table 6. Comparing the second column with the

last one, we see that the truth values are the same forp → q and¬p ∨ q, so the above two compound

propositions are logically equivalent.

Table 6: The truth table for Example 2.

p q p → q ¬p ¬p ∨ q

T T T F T

T F F F F

F T T T T

F F T T T

6



Exercise 1D: Using the truth table prove that the following propositions are logically equivalent:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

In Exercise 1D the reader was asked to prove logical equivalence that is known under the name

distributive law . This is an example of many other logical equivalences that we list in Table 7 and

prove in the sequel.

Table 7: Logical Equivalences

Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ≡ q ∧ p

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r Associative laws

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

All laws listed above can be easily proved using the truth table. The reader is encouraged to try

to work out all the truth tables. Having such laws under our belt, we can prove many new logical

equivalenceswithoutusing the truth table.

Example 3: Prove that

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q ≡ ¬(p ∨ q).

We proceed as follows

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) De Morgan’s law

≡ ¬p ∧ (¬(¬p) ∨ ¬q) De Morgan’s law

≡ ¬p ∧ (p ∨ ¬q) double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) distributive law
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≡ F ∨ (¬p ∧ ¬q) since ¬p ∧ p ≡ F

≡ (¬p ∧ ¬q) ∨ F commutative law

≡ (¬p ∧ ¬q) identity law

≡ ¬(p ∨ q) De Morgan’s law.

Thus the above logical equivalence is proved. The above is largely self-explanatory, but a few words

of additional information follows: In the first statement above we, naturally, apply De Morgan’s law

¬(P ∨Q) = ¬P ∧¬Q. In our case,Q is a compound statementQ = ¬p∧q, thus another application

of De Morgan’s law implies¬Q = p∨¬q. Then we “multiply out”, that is,p∧(q∨r) = (p∧q)∨(p∧r).

The rest is simple.

A compound proposition is called atautology if it is always true, no matter what the truth values

of the propositions (e.g.,p ∨ ¬p ≡ T no matter what is the value ofp. Why?).

A compound proposition is called acontradiction if it is always false, no matter what the truth

values of the propositions (e.g.,p ∧ ¬p ≡ T no matter what is the value ofp. Why?).

Finally, a proposition that is neither a tautology nor a contradiction is called acontingency.
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Theme 4: Predicates and Quantifiers

In mathematics we often have to deal with sentences like

p : x2 − 2x + 1 = 0 or q : n is a prime number,

which arenot propositions since their values are neither true nor false since the values of the variables

x andn are not specified. We shall denote such statements asP (x) or Q(n) and callpropositional

functionsor predicatesof x or n.

More formally, letP be a statement involving the variablex that belongs to the setD. ThenP is

called apropositional function or predicate with respect toD if for eachx ∈ D the sentenceP (x)

is a proposition. The domainD is often called theuniverse of discourseof P .

Example 4: The statement above

P (x) : x2 − 2x + 1 = 0

is true whenx = 1 and is false for anyx 6= 1. The statementQ(3) is true, whereQ(n): “n is a prime

number”.

Predicates are very important in mathematics and computer science since they allow us to justify

logical inferences orsyllogisms. Consider the following famous syllogism:

All men are mortal.

Fermat is a man.

Therefore, Fermat is mortal.

This conclusion seems to be perfectly correct, but we do not have rules of inference for propositional

logic to justify it. We shall come back in Module 3 to such logical inferences when we discuss

mathematical proofs.

We saw above how to change a propositional function into a proposition: by assigning truth values

to the variablex. There is another way of changing a predicateP (x) into a proposition: either by

saying thatP (x) is true forall values ofx belonging toD or thatP (x) is true forsomevalue ofx in

D. The former is called theuniversal quantificationwhile the latter theexistential quantification.

Universal quantification

Theuniversal quantification P (x) is the proposition

P (x) is true for all values ofx in the universe of discourseD.

We shall denote is as

∀x P (x).
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We can also read it as “for allx P (x)” or “for every x P (x)”. The symbol∀ (notice that it is an

upside downA) is called a universal quantifier.

Example 5: The statement

∀x x2 ≥ 0

is a universally quantified statement that is true. But

∀x x2 > 0

is a universally quantified statement that is false since forx = 0 we havex2 = 0. We have just

learned how to prove that a universal quantification is false. We must showat least one valueof x for

whichP (x) is not true. Such a value ofx is called acounterexamplefor ∀x, P (x).

Finally, observe that if the universe of discourse consistsof a finite number of elements, say

x1, x2, . . . , xn, then

∀xP (x) ≡ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

since this conjunction is true if and only ifP (x1), P (x2), . . . , P (xn) are all true.

Existential quantification

Theexistential quantification P (x) is the proposition

P (x) is true for some value(s) ofx in the universe of discourseD.

We shall denote it as

∃x P (x).

We can also read it as “for somex P (x)” or “there is anx such thatP (x)” or “there is at least onex

such thatP (x)”. The symbol∃ (notice that it is mirror image ofE) is called an existential quantifier.

Example 6: Let Q(x) denote the statement:4x2 = 1. What is the truth value of the quantification

∃x Q(x)

when the universe of discourse forx is the set of real numbers? SinceQ(1/2) andQ(−1/2) are true

propositions, we conclude that∃x Q(x) is true in the defined universe of discourse. But if we demand

that the universe of discourse forx is the set of integers, then∃x Q(x) is false since there is no integer

satisfying4x2 = 1. Here, we observe that in order to prove that an existentially qualified statement

P (x) is false, one must show that forall x in the universe of discourse the predicateP (x) is false.

Finally, observe that if the universe of discourse consistsof a finite number of elements, say

x1, x2, . . . , xn, then

∃xP (x) ≡ P (x1) ∨ P (x2) ∨ · · · ∨ P (xn)

since this disjunction is true if and only if at least one ofP (x1), P (x2), . . . , P (xn) is true.
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We now generalize De Morgan’s laws to quantifications. We claim that

¬∀xP (x) ≡ ∃x¬P (x), (1)

¬∃xP (x) ≡ ∀x¬P (x) (2)

Let us try toprovethe first statement. Suppose that¬∀xP (x) is true. Hence,∀xP (x) is false. But,

as we seen before such a statement is false if there exists at least onex for which P (x) is false. This

implies that for suchx the statement¬P (x) is true, form which we infer that∃x¬P (x) is true. We

have shown that if¬∀xP (x) is true, then∃x¬P (x) is true. In a similar manner, we conclude that

if ¬∀xP (x) is false, then∃x¬P (x) is false. In conclusion, the pair of propositions¬∀xP (x) and

∃x¬P (x) have the same truth values, so they must be logically equivalent.
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Assignment 1.1: Basic Logic Problems

Each assignment is worth 10 points.

1. Using truth tables prove that each of the following implications is a tautology.

(a) ¬p → (p → q)

(b) ¬(p → q) → ¬q

(c) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r.

2. Using logical equivalences from Table 7 prove that

(p ∧ q) → (p ∨ q)

is a tautology. (Hint : Observe that from Example 2 we may concludep → q ≡ ¬p ∨ q.) If you

cannot prove it using Table 7, use a truth table.

3. Let P (x, y) be a proposition function of two variablex andy such thatx andy can take only three

values, namely:1, 2 or 3. Express the following propositions using disjunctions and conjunctions:

(a) ∃xP (x, 3)

(b) ∀yP (1, y)

(c) ∀y∃xP (x, y).

Submission: Check with your instructor for submission directions.
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Solutions to Exercises

Solution to Exercise 1A

Definep =“Hawks swoop” andq =“Gulls glide”. Then the sentence: “It is not true that “Hawks

swoop and gulls glide” can be written as

¬(p ∧ q) = ¬p ∨ ¬q.

The sentence: “Hawks do not swoop or gulls do not glide” is equivalent to

¬p ∨ ¬q = ¬(p ∧ q).

Solution to Exercise 1B

We have the following table forp ∧ ¬p

p ¬p p ∧ ¬p

T F F

F T F

Forp ∨ ¬q we have

p q ¬q p ∨ ¬q

T T F T

T F T T

F T F F

F F T T

Solution to Exercise 1C

Here are the truth tables for both compound statements:
p q ¬q p → ¬q

T T F F

T F T T

F T F T

F F T T

p q ¬q p ∧ ¬q r (p ∧ ¬q) → r

T T F F T T

T T F F F T

T F T T T T

T F T T F F

F T F F T T

F T F F F T

F F T F T T

F F T F F T
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Solutions to Assignment 1.1

Solution to Assignment 1

For¬p → (p → q) we have the following truth table:

p q ¬p p → q ¬p → (p → q)

T T F T T

T F F F T

F T T T T

F F T T T

Thus¬p → (p → q) is a tautology.

Now we consider¬(p → q) → ¬q. The truth table is given below.

p q p → q ¬(p → q) ¬q ¬(p → q) → ¬q

T T T F F T

T F F T T T

F T T F T T

F F T F T T

Thus¬p → (p → q) is a tautology.

Let a = [(p ∨ q) ∧ (p → r) ∧ (q → r)]. Then we need to prove thata → r s a tautology.

p q r p ∨ q p → r q → r a a → r

T T T T T T T T

T T F T F F F T

T F T T T T T T

T F F T F T F T

F T T T T T T T

F T F T T F F T

F F T F T T F T

F F F F T T F T
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Solution to Assignment 2.

We must prove that

(p ∧ q) → (p ∨ q) ≡ T.

To prove this we first observe that from Example 2 we know that

p → q ≡ ¬p ∨ q.

Now using this together with laws from Table 7 we proceed as follows:

(p ∧ q) → (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) Example 2

≡ (¬p ∨ ¬q) ∨ (p ∨ q) De Morgan’s law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative laws for distribution

≡ T ∨ T from truth Table 3

≡ T by the domination law.

Solution to Assignment 3.

We have for part (a)

∃xP (x, 3) ≡ P (1, 3) ∨ P (2, 3) ∨ P (3, 3).

Similarly, for part (b)

∀yP (1, y) ≡ P (1, 1) ∧ P (1, 2) ∧ P (1, 3).

Finally, for part (c) we write as follows

∀y∃xP (x, y) ≡ [P (1, 1) ∨ P (2, 1) ∨ P (3, 1)] ∧ [P (1, 2) ∨ P (2, 2) ∨ P (3, 2)]

∧ [P (1, 3) ∨ P (2, 3) ∨ P (3, 3)]
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