Module 1: Basic Logic

Overview

This module reviews the foundation of logic. The rules ofdagjve precise meaning of mathematical
statements and will be used throughout this course. Sincgaal is to teach you how to construct
correct mathematical arguments, we start this course witmtaoduction to logic. Logic focuses
on the relationship among statements rather than on themoaot any particular statement. Three
important topics are discussed: proposition logic, pragidogic and quantifiers.

Logic has numerous applications in computer science anthemgng. Logic rules are used in
the design of computer circuits, computer programs, anificagion of the correctness of programs.

Although practice exercises are included in many of the teein this course, students are
strongly encouraged to complete some of the exercises anitheof each section in the textbook,
Discrete Mathematics. The exercises that are numbered imanee solutions in the back of the book;
these are the recommended ones. Completing these additieraises will help ensure that you
understand the content and make the graded homework assitmmasier. Completing the addi-
tional exercises will also help you become more comfortalite the large number of new symbols,
terminology, and concepts.

Learning Outcomes

Upon completion of this module, you will be able to:

e Define and use basic mathematical terms of logic, includimgposition, conjunction, disjunction,
negation, implication (conditional proposition), lodieguivalence, converse, contrapositive, inverse,
tautology, contradiction, propositional function, preatie, universal quantifier, existential quantifier,
universe of discourse.

e Interpret and use basic mathematical symbols of logicuitinly symbols for conjunction, dis-
junction, negation, implication (conditional proposit)o logical equivalence, propaositional function,
universal quantifier, existential quantifier.

e Construct and use truth tables to prove propositions.

Path to Complete the Module
1. Read Theme,IPropositions,” in the online module. Complete Exercige 1

2. Read Theme,2Truth Tables,” in the online module. Complete Exercise O line, read Section
1.1, "Propositions,” iDiscrete Mathematics

3. Read Theme,3'Implications,” in the online module. Complete ExercisgS and 1D. Off line,
read Section 1.2, "Conditional Propositions and LogicaliZzajence,” inDiscrete Mathematics



4. Read Theme,4'Predicates and Quantifiers,” in the online module. Oft)imead Section 1.3,
"Quantifiers,” inDiscrete Mathematics

5. Complete Assignment 1.1Basic Logic Problems.”



Theme 1: Propositions

English sentences are either true or false or neither. @entie following sentences:
1. Warsaw is the capital of Poland.
2.24+5=23.
3. How are you?

The first sentence is true, the second is false, while thetasis neither true nor false. A statement
that is eithertrue or false but not both is called @roposition. Propositional logic deals with such
statements andompound propositionsthat combine together simple propositions (e.g., combinin
sentences (1) and (2) above we may say “Warsaw is the capkaland an@ + 5 = 3”).

In order to build compound propositions we need rules on hmwombine propositions. We
denote propositions by lowercase lettgrg or r. Let us define:

e Theconjunction of p andq, denoted ap A ¢, is the proposition
p and ¢,

and it istrue when bothp andgq are true and false otherwise.

e Thedisjunction of p andq, denoted ap V g, is the proposition

b or g,

and it isfalsewhen bothp andgq are false and true otherwise.

e Thenegationof p, denoted either asp or p, is the proposition

It is nottrue thatp.

Example 1 Letp ="Hawks swoop” and; =“Gulls glide”. Thenp V q is the same as “Hawks swoop
or gulls glide”. We also can translate back. For example,Bhglish sentence “it is not true that
hawks swoop” can be written ag.

Exercise 1A With the same notation as in the example above write theviatlg propositions sym-
bolically:

e Itis not true that “Hawks swoop and gulls glide”.

¢ “Hawks do not swoop or gulls do not glide”.



Theme 2: Truth Tables

We can express compound propositions usitguth table that displays the relationships between
the truth values of the simple propositions and the comparogosition. In the next three tables
we show the truth tables for the negation, conjunction, asjdiniction. Observe that any proposition
p can take only two values, namelgue, denoted?’, or false denotedF'. Therefore, for a com-

pound proposition consisting of two propositions (exg4 ¢) we must consider only four possible
assignments df’ and F'.

Table 1: The truth table for the negation.

—-p

Rl

F
T
Table 2: The truth table for the conjunction.

PAq
T

LU s B RS
md T AR

F
F
F

Table 3: The truth table for the disjunction.

pVyq
T

LU B RS
md T AR

T
T
F

In this module we will often use truth tables. To constructuh table for a statement (e.g.,
—p V q) containing two propositions, sayandg, one first builds two columns with all possible vales

of pandq (i.e., (T, T), (T, F), (F,T),(F, F)), and then follows already accepted rules of inference
to determine the truth value of the compound statement-{gay q).

Exercise 1B Construct truth tables for the following statements:

epV q.



Theme 3: Implications

In mathematics we often deal wittonditional statementike: “if = = 2, then 22 = 4. Theif-then
statement is calleimnplication and it is denoted as — q. It is false wherp is true and; is false and
true otherwise. The reader may inspect the truth tabje-ef ¢ in Table 4 below.

Table 4: The truth table for the implication.

p—q
T

LU I NS
L B B

F
T
T

It is important to emphasize that — ¢ is false only wherp is true andgq is false In words,
truth camotimply afalse statement, butalse can implytruth . For example, consider the following
statement

if z=-2, then 2z?2=14

which is true even if the first part of this compound statenienbt true, say whem = 2.

In the implicationp — ¢, the propositiorp is calledhypothesisor antecedentand the proposition
g is known asconclusionor consequent The conclusion expressesnacessary conditionfor p,
while the hypothesis expressesuficient condition for ¢ to hold. Some other common ways of
expressing the implicatiop — ¢ are:

e if p, theng;

pimpliesgq;

e if p,g;

ponlyif ¢;

p is sufficient forg;

° qifp;

g wheneverp;
e ¢ is necessary fap.

Exercise 1C Make truth tables for the following statements:
1.p— g

2. (pA—q) —r.



There are some important related implications followiranip — ¢, namely:

1. The propositiony — p is called theconverse
2. Thecontrapositive of p — ¢ is ~g — —p;

3. Theinverseis —p — —gq.

In Table 5 we compare the truth values of these propositions.

Table 5: The truth table for the implication, contraposgticonverse, and inverse.

P qa|p—q|g—plg—=p|p—g
T T|T T T T
T F|F F T T
F T[T T F F
F F|T T T T

We say that two compound propositioRsand () arelogically equivalentif they have the same
truth values. We shall write

P=qQ
or
P < Q.

It should be observed from Table 5 that the implicatiopr- ¢ has the same truth values as the
contrapositive-g — —p, but not as the converse and the inverse. Thus we can write

p—q = —q— P,
p—q F —p— g,
p—q #F q—0Dp.

Example 2 Prove that
p—q = "pVgq.
We use the truth table. Our computation is shown in Table éngaring the second column with the

last one, we see that the truth values are the sameforg and—p V ¢, so the above two compound
propositions are logically equivalent.

Table 6: The truth table for Example 2.

P a|p—aq|p|pVg
T T|T F T
T F|F F | F
F T|T T | T
F F|T T | T




Exercise 1D Using the truth table prove that the following proposisare logically equivalent:
pVgAr) = Vg ApVr).

In Exercise 1D the reader was asked to prove logical equigal¢hat is known under the name
distributive law . This is an example of many other logical equivalences thatist in Table 7 and
prove in the sequel.

Table 7: Logical Equivalences

Equivalence Name

pANT = p Identity laws
pVF =p

pvT =T Domination laws
pAF = F

pVp =p Idempotent laws
PAD = p

=(-p) = p Double negation law
pVqg=qVp Commutative laws
PAGg = qAp

pV(gVvr) = (pVqg Vr Associative laws
pA(gAT) = (PAG AT

pV(gAT) = (pVg) A(pVr) | Distributive laws
pA(gVvr) = (pAgV(pAT)

=(pAq) = —pV —q De Morgan’s laws
-(pVq) = pA—q

All laws listed above can be easily proved using the trutletabhe reader is encouraged to try
to work out all the truth tables. Having such laws under out, e can prove many new logical
equivalencesvithoutusing the truth table.

Example 3 Prove that
~(pV(mpAg) =-pA-g = =(pVa).

We proceed as follows

—“pA-=(—pAq) De Morgan’s law

—(pV (=pAq))

—p A (=(=p) V =q) De Morgan'’s law

—pA(pV—q) double negation law
(=pAp)V (-pA—q) distributive law
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FV (=pA—q) since - pAp=F

= (-pA—-q)VF commutative law
= (-pA—q) identity law
= —=(pVyq) De Morgan'’s law

Thus the above logical equivalence is proved. The abovegsliaself-explanatory, but a few words
of additional information follows: In the first statementoaie we, naturally, apply De Morgan’s law
—(PVQ) =-PA-Q. Inour case() is acompound stateme@t = —p A g, thus another application
of De Morgan’s law implies-QQ = pV—q. Then we “multiply out”, that ispA(qVr) = (pAq)V (pAT).
The rest is simple.

A compound proposition is calledtautology if it is always true, no matter what the truth values
of the propositions (e.gp V —p = T no matter what is the value pf Why?).

A compound proposition is called@ntradiction if it is always false, no matter what the truth
values of the propositions (e.@.A —p = T no matter what is the value pf Why?).

Finally, a proposition that is neither a tautology nor a cadiction is called @ontingency.



Theme 4. Predicates and Quantifiers
In mathematics we often have to deal with sentences like
p:a2—2x+1=0 or g¢: n isaprime number

which arenot propositions since their values are neither true nor fafsmghe values of the variables
x andn are not specified. We shall denote such statemeni(ag or Q)(n) and callpropositional
functionsor predicatesof z or n.

More formally, letP be a statement involving the variaktghat belongs to the s@&. ThenP is
called apropositional function or predicate with respect tdD if for eachx € D the sentencé(x)
is a proposition. The domain is often called thainiverse of discourseof P.

Example 4 The statement above
P(x): 2> -2 +1=0

is true whenr = 1 and is false for any: # 1. The statemerf)(3) is true, where&)(n): “n is a prime
number”.

Predicates are very important in mathematics and compcitmnce since they allow us to justify
logical inferences osyllogisms Consider the following famous syllogism:

All men are mortal.

Fermat is a man.

Therefore, Fermat is mortal.
This conclusion seems to be perfectly correct, but we do ae lnules of inference for propositional
logic to justify it. We shall come back in Module 3 to such lcai inferences when we discuss
mathematical proofs.

We saw above how to change a propositional function into pgsition: by assigning truth values

to the variablexr. There is another way of changing a predic&e:) into a proposition: either by

saying thatP(z) is true forall values ofx belonging toD or that P(x) is true forsomevalue ofx in
D. The former is called thaniversal quantificatiorwhile the latter theexistential quantification

Universal quantification
Theuniversal quantification P(z) is the proposition
P(z) is true for all values of: in the universe of discoursB.

We shall denote is as
Vx P(x).



We can also read it as “for alt P(z)” or “for every x P(x)". The symbolVv (notice that it is an
upside dowr) is called a universal quantifier.

Example 5 The statement
Vo 22 >0

is a universally quantified statement that is true. But
Vo z? >0

is a universally quantified statement that is false sincexfer 0 we havez? = 0. We have just
learned how to prove that a universal quantification is falge must shovat least one valuef z for
which P(x) is not true. Such a value afis called acounterexamplefor Vz, P(z).
Finally, observe that if the universe of discourse congidta finite number of elements, say
T1,%2,...,Ty, then
VeP(x) = P(x1) AN P(z2) A+ N\ P(xy)

since this conjunction is true if and only #(x1), P(z2), ..., P(z,) are all true.

Existential quantification

Theexistential quantification P(z) is the proposition
P(z) is true for some value(s) af in the universe of discourse.

We shall denote it as
dz P(x).

We can also read it as “for someP(z)” or “there is anz such thatP(z)” or “there is at least one
such thatP(x)”. The symbol3 (notice that it is mirror image dE) is called an existential quantifier.

Example 6 Let Q(z) denote the statementz? = 1. What is the truth value of the quantification

W Q(x)

when the universe of discourse foiis the set of real numbers? Sin@¢1/2) andQ(—1/2) are true
propositions, we conclude that Q(z) is true in the defined universe of discourse. But if we demand
that the universe of discourse feiis the set of integers, thetx: Q(x) is false since there is no integer
satisfying4z? = 1. Here, we observe that in order to prove that an existentiplhlified statement
P(z) is false, one must show that fall « in the universe of discourse the predic#tér) is false.

Finally, observe that if the universe of discourse congidta finite humber of elements, say
T1,%2,...,Ty, then

JzP(x) = P(x1)V P(xa) V.-V P(xy,)

since this disjunction is true if and only if at least onelfr;), P(x2), ..., P(zy,) IS true.
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We now generalize De Morgan’s laws to quantifications. Warcthat

—VeP(x) = 3Jx—P(x), (1)
—dzP(z) =Vax—-P(x) 2

Let us try toprovethe first statement. Suppose thatzP(z) is true. HenceYzP(z) is false. But,
as we seen before such a statement is false if there exisgtashtdner for which P(x) is false. This
implies that for such: the statement.P(x) is true, form which we infer thaiz—P(z) is true. We
have shown that if-VxP(z) is true, therdz—P(z) is true. In a similar manner, we conclude that
if =VzP(x) is false, therdz—P(z) is false. In conclusion, the pair of proposition§'zP(x) and
Jz—P(x) have the same truth values, so they must be logically eaurival
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Assignment 1.1: Basic Logic Problems

Each assignment is worth 10 points.

1. Using truth tables prove that each of the following implicas is a tautology.
@ »p—(@—0q
(b) ~(p—q) — —q
© [pvaorp—r)A(g—r)]—rT.

2. Using logical equivalences from Table 7 prove that

(pAqg)— (pVa)

is a tautology. lint: Observe that from Example 2 we may conclyde-» ¢ = —p V ¢.) If you
cannot prove it using Table 7, use a truth table.

3. Let P(x,y) be a proposition function of two variableandy such thatc andy can take only three
values, namelyi, 2 or 3. Express the following propositions using disjunctiond annjunctions:

(@) JzP(x,3)

(b) VyP(1,y)

(c) YydzP(x,y).

Submission Check with your instructor for submission directions.
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Solutions to Exercises

Solution to Exercise 1A
Definep ="Hawks swoop” and; ="Gulls glide”. Then the sentence: “It is not true that “Hawks
swoop and gulls glide” can be written as

The sentence: “Hawks do not swoop or gulls do not glide” isvedent to

Solution to Exercise 1B
We have the following table fgs A —p
p|p|PATD
T|IF |F
FIT |F

Forp Vv —q we have

pla|—q|pV—g
T(T|F [T
T|F|T |T
FIT|F |F
FIF|T [T

Solution to Exercise 1C

Here are the truth tables for both compound statements:
-q | p—q
F

i
IS

Tnm|4 -
T | -
—4|7|4 7
= 4|

1
>
1
(=)
=
>
1
e
l
2

q

ma B n B e n B e s N N R N NS
i I e e TR AR R S
e i R R A R i n R A S

Tl A4

—l—|m|m|H|4| |7
||| 4|74
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Solutions to Assignment 1.1

Solution to Assignment 1

For—p — (p — q) we have the following truth table:

plqg|-p|p—q|p—(p—aq
TIT|F |T T
TIE|F |F T
FITIT |T T
FIF|T |T T

Thus—p — (p — ¢) is a tautology.

Now we consider-(p — q) — —q. The truth table is given below.

plg|p—q|-(—q|q|-p—q9—q
TIT|T F F T
TIF|F T T|T
FITI|T F T|T
FIF|T F T T

Thus—p — (p — ¢) is a tautology.

Leta=[(pVq) A (p—r)A(q— r)]. Then we need to prove that— r s a tautology.

<
S

!
!
!

MM

T[] A=

I IR IR RIS
I TR T RS

e I IR

e RIS
e e B i n A B n B e BN
—| ||| =[] 4]
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Solution to Assignment 2
We must prove that

(PANg)— (Ve =T.
To prove this we first observe that from Example 2 we know that
pP—qg="pVg

Now using this together with laws from Table 7 we proceed Hevis:

(pANg)— (Ve = —(PAgVI(pVa) Example 2
= (-pVv-q)V(pVa) De Morgan’s law
= (-pVp)V(~qVq) by the associative and commutative laws for distribution
= TvT from truth Table 3
=T by the domination law

Solution to Assignment 3
We have for part (a)
JxP(x,3) = P(1,3) vV P(2,3) vV P(3,3).

Similarly, for part (b)
VyP(l,y) = P(1,1) A P(1,2) A P(1,3).

Finally, for part (¢) we write as follows

Vy3zP(z,y) = [P(1,1)VP(2,1)V P(3,1)] A [P(1,2) vV P(2,2) V P(3,2)]
ALP(1,3) V P(2,3) V P(3,3)]
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