Assignment 1: Order Analysis, Basic Proof Techniques, and Programming Overview

Due: Sept 13, 4:30 PM

Note: Absolutely no late submissions will be accepted. 50\% of the points for the order analysis and basic proof techniques and 50% of the points for the programming project.

Order Analysis and Basic Proof Techniques

1. Show that if $f(n)$ is $O(g(n))$ and $d(n)$ is $O(h(n))$, then $f(n)+d(n)$ is $O(g(n)+h(n))$.
2. Show that $O(\max \{f(n), g(n)\})=O(f(n)+g(n))$.
3. Show that if $p(n)$ is a polynomial in n, then $\log p(n)$ is $O(\log n)$.
4. Characterize the following summation (exactly) in terms of n :

$$
\sum_{i=1}^{n}(3 i+4)
$$

5. Show that $\sum_{i=1}^{n} i^{2}$ is $O\left(n^{3}\right)$.
6. Show that $\sum_{i=1}^{n} i / 2^{i}<2$. (Hint: try to bound this sum term-by-term with a geometric progression.)
7. An n-degree polynomial $p(x)$ is an equation of the form

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

where x is a real number and each a_{i} is a constant.
(a) Describe a simple $O\left(n^{2}\right)$ time method for computing $p(x)$ for a particular value of x.
(b) Consider now a rewriting of $p(x)$ as

$$
p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(a_{3}+\cdots+x\left(a_{n-1}+x a_{n}\right) \cdots\right)\right)\right),
$$

which is known as Horner's method. Characterize, using the big-Oh notation, the number of multiplications and additions this method of evaluation uses.

Programming Exercise

Programming Project 8, Page 375 of your text.

