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ABSTRACT
Recent advances in video processing utilizing deep learning
primitives achieved breakthroughs in fundamental problems
in video analysis such as frame classification and object de-
tection enabling an array of new applications.

In this demowe present SVQ a system capable of executing
declarative queries on streaming video. The system utilizes
a set of approximate filters to speed up queries that involve
objects of specific type (e.g., cars, trucks, etc.) on video frames
with associated spatial relationships among them (e.g., car
left of truck). The resulting filters are able to assess quickly if
the query predicates are true to proceed with further analysis
of the frame or otherwise not consider the frame further
avoiding costly object detection and localization operations.
The filters utilize extensible deep neural architectures and
are easy to deploy and utilize.

We demonstrate that the application of our filtering tech-
niques in the context of SVQ enable declarative queries on
video streams increasing dramatically the frame processing
rate and speed up query processing by at least two orders of
magnitude depending on the query.
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1 INTRODUCTION
In the last few years, Deep Learning (DL) [8, 11] has become
a dominant artificial intelligence (AI) technology in industry
and academia. Although by no means a panacea for every-
thing related to AI it has managed to revolutionize certain
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important practical applications such as machine transla-
tion, image classification, image understanding, video query
answering and video analysis.
Video data abound; as of this writing 300 hours of video

are uploaded on Youtube every minute. The abundance of
mobile devices enabled video data capture en masse and as a
result more video content is produced than can be consumed
by humans. This is especially true in surveillance applica-
tions. Thus, it is not surprising that a lot of research attention
is being devoted to the development of techniques to ana-
lyze and understand video data in several communities. The
applications that will benefit from advanced techniques to
process and understand video content are numerous ranging
from video surveillance and video monitoring applications,
to news production and autonomous driving.

Declarative query processing enabled accessible query in-
terfaces to diverse data sources. In a similar token we wish
to enable declarative query processing on streaming video
sources to express certain types of video monitoring queries.
Recent advances in computer vision utilizing deep learning
deliver sophisticated object classification [7, 14] and detec-
tion algorithms [1–3, 13]. Such algorithms can assess the
presence of specific objects in an image, assess their proper-
ties (e.g. color, texture), their location relative to the frame
coordinates as well as track an object from frame [6] to
frame delivering impressive accuracy. Depending on their
accuracy, state of the art object detection techniques are far
from real time [3]. However current technology enables us
to extract a schema from a video by applying video classifica-
tion/detection algorithms at the frame level. Such a schema
would detail at the very minimum, each object present per
frame, their class (e.g., car) any associated properties one is
extracting from the object (e.g., color), the object coordinates
relative to the frame. As such one can express numerous
queries of interest over such a schema.

SVQ is an embodiment of our research [5] on declarative
query processing over streaming video going beyond detec-
tion of frames with objects of a specific class or with set
properties [4]. In particular we focus on queries involving
count and spatial constraints on objects detected in a frame.
Considering for example the image in Figure 1(a) we would
like to be able to execute a query of the form 1:
SELECT cameraID, frameID, C1 (F1 (vehBox1)) AS vehType1,
C1 (F1 (vehbox2)) AS vehType2, C2 (F2 (vehBox1)) AS vehColor

1Adopting query syntax from [9]
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FROM (PROCESS inputVideo PRODUCE cameraID, frameID,
vehBox1, vehBox2 USING VehDetector)
WHERE vehType1 = car AND vehColor = red AND
vehType2 = truck AND (ORDER(vehType1, vehType2) = RIGHT

that identifies all frames in which a red car has a truck on
its right. In the query syntax, Ci are classifiers for different
object types (vehicle types, color, etc) and Fi are features
extracted from areas of a video frame in which objects are
identified (using vehDetector which is an object detection
algorithm). Naturally queries may involve more than two
objects. Numerous types of spatial constraints exist such
as left, right, above, below, as well as combinations thereof.
Categorization of such constraints from the field of spatial
databases are readily applicable [10]. Our interest in not only
to capture constraints among objects but also constraints
between objects and areas of the visible screen in the same
fashion (e.g., bicycle not in bike lane, where bike lane is
identified by a rectangle in the screen). We assume that the
query runs continuously and reports frames for which the
query predicates are true.

Although object detection algorithms have advanced sub-
stantially over the last few years [1–3, 13] their performance
on video streams is still far from real time. From a processing
point of view if one could afford to execute state of the art
object detection and suitable classification for each frame in
real time, answering a query as the one above would be rela-
tive easy. We would evaluate the predicates on sets of objects
at each frame as dictated by the query aiming to determine
whether they satisfy the query predicate. After the objects
on a frame have been identified along with their locations
and types as well as features, query evaluation would follow
by applying well established spatial query processing tech-
niques. Such a brute force approach is far from real time as
currently state of the art object detectors run at a few frames
per second [13].
As a result we have proposed [5] a series of relatively

inexpensive filters, that can determine if a frame is a can-
didate to qualify in the query answer. As an example, if a
frame only contains one object (count filter) or if there is no
red car or truck in the image or there is no car right of a
truck in the frame (class location filter), it is not a candidate
to yield a query answer. We fully process the frame with
object detection algorithms only if they pass suitably applied
filters. Depending on the selectivity of the filters, one can
skip frames and increase the rate at which streaming video is
processed in terms of frames per second. The proposed filters
follow state of the art image classification and object detec-
tion methodologies and we precisely quantify their accuracy
and associated trade-offs.
Armed with the ability to efficiently answer monitoring

queries involving spatial constraints, we embed it as a primi-
tive to answer another important class of video monitoring

(a) (b)

Figure 1: Example Video Frames: (a) Example Spatial
constraints (b) Spatial constraints on a temporal di-
mension
queries, namely video streaming aggregation queries involv-
ing spatial constraints. Consider for example Figure 1(b). It
depicts a car at the left of a stop sign. From a surveillance
point of view we would like to determine if this event is true
for more than say 10 minutes. This may indicate that the
car is parked and be flagged as a possible violation of traffic
regulations. We utilize Monte Carlo based techniques to effi-
ciently process such aggregation queries involving spatial
constraints between objects.

We focus on single static camera streaming video as this is
the case prevalent in video surveillance applications. More-
over since our work concerns filters to conduct estimations
regarding objects in video frames and their relationships, we
focus on video streams in which objects and their features
of interest (e.g. shapes, colors) are clearly distinguishable on
the screen for typical image resolutions. As such the surveil-
lance applications of interest in this study consist of frames
containing small numbers of objects (e.g., multiples of tens
of objects as in city intersections, building security, high-
way segment surveillance etc) but not thousands of objects.
Crowd monitoring applications [15] in which frames may
contain multiple hundreds or thousands of objects (sports
events, demonstrations, political rallies, etc) are not a fo-
cus of our work. Such use cases are equally important but
require very different approaches than those we propose
herein. They are however important directions for future
work.

More specifically we will be able to demonstrate:

• A series of filters that can quickly assess whether a
frame should be processed further given videomonitor-
ing queries involving count and spatial constraints on
objects present in the frame. These include count-filters
(CF) that quickly determine the number of objects in a
frame, class-count-filters (CCF) that quickly determine
the number of objects on a specific class in a frame and
class-location-filters (CLF) that predict the spatial loca-
tion of objects of a specific class in a frame enabling the
evaluation of spatial relationships/constraints across
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objects utilizing such predictions. In each case we eval-
uate the accuracy performance trade-offs of applying
such filters in a query processing setting.

• Monte Carlo techniques to process aggregate queries
involving spatial query predicates that effectively re-
duce the variance of the estimates. We utilize a gener-
alization of the Monte Carlo based approach to queries
involving predicates amongmultiple objects and demon-
strate the performance/accuracy trade-offs of such an
approach.

• The architecture of SVG and its current modules, in-
cluding declarative query parsing and execution as
well extensible deep learning modules to implement
the different types of filters.

• The current user interface and dashboard of SVG, the
functionality supporting execution of declarative queries
involving the proposed deep learning based filters and
query types, performance monitors quantifying both
the accuracy and performance benefits of the query
execution when compared with base lines.

2 FILTERING APPROACHES
We briefly review our filtering proposals. We assume video
streamswith a set frames per second (fps) rate; we also assume
access to each frame individually. Resolution of each image
frame is fixed and remains the same throughout the stream.
Our objective is to process each frame fast applying filters
and only activate expensive object detection algorithms on a
frame when there is high confidence that it will belong to the
answer set (i.e., satisfies the query), to make the final decision.
Our first set of filters whichwe refer to as Image Classification
(IC) is inspired by image classification algorithms [7, 14, 16]
and the second set of filters which we refer to as Object
Detection (OD) is inspired by object detection algorithms
[1–3, 12, 13]. The set of filters we propose are approximate
and as such can yield both false positive and false negatives.
From a query execution perspective multiple filters may be
applicable on a single frame.

3 SYSTEM ARCHITECTURE
The current architecture of SVG is as follows. The front end
accepts SQL queries and also provides various nobs for video
source selection, performance monitoring and query results
display and comparisons (see Section 4). Queries are dis-
patched to the back end which is responsible for parsing
the query and incorporating the supported deep learning
predicates and deep learning filters. Deep learning filters is
an extensible module that implements our proposed filter
predicates for count estimation of objects in a frame, count
estimation of objects of a specific class in the frame, as well
as estimation of the location of given object classes in the

frames. Deep learning predicates is an extensible module
that encompasses popular recent deep learning algorithms
for object detection, texture/shape extraction and algorithms
for precise object localization on an input video frame. These
algorithms are embedded in the parsed query representation
and relayed to the query execution engine. The execution
module utilizes popular deep learning frameworks to execute
the query with the assistance of available GPUs. Frames that
pass the filters instantiated in the query are subsequently
checked with deep learning predicates and then routed to
the front end for display.

4 DEMO EXPERIENCE
SVG is under rapid development. It currently incorporates
our proposed algorithms for filtering frames (based on counts,
class based counts and object location), allowing to express
semantically meaningful video frame queries in an inter-
active fashion. Users will have the option of video source
selection (out of a collection of available videos) and the abil-
ity to expresses their queries in SQL suitably enhanced with
UDFs to manipulate video object primitives. In addition they
will be able to express location based (spatial) constraints
among video frame objects that should be satisfied by the
queries. Users can also test the impact of different filters in
isolation or in combination and observe the resulting query
performance. The impact of filters will be analyzed based on
the total query processing time (when compared to a query
that does not make use of the filters but instead executes
the query in a brute force manner) as well as the resulting
frame processing rate. Figure 2 presents the front end. There
are options for video source selection (the data set to query)
along with options to observe results in normal frame rate or
slow motion (to ease comprehension of query results) (Area
A). Our filters can be selected in isolation so that participants
can experiment with each filter as well as an area to issue
a comprehensive SQL query (Areas B and C) that includes,
object types of interest, their spatial constraints, along with
suitable aggregate constraints. Accuracy and precision/recall
results (as applicable) are reported in Areas E (for our algo-
rithms) and H (for brute force), complemented with detailed
performance numbers (response times and frame rates) in
areas F and I respectively. Finally areas D and G of the UI
present the actual query results for our proposed techniques
and brute force respectively.
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Figure 2: SVG Current front end
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