Research in Cloud Computing

Bharat Bhargava bbshail@purdue.edu Computer Science Purdue University

Anya Kim anya.kim@nrl.navy.mil Naval Research Lab YounSun Cho cho52@cs.purdue.edu Computer Science Purdue University

Talk Objectives

- A high-level discussion of the fundamental challenges and issues/characteristics of cloud computing
- Identify a few security and privacy issues within this framework
- Propose some approaches to addressing these issues

- Preliminary ideas to think about

Introduction

- Cloud Computing Background
- Cloud Models
- Why do you still hesitate to use cloud computing?
- Causes of Problems Associated with Cloud Computing
- Taxonomy of Fear
- Threat Model

Cloud Computing Background

- Features
 - Use of internet-based services to support business process
 - Rent IT-services on a utility-like basis
- Attributes
 - Rapid deployment
 - Low startup costs/ capital investments
 - Costs based on usage or subscription
 - Multi-tenant sharing of services/ resources
- Essential characteristics
 - On demand self-service
 - Ubiquitous network access
 - Location independent resource pooling
 - Rapid elasticity
 - Measured service
- "Cloud computing is a compilation of existing techniques and technologies, packaged within a new infrastructure paradigm that offers improved scalability, elasticity, business agility, faster startup time, reduced management costs, and just-in-time availability of resources"

A Massive Concentration of Resources

- Also a massive concentration of risk
 - expected loss from a single breach can be significantly larger
 - concentration of "users" represents a concentration of threats
- "Ultimately, you can outsource responsibility but you can't outsource accountability."

Cloud Computing: who should use it?

- Cloud computing definitely makes sense if your own security is weak, missing features, or below average.
- Ultimately, if
 - the cloud provider's security people are "better" than yours (and leveraged at least as efficiently),
 - the web-services interfaces don't introduce too many new vulnerabilities, and
 - the cloud provider aims at least as high as you do, at security goals,

then cloud computing has better security.

Cloud Models

- Delivery Models
 - SaaS
 - PaaS
 - IaaS

Deployment Models

- Private cloud
- Community cloud
- Public cloud
- Hybrid cloud

We propose one more Model: Management Models (trust and tenancy issues)

- Self-managed
- 3rd party managed (e.g. public clouds and VPC)

Delivery Models

	▲ · · · · · · · · · · · · · · · · · · ·	Definition	Examples
	Ap _l	plications that are enabled for the cloud	 Google Docs
Suppor		rts an architecture that can run multiple instances of itself regardless of location	• MobileMe • Zoho
		Stateless application architecture	
	maturing Mo	maturing Monthly subscription-based pricing model	
	Software		
	A pl	atform that enables developers to write	 Microsoft Azure
		applications that run on the cloud	 Google App Engine
	nascent	A platform would usually have several application services available for quick	 Force.com
	Platform	deployment	
		A highly scaled redundant and shared	 Amazon EC2, S3, etc.
	evolving	computing infrastructure accessible using Internet technologies	Rackspace Mosso offering
	Infrastructure (servers, storage, databases)	Consists of servers, storage, security, databases, and other peripherals	Sun's cloud services Terremark cloud offering

While cloud-based software services are maturing, Cloud platform and infrastructure offering are still in their early stages !

Impact of cloud computing on the governance structure of IT organizations

From [6] Cloud Security and Privacy by Mather and Kumaraswamy

If cloud computing is so great, why isn't everyone doing it?

- The cloud acts as a big black box, nothing inside the cloud is visible to the clients
- Clients have no idea or control over what happens inside a cloud
- Even if the cloud provider is honest, it can have malicious system admins who can tamper with the VMs and violate confidentiality and integrity
- Clouds are still subject to traditional data confidentiality, integrity, availability, and privacy issues, plus some additional attacks

Companies are still afraid to use clouds

Q: Rate the challenges/issues ascribed to the 'cloud'/on-demand model

W

(1=not significant, 5=very significant)

Causes of Problems Associated with Cloud Computing

- Most security problems stem from:
 - -Loss of control
 - -Lack of trust (mechanisms)
 - Multi-tenancy
- These problems exist mainly in 3rd party management models
 - Self-managed clouds still have security issues, but not related to above

Loss of Control in the Cloud

- Consumer's loss of control
 - Data, applications, resources are located with provider
 - User identity management is handled by the cloud
 - User access control rules, security policies and enforcement are managed by the cloud provider
 - Consumer relies on provider to ensure
 - Data security and privacy
 - Resource availability
 - Monitoring and repairing of services/resources

Lack of Trust in the Cloud

- A brief deviation from the talk
 - (But still related)
 - Trusting a third party requires taking risks
- Defining trust and risk
 - Opposite sides of the same coin (J. Camp)
 - People only trust when it pays (Economist's view)
 Need for trust arises only in risky situations
- Defunct third party management schemes
 - Hard to balance trust and risk
 - -e.g. Key Escrow (Clipper chip)
 - Is the cloud headed toward the same path?

Multi-tenancy Issues in the Cloud

- Conflict between tenants' opposing goals
 - Tenants share a pool of resources and have opposing goals
- How does multi-tenancy deal with conflict of interest?
 - Can tenants get along together and 'play nicely' ?
 - If they can't, can we isolate them?
- How to provide separation between tenants?
- Cloud Computing brings new threats
 - Multiple independent users share the same physical infrastructure
 - Thus an attacker can legitimately be in the same physical machine as the target

Taxonomy of Fear

- Confidentiality
 - Fear of loss of control over data
 - Will the sensitive data stored on a cloud remain confidential?
 - Will cloud compromises leak confidential client data
 - Will the cloud provider itself be honest and won't peek into the data?
- Integrity
 - How do I know that the cloud provider is doing the computations correctly?
 - How do I ensure that the cloud provider really stored my data without tampering with it?

- Availability
 - Will critical systems go down at the client, if the provider is attacked in a Denial of Service attack?
 - What happens if cloud provider goes out of business?
 - Would cloud scale well-enough?
 - Often-voiced concern
 - Although cloud providers argue their downtime compares well with cloud user's own data centers

- Privacy issues raised via massive data mining
 - Cloud now stores data from a lot of clients, and can run data mining algorithms to get large amounts of information on clients
- Increased attack surface
 - Entity outside the organization now stores and computes data, and so
 - Attackers can now target the communication link between cloud provider and client
 - Cloud provider employees can be phished

- Auditability and forensics (out of control of data)
 - Difficult to audit data held outside organization in a cloud
 - Forensics also made difficult since now clients don't maintain data locally
- Legal quagmire and transitive trust issues
 - Who is responsible for complying with regulations?
 - e.g., SOX, HIPAA, GLBA?
 - If cloud provider subcontracts to third party clouds, will the data still be secure?

- Security is one of the most difficult task to implement in cloud computing.
 - Different forms of attacks in the application side and in the hardware components
- Attacks with catastrophic effects only needs one security flaw

Threat Model

- A threat model helps in analyzing a security problem, design mitigation strategies, and evaluate solutions
- •Steps:
 - Identify attackers, assets, threats and other components
 - Rank the threats
 - Choose mitigation strategies
 - Build solutions based on the strategies

Threat Model

- Basic components
 - Attacker modeling
 - Choose what attacker to consider
 - insider vs. outsider?
 - single vs. collaborator?
 - Attacker motivation and capabilities
 - Attacker goals
 - Vulnerabilities / threats

What is the issue?

- The core issue here is the levels of trust
 - Many cloud computing providers trust their customers
 - Each customer is physically commingling its data with data from anybody else using the cloud while logically and virtually you have your own space
 - The way that the cloud provider implements security is typically focused on they fact that those outside of their cloud are evil, and those inside are good.
- But what if those inside are also evil?

Attacker Capability: Malicious Insiders

- At client
 - Learn passwords/authentication information
 - Gain control of the VMs
- At cloud provider
 - Log client communication
 - Can read unencrypted data
 - Can possibly peek into VMs, or make copies of VMs
 - Can monitor network communication, application patterns
 - Why?
 - Gain information about client data
 - Gain information on client behavior
 - Sell the information or use itself

Attacker Capability: Outside attacker

- What?
 - -Listen to network traffic (passive)
 - Insert malicious traffic (active)
 - Probe cloud structure (active)
 - –Launch DoS
- Goal?
 - Intrusion
 - Network analysis
 - Man in the middle
 - Cartography

Challenges for the attacker

- How to find out where the target is located?
- How to be co-located with the target in the same (physical) machine?
- How to gather information about the target?