An Introduction to

PL/SQL

Mehdi Azarmi

Introduction

- PL/SQL is Oracle's procedural language extension to
SQL, the non-procedural relational database language.

- Combines power and flexibility of SQL (4GL) with
procedural constructs of a 3GL

* Extends SQL by adding

* Variables and types
* Control Structures (conditional, loops)
* Procedures and functions
* Exception handling

Block Definition

* Basic unit of PL/SQL is a block

* Three possible sections of a block
* Declarative section
* Executable section
* Exception handling

* A block performs a logical unit of work in the program
* Blocks can be nested

Block Structure

DECLARE

/* Declarative section: variables, types, and | ocal
subprograns. */

BEG N

/| * Execut abl e section: procedural and SQ. statenents go here.

*/

/* This is the only section of the block that is required. */
EXCEPTI ON

/* Exception handling section: error handling statenents go
here. */

END;

Executable Section

* The only required section

* Contains constructs such as assignments, branches, loops,
procedure calls, and triggers

- SELECT, INSERT, UPDATE, DELETE are supported

- the SELECT statement has a special form in which a single tuple is placed in
variables

- Data definition statements like CREATE, DROP, or ALTER are not
allowed.

- PL/SQL is not case sensitive. C style comments (/* ... */) may be
used.

L N
Variables and Types

- Declared in the declaration section
* Variables have a specific type associated with them
* Types

* One of the types used by SQL for database columns

- A generic type used in PL/SQL
* Most useful is NUMBER (can hold either an integer or a real number)
- BOOLEAN (but not supported as a type for database columns)

* Declared to be the same as the type of some database column

* It is essential that the variable have the same type as the
relation column.

* use the % TYPE operator
DECLARE
myBeer Beers.name%TYPE;

* A variable may also have a type that is a record with several fields
beerTuple Beers% ROWTYPE; /* (name, manufacture)*/

Variables - Example

DECLARE
a NUMBER : = 3;
BEG N
a .= a + 1;
END;
run: To execute the program

* The initial value of any variable, regardless of its type, is NULL.

* This program has no effect when run, because there are no
changes to the database.

Example

CREATE TABLE T1(
e | NTEGER,
f I NTEGER .

)

DELETE FROM T1;
| NSERT I NTO T1 VALUES(1, 3);
I NSERT | NTO T1 VALUES(2, 4);

/* Above is plain SQ.; belowis the PL/SQL °
program */

ECLARE single tuple

a NUMBER,
b NUVBER,

BEG N
SELECT e,f INTO a, b FROM T1 WHERE e>1; cursor
| NSERT | NTO T1 VALUES(b, a) ;

END;

run;

Control flow In
PL/SQL

.
IF Statement

* An |IF statement looks like:
| F <condi tion>
THEN <statenment |ist>
ELSE <statenent |ist>
END | F;

* The ELSE part is optional

* If you want a multiway branch, use:
| F <condition_1> THEN ...
ELSI F <condition_2> THEN ...

ELSI F <condition_n> THEN ...
ELSE ...
END | F;

. N
IF - Example

DECLARE
a NUMBER;
b NUMVBER;
BEG N
SELECT e,f INTO a,b FROM T1 WHERE e>1;
| F b=1 THEN
| NSERT | NTO T1 VALUES(Db, a);
ELSE
| NSERT | NTO T1 VALUES(b+10, a+10);
END | F;
END;

run,

2
IF - Example 2

DECLARE
Tot al St udent s NUMBER,
BEG N
SELECT COUNT(*)
| NTO Tot al St udent s
FROM st udent s;

.
IF and UPDATE - Example

DECLARE
NewMpaj or VARCHAR2(10) :="'CS';
Fi rst Nane VARCHAR2(10) := ' Mehdi';
Last Nane VARCHAR2(10) := 'Azarm';
BEG N

UPDATE students
SET maj or = NewMaj or
VWHERE first _nane = FirstNane
AND | ast _nane = Last Nane;
| F SQLYNOTFOUND THEN
| NSERT | NTO students (ID, first _nanme, |ast_nanme, najor)
VALUES (student sequence. NEXTVAL, FirstNanme, LastNane, NewMjj or);
END | F;
END;
/

Loops

* Alloop allows execution of a set of statements repeatedly
* Types of loops

- Simple loop
* Numeric For loop
* While loop

* Loops are created with the following:

LOOP

<| oop_body> /* A list of statenents. */
END LQOOP;

* At least one of the statements in <loop body> should be
an EXIT statement of the form

* EXIT WHEN <condition>;

5
LOOP - Example

DECLARE
| NUMBER : = 1;
BEG N
L OOP
| NSERT | NTO T1 VALUES(1,1);
| =1 +1;
EXIT WHEN i >100;
END LOOP;
END;

run,

R
FOR and WHILE Loops

* AWHILE loop can be formed with
VWH LE <condition> LOOP
<l oop_body>
END LOOP;
* A simple FOR loop can be formed with:
FOR <var> I N <start>..<finish> LOOP
<| oop_body>
END LOOP;

* Here, <var> can be any variable; it is local to the for-loop
and need not be declared. Also, <start> and <finish> are
constants.

FOR - Example

BEG N
FOR LoopCounter IN 1..50 LOCP
| NSERT | NTO tenp_table (numcol)
VALUES (LoopCounter);
END LOOP;
END;
/

Cursors

* the SELECT statement in PL/SQL only works if the result
of the query contains a single tuple

* If the query returns more than one tuple, or you want to
manipulate a relation with more than one row, you need to
use a cursor

* A cursor creates a named context area as a result of
executing an associated SQL statement

* Permits the program to step through the multiple rows
displayed by an SQL statement

.
CURSOR - Example part

1) DECLARE
[* Qutput variables to hold the result of the query: */
2) a T1. e% YPE;
3) b T1.f%I'YPE;
[* Cursor declaration: */
4) CURSOR Tl1Cursor IS
5) SELECT e, f
6) FROM T1
7) WHERE e < f
8) FOR UPDATE;
9) BEG N
10) OPEN T1Cur sor;

Next page

.
CURSOR- Example part2

11) LOOP
/* Retrieve each row of the result of the above query
into PL/SQL variables: */

12) FETCH T1Cursor | NTO a, b;
/[* If there are no nore rows to fetch, exit the | oop: */
13) EXIT WHEN T1Cur sor ¥NOTFOUND;
/* Delete the current tuple: */
14) DELETE FROM T1 WHERE CURRENT OF T1Cursor;
/* Insert the reverse tuple: */
15) | NSERT | NTO T1 VALUES(b, a);
16) END LOOP;
/* Free cursor used by the query. */
17) CLOSE T1Cursor;
18) END;
19)

20) run;

Procedure

* PROCEDURE and FUNCTIONS

* Parameters
* Mode of operation:
* IN (read-only)
* OUT (write-only)
* INOUT (read and write)
* Type
* the type specifier in a parameter declaration must be
unconstrained.
- Example: CHAR(10) and VARCHAR(20) are illegal
* CHAR or VARCHAR should be used instead.

2
PROCEDURE - Template

CREATE OR REPLACE PROCEDURE PROCNAME(PARAMETERS) AS
<| ocal var decl arations>

BEG N

<pr ocedur e_body>
END;

run,

* The run at the end runs the statement that creates the procedure; it does not
execute the procedure.

* To execute the procedure, use another PL/SQL statement, in which the
procedure is invoked as an executable statement.
* For example:
BEGIN addtuple1(99); END;

Run;

3
PROCEDURE — Example 1

CREATE TABLE T2 (
a | NTEGER,
b CHAR(10)

)

CREATE PROCEDURE addt upl e2(
X I'N T2. a%l'YPE,
y IN T2. b%YPE)

AS

BEG N
| NSERT | NTO T2(a, b)
VALUES(X, VY);

END addt upl e2;

run;

*Now, to add a tuple (10, 'abc') to T2:
BEG N

addt upl e2(10, "abc');
END;

run;

. S
PROCEDURE — Example 2

CREATE TABLE T3 (
a INTEGER,
b INTEGER

);

CREATE PROCEDURE addtuple3(a NUMBER, b OUT NUMBER)
AS
BEGIN
b:=4;
INSERT INTO T3 VALUES(a, b);
END;

Run;

DECLARE

v NUMBER;
BEGIN

addtuple3(10, v); /* second parameter should be an Ivalue*/
END;

run;

-5
PROCEDURE - Final Notes

- We can also write functions instead of procedures. In a function
declaration, we follow the parameter list by RETURN and the type of
the return value:

* CREATE FUNCTI ON <func_nanme>(<param|ist>) RETURN
<return_type> AS ...

* In the body of the function definition, "RETURN <expression>;" exits from the
function and returns the value of <expression>.
* To find out what procedures and functions you have created, use the
following SQL query:
sel ect object type, object nanme
fromuser objects
where object type = ' PROCEDURE or object type = ' FUNCTI ON ;

- To drop a stored procedure/function:
drop procedure <procedure_nanme>;
drop function <function_name>;

I
Printing

* Always use the following line (setting output buffer) at the
beginning of your SQL file:
set serveroutput on size 32000
* Printing a line:
dbnms_out put.put line(VARL|| '. ' || VAR2);

* You may declare and use a bind variable to print a local variable
VARI ABLE x NUMBER

BEG N
X 1= 1;
END;

run,

PRI NT : x;:

Debugging

- PL/SQL does not always tell you about compilation errors.
Instead, it gives you a cryptic message such as:
"procedure created with conpilation errors".
* If you don't see what is wrong immediately, try issuing the
command
show errors procedure <procedure_ nanme>;
* Alternatively, you can type, SHO ERR (short for SHOW
ERRORS) to see the most recent compilation error.

* Note that the location of the error given as part of the
error message is not always accurate!

. S
Performance of PL/SQL

- SQL results in many network trips, one for each SQL
statement

- PL/SQL permits several SQL statements to be bundled
Into a single block

- Results in fewer calls to database
* Less network traffic
- faster response time

References

* http://infolab.stanford.edu/~ullman/fcdb/oracle/or-
plsgl.html
* Oracle PL/SQL Programming: Covers Versions Through

Oracle Database 11g Release 2, by Steven Feuerstein
and Bill Pribyl (Oct 1, 2009)

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html
http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html

	Slide 1
	Introduction
	Block Definition
	Block Structure
	Executable Section
	Variables and Types
	Variables - Example
	Example
	Slide 9
	IF Statement
	IF - Example
	IF - Example 2
	IF and UPDATE - Example
	Loops
	LOOP - Example
	FOR and WHILE Loops
	FOR - Example
	Cursors
	CURSOR – Example part1
	CURSOR– Example part2
	Procedure
	PROCEDURE - Template
	PROCEDURE – Example 1
	PROCEDURE – Example 2
	PROCEDURE – Final Notes
	Printing
	Debugging
	Performance of PL/SQL
	References

