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Chapter 2

Database System Concepts and 
Architecture
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Outline

 Data Models and Their Categories
 History of Data Models
 Schemas, Instances, and States
 Three-Schema Architecture
 Data Independence
 DBMS Languages and Interfaces
 Database System Utilities and Tools
 Centralized and Client-Server Architectures
 Classification of DBMSs



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models

 Data Model:
 A set of concepts to describe the structure of a database, 

the operations for manipulating these structures, and 
certain constraints that the database should obey.

 Data Model Structure and Constraints:
 Constructs are used to define the database structure
 Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, record, 
table), and relationships among such groups

 Constraints specify some restrictions on valid data; these 
constraints must be enforced at all times
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Data Models (continued)

 Data Model Operations:
 These operations are used for specifying database 

retrievals and updates by referring to the 
constructs of the data model.

 Operations on the data model may include basic 
model operations (e.g. generic insert, delete, 
update) and user-defined operations (e.g. 
compute_student_gpa, update_inventory)
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Categories of Data Models

 Conceptual (high-level, semantic) data models:
 Provide concepts that are close to the way many users 

perceive data. 
 (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:
 Provide concepts that describe details of how data is stored 

in the computer. These are usually specified in an ad-hoc 
manner through DBMS design and administration manuals

 Implementation (representational) data models:
 Provide concepts that fall between the above two, used by 

many commercial DBMS implementations (e.g. relational 
data models used in many commercial systems).



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 7

Schemas versus Instances

 Database Schema:
 The description of a database.
 Includes descriptions of the database structure, 

data types, and the constraints on the database.
 Schema Diagram:

 An illustrative display of (most aspects of) a 
database schema.

 Schema Construct:
 A component of the schema or an object within 

the schema, e.g., STUDENT, COURSE.
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Schemas versus Instances

 Database State:
 The actual data stored in a database at a 

particular moment in time. This includes the 
collection of all the data in the database.

 Also called database instance (or occurrence or 
snapshot).

 The term instance  is also applied to individual 
database components, e.g. record instance, table 
instance, entity instance



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 9

Database Schema 
vs. Database State
 Database State: 

 Refers to the content of a database at a moment 
in time.

 Initial Database State:
 Refers to the database state when it is initially 

loaded into the system.
 Valid State:

 A state that satisfies the structure and constraints 
of the database.
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Database Schema 
vs. Database State (continued)
 Distinction

 The database schema changes very infrequently. 
 The database state changes every time the 

database is updated. 

 Schema is also called intension.
 State is also called extension.
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Example of a Database Schema
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Example of a database state
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Three-Schema Architecture

 Proposed to support DBMS characteristics of:
 Program-data independence.
 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products, 
but has been useful in explaining database 
system organization
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Three-Schema Architecture

 Defines DBMS schemas at three levels:
 Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 
 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the 
structure and constraints for the whole database for a 
community of users. 

 Uses a conceptual or an implementation data model.
 External schemas at the external level to describe the 

various user views. 
 Usually uses the same data model as the conceptual schema.
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The three-schema architecture
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Three-Schema Architecture

 Mappings among schema levels are needed to 
transform requests and data. 
 Programs refer to an external schema, and are 

mapped by the DBMS to the internal schema for 
execution.

 Data extracted from the internal DBMS level is 
reformatted to match the user’s external view (e.g. 
formatting the results of an SQL query for display 
in a Web page)
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Data Independence

 Logical Data Independence: 
 The capacity to change the conceptual schema 

without having to change the external schemas 
and their associated application programs.

 Physical Data Independence:
 The capacity to change the internal schema 

without having to change the conceptual schema.
 For example, the internal schema may be changed 

when certain file structures are reorganized or new 
indexes are created to improve database 
performance
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Data Independence (continued)

 When a schema at a lower level is changed, only 
the mappings between this schema and higher-
level schemas need to be changed in a DBMS 
that fully supports data independence.

 The higher-level schemas themselves are 
unchanged.
 Hence, the application programs need not be 

changed since they refer to the external schemas.
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DBMS Languages

 Data Definition Language (DDL)
 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These 
include the relational language SQL

 May be used in a standalone way or may be 
embedded in a programming language

 Low Level or Procedural Languages:
 These must be embedded in a programming 

language
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DBMS Languages

 Data Definition Language (DDL): 
 Used by the DBA and database designers to 

specify the conceptual schema of a database.
 In many DBMSs, the DDL is also used to define 

internal and external schemas (views).
 In some DBMSs, separate storage definition 

language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

 SDL is typically realized via DBMS commands 
provided to the DBA and database designers
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DBMS Languages

 Data Manipulation Language (DML):
 Used to specify database retrievals and updates
 DML commands (data sublanguage) can be 

embedded in a general-purpose programming 
language (host language), such as COBOL, C, C+
+, or Java.

 A library of functions can also be provided to access 
the DBMS from a programming language

 Alternatively, stand-alone DML commands can be 
applied directly (called a query language).
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Types of DML

 High Level or Non-procedural Language:
 For example, the SQL relational language
 Are “set”-oriented and specify what data to retrieve 

rather than how to retrieve it. 
 Also called declarative languages.

 Low Level or Procedural Language:
 Retrieve data one record-at-a-time; 
 Constructs such as looping are needed to retrieve 

multiple records, along with positioning pointers.
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DBMS Interfaces

 Stand-alone query language interfaces
 Example: Entering SQL queries at the DBMS 

interactive SQL interface (e.g. SQL*Plus in 
ORACLE)

 Programmer interfaces for embedding DML in 
programming languages

 User-friendly interfaces
 Menu-based, forms-based, graphics-based, etc.
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DBMS Programming Language Interfaces

 Programmer interfaces for embedding DML in a 
programming languages:
 Embedded Approach: e.g embedded SQL (for C, 

C++, etc.), SQLJ (for Java)
 Procedure Call Approach: e.g. JDBC for Java, 

ODBC for other programming languages
 Database Programming Language Approach: 

e.g. ORACLE has PL/SQL, a programming 
language based on SQL; language incorporates 
SQL and its data types as integral components
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User-Friendly DBMS Interfaces

 Menu-based, popular for browsing on the web
 Forms-based, designed for naïve users
 Graphics-based 

 (Point and Click, Drag and Drop, etc.)
 Natural language: requests in written English
 Combinations of the above:

 For example, both menus and forms used 
extensively in Web database interfaces
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Other DBMS Interfaces

 Speech as Input and Output
 Web Browser as an interface
 Parametric interfaces, e.g., bank tellers using 

function keys.
 Interfaces for the DBA:

 Creating user accounts, granting authorizations
 Setting system parameters
 Changing schemas or access paths
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Database System Utilities

 To perform certain functions such as:
 Loading data stored in files into a database. 

Includes data conversion tools.
 Backing up the database periodically on tape.
 Reorganizing database file structures.
 Report generation utilities.
 Performance monitoring utilities.
 Other functions, such as sorting, user monitoring, 

data compression, etc.
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Other Tools

 Data dictionary / repository:
 Used to store schema descriptions and other 

information such as design decisions, application 
program descriptions, user information, usage 
standards, etc.

 Active data dictionary is accessed by DBMS 
software and users/DBA.

 Passive data dictionary is accessed by 
users/DBA only.
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Other Tools

 Application Development Environments and 
CASE (computer-aided software engineering) 
tools:

 Examples:
 PowerBuilder (Sybase)
 JBuilder (Borland)
 JDeveloper 10G (Oracle)
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Typical DBMS Component Modules
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Centralized and 
Client-Server DBMS Architectures 
 Centralized DBMS:

 Combines everything into single system including- 
DBMS software, hardware, application programs, 
and user interface processing software.

 User can still connect through a remote terminal – 
however, all processing is done at centralized site.
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A Physical Centralized Architecture
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Basic 2-tier Client-Server Architectures

 Specialized Servers with Specialized functions
 Print server
 File server
 DBMS server
 Web server
 Email server

 Clients can access the specialized servers as 
needed
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Logical two-tier client server architecture
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Clients

 Provide appropriate interfaces through a client 
software module to access and utilize the various 
server resources. 

 Clients may be diskless machines or PCs or 
Workstations with disks with only the client 
software installed.

 Connected to the servers via some form of a 
network.
 (LAN: local area network, wireless network, etc.)
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DBMS Server

 Provides database query and transaction services to the 
clients

 Relational DBMS servers are often called SQL servers, 
query servers, or transaction servers

 Applications running on clients utilize an Application 
Program Interface (API) to access server databases via 
standard interface such as:

 ODBC: Open Database Connectivity standard
 JDBC: for Java programming access

 Client and server must install appropriate client module 
and server module software for ODBC or JDBC

 See Chapter 9
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Two Tier Client-Server Architecture

 A client program may connect to several DBMSs, 
sometimes called the data sources.

 In general, data sources can be files or other 
non-DBMS software that manages data.

 Other variations of clients are possible: e.g., in 
some object DBMSs, more functionality is 
transferred to clients including data dictionary 
functions, optimization and recovery across 
multiple servers, etc.
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Three Tier Client-Server Architecture

 Common for Web applications
 Intermediate Layer called Application Server or Web 

Server: 
 Stores the web connectivity software and the business logic 

part of the application used to access the corresponding 
data from the database server

 Acts like a conduit for sending partially processed data 
between the database server and the client.

 Three-tier Architecture Can Enhance Security: 
 Database server only accessible via middle tier
 Clients cannot directly access database server
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Three-tier client-server architecture
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Classification of DBMSs

 Based on the data model used
 Traditional: Relational, Network, Hierarchical.
 Emerging: Object-oriented, Object-relational.

 Other classifications
 Single-user (typically used with personal 

computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with one 
database) 
vs. distributed (uses multiple computers, multiple 
databases) 
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Variations of Distributed DBMSs 
(DDBMSs)
 Homogeneous DDBMS
 Heterogeneous DDBMS
 Federated or Multidatabase Systems
 Distributed Database Systems have now come to 

be known as client-server based database 
systems because:
 They do not support a totally distributed 

environment, but rather a set of database servers 
supporting a set of clients.
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Cost considerations for DBMSs

 Cost Range: from free open-source systems to 
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL, 
others

 Commercial DBMS offer additional specialized modules, 
e.g. time-series module, spatial data module, document 
module, XML module

 These offer additional specialized functionality when 
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or blades
 Different licensing options: site license, maximum number 

of concurrent users (seat license), single user, etc.
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History of Data Models 

 Network Model
 Hierarchical Model
 Relational Model
 Object-oriented Data Models
 Object-Relational Models
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History of Data Models 

 Network Model:
 The first network DBMS was implemented by 

Honeywell in 1964-65 (IDS System).
 Adopted heavily due to the support by CODASYL 

(Conference on Data Systems Languages) 
(CODASYL - DBTG report of 1971).

 Later implemented in a large variety of systems - 
IDMS (Cullinet - now Computer Associates), DMS 
1100 (Unisys), IMAGE (H.P. (Hewlett-Packard)), 
VAX -DBMS (Digital Equipment Corp., next 
COMPAQ, now H.P.).
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Example of Network Model Schema
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Network Model

 Advantages:
 Network Model is able to model complex 

relationships and represents semantics of 
add/delete on the relationships.

 Can handle most situations for modeling using 
record types and relationship types.

 Language is navigational; uses constructs like 
FIND, FIND member, FIND owner, FIND NEXT 
within set, GET, etc. 

 Programmers can do optimal navigation through the 
database.
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Network Model

 Disadvantages:
 Navigational and procedural nature of processing
 Database contains a complex array of pointers 

that thread through a set of records.
 Little scope for automated “query optimization”
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History of Data Models 

 Hierarchical Data Model:
 Initially implemented in a joint effort by IBM and 

North American Rockwell around 1965. Resulted 
in the IMS family of systems.

 IBM’s IMS product had (and still has) a very large 
customer base worldwide

 Hierarchical model was formalized based on the 
IMS system

 Other systems based on this model: System 2k 
(SAS inc.)
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Hierarchical Model

 Advantages:
 Simple to construct and operate
 Corresponds to a number of natural hierarchically organized 

domains, e.g., organization (“org”) chart
 Language is simple: 

 Uses constructs like GET, GET UNIQUE, GET NEXT, GET 
NEXT WITHIN PARENT, etc.

 Disadvantages:
 Navigational and procedural nature of processing
 Database is visualized as a linear arrangement of records
 Little scope for "query optimization"
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History of Data Models 

 Relational Model: 
 Proposed in 1970 by E.F. Codd (IBM), first commercial 

system in 1981-82.
 Now in several commercial products (e.g. DB2, ORACLE, 

MS SQL Server, SYBASE, INFORMIX).
 Several free open source implementations, e.g. MySQL, 

PostgreSQL
 Currently most dominant for developing database 

applications.
 SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2), 

SQL-99, SQL3, …
 Chapters 5 through 11 describe this model in detail
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History of Data Models

 Object-oriented Data Models:
 Several models have been proposed for implementing in a 

database system. 
 One set comprises models of persistent O-O Programming 

Languages such as C++ (e.g., in OBJECTSTORE or 
VERSANT), and Smalltalk (e.g., in GEMSTONE).

 Additionally, systems like O2, ORION (at MCC - then 
ITASCA), IRIS (at H.P.- used in Open OODB).

 Object Database Standard: ODMG-93, ODMG-version 2.0, 
ODMG-version 3.0.

 Chapters 20 and 21 describe this model.
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History of Data Models

 Object-Relational Models: 
 Most Recent Trend. Started with Informix 

Universal Server.
 Relational systems incorporate concepts from 

object databases leading to object-relational.
 Exemplified in the latest versions of Oracle-10i, 

DB2, and SQL Server and other DBMSs.
 Standards included in SQL-99 and expected to be 

enhanced in future SQL standards.
 Chapter 22 describes this model.
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