
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 2

Database System Concepts and
Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 3

Outline

 Data Models and Their Categories
 History of Data Models
 Schemas, Instances, and States
 Three-Schema Architecture
 Data Independence
 DBMS Languages and Interfaces
 Database System Utilities and Tools
 Centralized and Client-Server Architectures
 Classification of DBMSs

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models

 Data Model:
 A set of concepts to describe the structure of a database,

the operations for manipulating these structures, and
certain constraints that the database should obey.

 Data Model Structure and Constraints:
 Constructs are used to define the database structure
 Constructs typically include elements (and their data

types) as well as groups of elements (e.g. entity, record,
table), and relationships among such groups

 Constraints specify some restrictions on valid data; these
constraints must be enforced at all times

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 5

Data Models (continued)

 Data Model Operations:
 These operations are used for specifying database

retrievals and updates by referring to the
constructs of the data model.

 Operations on the data model may include basic
model operations (e.g. generic insert, delete,
update) and user-defined operations (e.g.
compute_student_gpa, update_inventory)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 6

Categories of Data Models

 Conceptual (high-level, semantic) data models:
 Provide concepts that are close to the way many users

perceive data.
 (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:
 Provide concepts that describe details of how data is stored

in the computer. These are usually specified in an ad-hoc
manner through DBMS design and administration manuals

 Implementation (representational) data models:
 Provide concepts that fall between the above two, used by

many commercial DBMS implementations (e.g. relational
data models used in many commercial systems).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 7

Schemas versus Instances

 Database Schema:
 The description of a database.
 Includes descriptions of the database structure,

data types, and the constraints on the database.
 Schema Diagram:

 An illustrative display of (most aspects of) a
database schema.

 Schema Construct:
 A component of the schema or an object within

the schema, e.g., STUDENT, COURSE.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 8

Schemas versus Instances

 Database State:
 The actual data stored in a database at a

particular moment in time. This includes the
collection of all the data in the database.

 Also called database instance (or occurrence or
snapshot).

 The term instance is also applied to individual
database components, e.g. record instance, table
instance, entity instance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 9

Database Schema
vs. Database State
 Database State:

 Refers to the content of a database at a moment
in time.

 Initial Database State:
 Refers to the database state when it is initially

loaded into the system.
 Valid State:

 A state that satisfies the structure and constraints
of the database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Database Schema
vs. Database State (continued)
 Distinction

 The database schema changes very infrequently.
 The database state changes every time the

database is updated.

 Schema is also called intension.
 State is also called extension.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 11

Example of a Database Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 12

Example of a database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 13

Three-Schema Architecture

 Proposed to support DBMS characteristics of:
 Program-data independence.
 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products,
but has been useful in explaining database
system organization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 14

Three-Schema Architecture

 Defines DBMS schemas at three levels:
 Internal schema at the internal level to describe physical

storage structures and access paths (e.g indexes).
 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the
structure and constraints for the whole database for a
community of users.

 Uses a conceptual or an implementation data model.
 External schemas at the external level to describe the

various user views.
 Usually uses the same data model as the conceptual schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 15

The three-schema architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 16

Three-Schema Architecture

 Mappings among schema levels are needed to
transform requests and data.
 Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for
execution.

 Data extracted from the internal DBMS level is
reformatted to match the user’s external view (e.g.
formatting the results of an SQL query for display
in a Web page)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 17

Data Independence

 Logical Data Independence:
 The capacity to change the conceptual schema

without having to change the external schemas
and their associated application programs.

 Physical Data Independence:
 The capacity to change the internal schema

without having to change the conceptual schema.
 For example, the internal schema may be changed

when certain file structures are reorganized or new
indexes are created to improve database
performance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Data Independence (continued)

 When a schema at a lower level is changed, only
the mappings between this schema and higher-
level schemas need to be changed in a DBMS
that fully supports data independence.

 The higher-level schemas themselves are
unchanged.
 Hence, the application programs need not be

changed since they refer to the external schemas.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

DBMS Languages

 Data Definition Language (DDL)
 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These
include the relational language SQL

 May be used in a standalone way or may be
embedded in a programming language

 Low Level or Procedural Languages:
 These must be embedded in a programming

language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

DBMS Languages

 Data Definition Language (DDL):
 Used by the DBA and database designers to

specify the conceptual schema of a database.
 In many DBMSs, the DDL is also used to define

internal and external schemas (views).
 In some DBMSs, separate storage definition

language (SDL) and view definition language
(VDL) are used to define internal and external
schemas.

 SDL is typically realized via DBMS commands
provided to the DBA and database designers

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

DBMS Languages

 Data Manipulation Language (DML):
 Used to specify database retrievals and updates
 DML commands (data sublanguage) can be

embedded in a general-purpose programming
language (host language), such as COBOL, C, C+
+, or Java.

 A library of functions can also be provided to access
the DBMS from a programming language

 Alternatively, stand-alone DML commands can be
applied directly (called a query language).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

Types of DML

 High Level or Non-procedural Language:
 For example, the SQL relational language
 Are “set”-oriented and specify what data to retrieve

rather than how to retrieve it.
 Also called declarative languages.

 Low Level or Procedural Language:
 Retrieve data one record-at-a-time;
 Constructs such as looping are needed to retrieve

multiple records, along with positioning pointers.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

DBMS Interfaces

 Stand-alone query language interfaces
 Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in
ORACLE)

 Programmer interfaces for embedding DML in
programming languages

 User-friendly interfaces
 Menu-based, forms-based, graphics-based, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

DBMS Programming Language Interfaces

 Programmer interfaces for embedding DML in a
programming languages:
 Embedded Approach: e.g embedded SQL (for C,

C++, etc.), SQLJ (for Java)
 Procedure Call Approach: e.g. JDBC for Java,

ODBC for other programming languages
 Database Programming Language Approach:

e.g. ORACLE has PL/SQL, a programming
language based on SQL; language incorporates
SQL and its data types as integral components

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

User-Friendly DBMS Interfaces

 Menu-based, popular for browsing on the web
 Forms-based, designed for naïve users
 Graphics-based

 (Point and Click, Drag and Drop, etc.)
 Natural language: requests in written English
 Combinations of the above:

 For example, both menus and forms used
extensively in Web database interfaces

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 26

Other DBMS Interfaces

 Speech as Input and Output
 Web Browser as an interface
 Parametric interfaces, e.g., bank tellers using

function keys.
 Interfaces for the DBA:

 Creating user accounts, granting authorizations
 Setting system parameters
 Changing schemas or access paths

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 27

Database System Utilities

 To perform certain functions such as:
 Loading data stored in files into a database.

Includes data conversion tools.
 Backing up the database periodically on tape.
 Reorganizing database file structures.
 Report generation utilities.
 Performance monitoring utilities.
 Other functions, such as sorting, user monitoring,

data compression, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 28

Other Tools

 Data dictionary / repository:
 Used to store schema descriptions and other

information such as design decisions, application
program descriptions, user information, usage
standards, etc.

 Active data dictionary is accessed by DBMS
software and users/DBA.

 Passive data dictionary is accessed by
users/DBA only.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 29

Other Tools

 Application Development Environments and
CASE (computer-aided software engineering)
tools:

 Examples:
 PowerBuilder (Sybase)
 JBuilder (Borland)
 JDeveloper 10G (Oracle)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 30

Typical DBMS Component Modules

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 31

Centralized and
Client-Server DBMS Architectures
 Centralized DBMS:

 Combines everything into single system including-
DBMS software, hardware, application programs,
and user interface processing software.

 User can still connect through a remote terminal –
however, all processing is done at centralized site.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 32

A Physical Centralized Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 33

Basic 2-tier Client-Server Architectures

 Specialized Servers with Specialized functions
 Print server
 File server
 DBMS server
 Web server
 Email server

 Clients can access the specialized servers as
needed

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 34

Logical two-tier client server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 35

Clients

 Provide appropriate interfaces through a client
software module to access and utilize the various
server resources.

 Clients may be diskless machines or PCs or
Workstations with disks with only the client
software installed.

 Connected to the servers via some form of a
network.
 (LAN: local area network, wireless network, etc.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 36

DBMS Server

 Provides database query and transaction services to the
clients

 Relational DBMS servers are often called SQL servers,
query servers, or transaction servers

 Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as:

 ODBC: Open Database Connectivity standard
 JDBC: for Java programming access

 Client and server must install appropriate client module
and server module software for ODBC or JDBC

 See Chapter 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 37

Two Tier Client-Server Architecture

 A client program may connect to several DBMSs,
sometimes called the data sources.

 In general, data sources can be files or other
non-DBMS software that manages data.

 Other variations of clients are possible: e.g., in
some object DBMSs, more functionality is
transferred to clients including data dictionary
functions, optimization and recovery across
multiple servers, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 38

Three Tier Client-Server Architecture

 Common for Web applications
 Intermediate Layer called Application Server or Web

Server:
 Stores the web connectivity software and the business logic

part of the application used to access the corresponding
data from the database server

 Acts like a conduit for sending partially processed data
between the database server and the client.

 Three-tier Architecture Can Enhance Security:
 Database server only accessible via middle tier
 Clients cannot directly access database server

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 39

Three-tier client-server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 40

Classification of DBMSs

 Based on the data model used
 Traditional: Relational, Network, Hierarchical.
 Emerging: Object-oriented, Object-relational.

 Other classifications
 Single-user (typically used with personal

computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with one
database)
vs. distributed (uses multiple computers, multiple
databases)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 41

Variations of Distributed DBMSs
(DDBMSs)
 Homogeneous DDBMS
 Heterogeneous DDBMS
 Federated or Multidatabase Systems
 Distributed Database Systems have now come to

be known as client-server based database
systems because:
 They do not support a totally distributed

environment, but rather a set of database servers
supporting a set of clients.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 42

Cost considerations for DBMSs

 Cost Range: from free open-source systems to
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL,
others

 Commercial DBMS offer additional specialized modules,
e.g. time-series module, spatial data module, document
module, XML module

 These offer additional specialized functionality when
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or blades
 Different licensing options: site license, maximum number

of concurrent users (seat license), single user, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 43

History of Data Models

 Network Model
 Hierarchical Model
 Relational Model
 Object-oriented Data Models
 Object-Relational Models

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 44

History of Data Models

 Network Model:
 The first network DBMS was implemented by

Honeywell in 1964-65 (IDS System).
 Adopted heavily due to the support by CODASYL

(Conference on Data Systems Languages)
(CODASYL - DBTG report of 1971).

 Later implemented in a large variety of systems -
IDMS (Cullinet - now Computer Associates), DMS
1100 (Unisys), IMAGE (H.P. (Hewlett-Packard)),
VAX -DBMS (Digital Equipment Corp., next
COMPAQ, now H.P.).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 45

Example of Network Model Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 46

Network Model

 Advantages:
 Network Model is able to model complex

relationships and represents semantics of
add/delete on the relationships.

 Can handle most situations for modeling using
record types and relationship types.

 Language is navigational; uses constructs like
FIND, FIND member, FIND owner, FIND NEXT
within set, GET, etc.

 Programmers can do optimal navigation through the
database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 47

Network Model

 Disadvantages:
 Navigational and procedural nature of processing
 Database contains a complex array of pointers

that thread through a set of records.
 Little scope for automated “query optimization”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 48

History of Data Models

 Hierarchical Data Model:
 Initially implemented in a joint effort by IBM and

North American Rockwell around 1965. Resulted
in the IMS family of systems.

 IBM’s IMS product had (and still has) a very large
customer base worldwide

 Hierarchical model was formalized based on the
IMS system

 Other systems based on this model: System 2k
(SAS inc.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 49

Hierarchical Model

 Advantages:
 Simple to construct and operate
 Corresponds to a number of natural hierarchically organized

domains, e.g., organization (“org”) chart
 Language is simple:

 Uses constructs like GET, GET UNIQUE, GET NEXT, GET
NEXT WITHIN PARENT, etc.

 Disadvantages:
 Navigational and procedural nature of processing
 Database is visualized as a linear arrangement of records
 Little scope for "query optimization"

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 50

History of Data Models

 Relational Model:
 Proposed in 1970 by E.F. Codd (IBM), first commercial

system in 1981-82.
 Now in several commercial products (e.g. DB2, ORACLE,

MS SQL Server, SYBASE, INFORMIX).
 Several free open source implementations, e.g. MySQL,

PostgreSQL
 Currently most dominant for developing database

applications.
 SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2),

SQL-99, SQL3, …
 Chapters 5 through 11 describe this model in detail

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 51

History of Data Models

 Object-oriented Data Models:
 Several models have been proposed for implementing in a

database system.
 One set comprises models of persistent O-O Programming

Languages such as C++ (e.g., in OBJECTSTORE or
VERSANT), and Smalltalk (e.g., in GEMSTONE).

 Additionally, systems like O2, ORION (at MCC - then
ITASCA), IRIS (at H.P.- used in Open OODB).

 Object Database Standard: ODMG-93, ODMG-version 2.0,
ODMG-version 3.0.

 Chapters 20 and 21 describe this model.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 52

History of Data Models

 Object-Relational Models:
 Most Recent Trend. Started with Informix

Universal Server.
 Relational systems incorporate concepts from

object databases leading to object-relational.
 Exemplified in the latest versions of Oracle-10i,

DB2, and SQL Server and other DBMSs.
 Standards included in SQL-99 and expected to be

enhanced in future SQL standards.
 Chapter 22 describes this model.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 53

Summary

 Data Models and Their Categories
 History of Data Models
 Schemas, Instances, and States
 Three-Schema Architecture
 Data Independence
 DBMS Languages and Interfaces
 Database System Utilities and Tools
 Centralized and Client-Server Architectures
 Classification of DBMSs

	Slide 1
	Chapter 2
	Outline
	Data Models
	Data Models (continued)
	Categories of Data Models
	Schemas versus Instances
	Slide 8
	Database Schema vs. Database State
	Database Schema vs. Database State (continued)
	Example of a Database Schema
	Example of a database state
	Three-Schema Architecture
	Slide 14
	The three-schema architecture
	Slide 16
	Data Independence
	Data Independence (continued)
	DBMS Languages
	Slide 20
	Slide 21
	Types of DML
	DBMS Interfaces
	DBMS Programming Language Interfaces
	User-Friendly DBMS Interfaces
	Other DBMS Interfaces
	Database System Utilities
	Other Tools
	Slide 29
	Typical DBMS Component Modules
	Centralized and Client-Server DBMS Architectures
	A Physical Centralized Architecture
	Basic 2-tier Client-Server Architectures
	Logical two-tier client server architecture
	Clients
	DBMS Server
	Two Tier Client-Server Architecture
	Three Tier Client-Server Architecture
	Three-tier client-server architecture
	Classification of DBMSs
	Variations of Distributed DBMSs (DDBMSs)
	Cost considerations for DBMSs
	History of Data Models
	Slide 44
	Example of Network Model Schema
	Network Model
	Slide 47
	Slide 48
	Hierarchical Model
	Slide 50
	History of Data Models
	Slide 52
	Summary

