
Slide 6- 1Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 6

The Relational Algebra and
Calculus

Slide 6- 3Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

 Relational Algebra
 Unary Relational Operations
 Relational Algebra Operations From Set Theory
 Binary Relational Operations
 Additional Relational Operations
 Examples of Queries in Relational Algebra

 Relational Calculus
 Tuple Relational Calculus
 Domain Relational Calculus

 Example Database Application (COMPANY)
 Overview of the QBE language (appendix D)

Slide 6- 4Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Overview

 Relational algebra is the basic set of operations for
the relational model

 These operations enable a user to specify basic
retrieval requests (or queries)

 The result of an operation is a new relation, which
may have been formed from one or more input
relations

 This property makes the algebra “closed” (all objects in
relational algebra are relations)

Slide 6- 5Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Overview (continued)

 The algebra operations thus produce new relations
 These can be further manipulated using operations of the

same algebra
 A sequence of relational algebra operations forms a

relational algebra expression
 The result of a relational algebra expression is also a

relation that represents the result of a database
query (or retrieval request)

Slide 6- 6Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Brief History of Origins of Algebra

 Muhammad ibn Musa al-Khwarizmi (800-847 CE)
wrote a book titled al-jabr about arithmetic of
variables

 Book was translated into Latin.
 Its title (al-jabr) gave Algebra its name.

 Al-Khwarizmi called variables “shay”
 “Shay” is Arabic for “thing”.
 Spanish transliterated “shay” as “xay” (“x” was “sh” in Spain).
 In time this word was abbreviated as x.

 Where does the word Algorithm come from?
 Algorithm originates from “al-Khwarizmi"
 Reference: PBS (http://www.pbs.org/empires/islam/innoalgebra.html)

http://www.pbs.org/empires/islam/innoalgebra.html

Slide 6- 7Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Overview

 Relational Algebra consists of several groups of operations
 Unary Relational Operations

 SELECT (symbol: σ (sigma))
 PROJECT (symbol: π (pi))
 RENAME (symbol: ρ (rho))

 Relational Algebra Operations From Set Theory
 UNION (∪), INTERSECTION (∩), DIFFERENCE (or MINUS, –)
 CARTESIAN PRODUCT (x)

 Binary Relational Operations
 JOIN (several variations of JOIN exist)
 DIVISION

 Additional Relational Operations
 OUTER JOINS, OUTER UNION
 AGGREGATE FUNCTIONS (These compute summary of information:

for example, SUM, COUNT, AVG, MIN, MAX)

Slide 6- 8Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Database State for COMPANY

 All examples discussed below refer to the COMPANY database
shown here.

Slide 6- 9Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: SELECT

 The SELECT operation (denoted by σ (sigma)) is used to select a
subset of the tuples from a relation based on a selection
condition.

 The selection condition acts as a filter
 Keeps only those tuples that satisfy the qualifying condition
 Tuples satisfying the condition are selected whereas the

other tuples are discarded (filtered out)
 Examples:

 Select the EMPLOYEE tuples whose department number is 4:

σ DNO = 4 (EMPLOYEE)
 Select the employee tuples whose salary is greater than $30,000:

σ SALARY > 30,000 (EMPLOYEE)

Slide 6- 10Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: SELECT

 In general, the select operation is denoted by

σ <selection condition>(R) where
 the symbol σ (sigma) is used to denote the select operator
 the selection condition is a Boolean (conditional)

expression specified on the attributes of relation R
 tuples that make the condition true are selected

 appear in the result of the operation
 tuples that make the condition false are filtered out

 discarded from the result of the operation

Slide 6- 11Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: SELECT
(contd.)

 SELECT Operation Properties
 The SELECT operation σ <selection condition>(R) produces a relation

S that has the same schema (same attributes) as R
 SELECT σ is commutative:

 σ <condition1>(σ < condition2> (R)) = σ <condition2> (σ < condition1> (R))
 Because of commutativity property, a cascade (sequence) of

SELECT operations may be applied in any order:
 σ<cond1>(σ<cond2> (σ<cond3> (R)) = σ<cond2> (σ<cond3> (σ<cond1> (R)))

 A cascade of SELECT operations may be replaced by a single
selection with a conjunction of all the conditions:

 σ<cond1>(σ< cond2> (σ<cond3>(R)) = σ <cond1> AND < cond2> AND < cond3>(R)))
 The number of tuples in the result of a SELECT is less than

(or equal to) the number of tuples in the input relation R

Slide 6- 12Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

The following query results refer to this
database state

Slide 6- 13Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: PROJECT

 PROJECT Operation is denoted by π (pi)
 This operation keeps certain columns (attributes)

from a relation and discards the other columns.
 PROJECT creates a vertical partitioning

 The list of specified columns (attributes) is kept in each
tuple

 The other attributes in each tuple are discarded
 Example: To list each employee’s first and last name

and salary, the following is used:
πLNAME, FNAME,SALARY(EMPLOYEE)

Slide 6- 14Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: PROJECT
(cont.)

 The general form of the project operation is:
π<attribute list>(R)

 π (pi) is the symbol used to represent the project operation
 <attribute list> is the desired list of attributes from relation R.

 The project operation removes any duplicate tuples
 This is because the result of the project operation must be a

set of tuples
 Mathematical sets do not allow duplicate elements.

Slide 6- 15Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: PROJECT
(contd.)

 PROJECT Operation Properties
 The number of tuples in the result of projection π<list>(R) is

always less or equal to the number of tuples in R
 If the list of attributes includes a key of R, then the number

of tuples in the result of PROJECT is equal to the number
of tuples in R

 PROJECT is not commutative
 π <list1> (π <list2> (R)) = π <list1> (R) as long as <list2> contains

the attributes in <list1>

Slide 6- 16Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of applying SELECT and
PROJECT operations

Slide 6- 17Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Expressions

 We may want to apply several relational algebra
operations one after the other

 Either we can write the operations as a single relational
algebra expression by nesting the operations, or

 We can apply one operation at a time and create
intermediate result relations.

 In the latter case, we must give names to
the relations that hold the intermediate
results.

Slide 6- 18Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Single expression versus sequence of
relational operations (Example)

 To retrieve the first name, last name, and salary of all
employees who work in department number 5, we
must apply a select and a project operation

 We can write a single relational algebra expression as
follows:
 πFNAME, LNAME, SALARY(σ DNO=5(EMPLOYEE))

 OR We can explicitly show the sequence of
operations, giving a name to each intermediate
relation:
 DEP5_EMPS ← σ DNO=5(EMPLOYEE)
 RESULT ← π FNAME, LNAME, SALARY (DEP5_EMPS)

Slide 6- 19Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: RENAME

 The RENAME operator is denoted by ρ (rho)
 In some cases, we may want to rename the attributes

of a relation or the relation name or both
 Useful when a query requires multiple

operations
 Necessary in some cases (see JOIN operation

later)

Slide 6- 20Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: RENAME
(contd.)

 The general RENAME operation ρ can be expressed
by any of the following forms:

 ρS (B1, B2, …, Bn)(R) changes both:
 the relation name to S, and
 the column (attribute) names to B1, B1, …..Bn

 ρS(R) changes:
 the relation name only to S

 ρ(B1, B2, …, Bn)(R) changes:
 the column (attribute) names only to B1, B1, …..Bn

Slide 6- 21Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Unary Relational Operations: RENAME
(contd.)

 For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:

 If we write:
• RESULT ← π FNAME, LNAME, SALARY (DEP5_EMPS)
• RESULT will have the same attribute names as

DEP5_EMPS (same attributes as EMPLOYEE)
• If we write:

• RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)←
π FNAME, LNAME, SALARY (DEP5_EMPS)

• The 10 attributes of DEP5_EMPS are renamed to
F, M, L, S, B, A, SX, SAL, SU, DNO, respectively

Slide 6- 22Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of applying multiple operations
and RENAME

Slide 6- 23Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from
Set Theory: UNION

 UNION Operation
 Binary operation, denoted by ∪
 The result of R ∪ S, is a relation that includes all tuples that

are either in R or in S or in both R and S
 Duplicate tuples are eliminated
 The two operand relations R and S must be “type

compatible” (or UNION compatible)
 R and S must have same number of attributes
 Each pair of corresponding attributes must be type

compatible (have same or compatible domains)

Slide 6- 24Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from
Set Theory: UNION

 Example:
 To retrieve the social security numbers of all employees who

either work in department 5 (RESULT1 below) or directly
supervise an employee who works in department 5 (RESULT2
below)

 We can use the UNION operation as follows:
DEP5_EMPS ← σDNO=5 (EMPLOYEE)

RESULT1 ← π SSN(DEP5_EMPS)
RESULT2(SSN) ← πSUPERSSN(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2
 The union operation produces the tuples that are in either

RESULT1 or RESULT2 or both

Slide 6- 25Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of the result of a UNION
operation

 UNION Example

Slide 6- 26Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from
Set Theory

 Type Compatibility of operands is required for the
binary set operation UNION ∪, (also for INTERSECTION
∩, and SET DIFFERENCE –, see next slides)

 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
compatible if:

 they have the same number of attributes, and
 the domains of corresponding attributes are type compatible

(i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).
 The resulting relation for R1∪R2 (also for R1∩R2, or

R1–R2, see next slides) has the same attribute names
as the first operand relation R1 (by convention)

Slide 6- 27Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set
Theory: INTERSECTION

 INTERSECTION is denoted by ∩
 The result of the operation R ∩ S, is a

relation that includes all tuples that are
in both R and S
 The attribute names in the result will be the

same as the attribute names in R
 The two operand relations R and S must

be “type compatible”

Slide 6- 28Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set
Theory: SET DIFFERENCE (cont.)

 SET DIFFERENCE (also called MINUS or EXCEPT) is
denoted by –

 The result of R – S, is a relation that includes all
tuples that are in R but not in S

 The attribute names in the result will be the
same as the attribute names in R

 The two operand relations R and S must
be “type compatible”

Slide 6- 29Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example to illustrate the result of UNION,
INTERSECT, and DIFFERENCE

Slide 6- 30Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some properties of UNION, INTERSECT,
and DIFFERENCE

 Notice that both union and intersection are
commutative operations; that is

 R ∪ S = S ∪ R, and R ∩ S = S ∩ R
 Both union and intersection can be treated as n-ary

operations applicable to any number of relations as
both are associative operations; that is

 R ∪ (S ∪ T) = (R ∪ S) ∪ T
 (R ∩ S) ∩ T = R ∩ (S ∩ T)

 The minus operation is not commutative; that is, in
general

 R – S ≠ S – R

Slide 6- 31Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT

 CARTESIAN (or CROSS) PRODUCT Operation
 This operation is used to combine tuples from two relations

in a combinatorial fashion.
 Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)
 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
 The resulting relation state has one tuple for each

combination of tuples—one from R and one from S.
 Hence, if R has nR tuples (denoted as |R| = nR), and S has

nS tuples, then R x S will have nR * nS tuples.
 The two operands do NOT have to be "type compatible”

Slide 6- 32Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)

 Generally, CROSS PRODUCT is not a
meaningful operation
 Can become meaningful when followed by other

operations
 Example (not meaningful):

 FEMALE_EMPS ← σ SEX=’F’(EMPLOYEE)
 EMPNAMES ← π FNAME, LNAME, SSN (FEMALE_EMPS)
 EMP_DEPENDENTS ← EMPNAMES x DEPENDENT

 EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT

 whether or not they are actually related

Slide 6- 33Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)

 To keep only combinations where the
DEPENDENT is related to the EMPLOYEE, we
add a SELECT operation as follows

 Example (meaningful):
 FEMALE_EMPS ← σ SEX=’F’(EMPLOYEE)
 EMPNAMES ← π FNAME, LNAME, SSN (FEMALE_EMPS)
 EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
 ACTUAL_DEPS ← σ SSN=ESSN(EMP_DEPENDENTS)
 RESULT ← π FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

 RESULT will now contain the name of female
employees and their dependents

Slide 6- 34Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of applying CARTESIAN
PRODUCT

Slide 6- 35Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations: JOIN

 JOIN Operation (denoted by)
 The sequence of CARTESIAN PRODECT followed by

SELECT is used quite commonly to identify and select
related tuples from two relations

 A special operation, called JOIN combines this sequence
into a single operation

 This operation is very important for any relational database
with more than a single relation, because it allows us
combine related tuples from various relations

 The general form of a join operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S
 where R and S can be any relations that result from general

relational algebra expressions.

Slide 6- 36Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations: JOIN (cont.)

 Example: Suppose that we want to retrieve the name of
the manager of each department.

 To get the manager’s name, we need to combine each
DEPARTMENT tuple with the EMPLOYEE tuple whose SSN
value matches the MGRSSN value in the department tuple.

 We do this by using the join operation.

 DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE
 MGRSSN=SSN is the join condition

 Combines each department record with the employee who
manages the department

 The join condition can also be specified as
DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Slide 6- 37Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of applying the JOIN operation

Slide 6- 38Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some properties of JOIN

 Consider the following JOIN operation:
 R(A1, A2, . . ., An) S(B1, B2, . . ., Bm)

 R.Ai=S.Bj
 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
 The resulting relation state has one tuple for each

combination of tuples—r from R and s from S, but only if
they satisfy the join condition r[Ai]=s[Bj]

 Hence, if R has nR tuples, and S has nS tuples, then the join
result will generally have less than nR * nS tuples.

 Only related tuples (based on the join condition) will appear
in the result

Slide 6- 39Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Some properties of JOIN

 The general case of JOIN operation is called a Theta-
join: R S

 theta
 The join condition is called theta
 Theta can be any general boolean expression on the

attributes of R and S; for example:
 R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

 Most join conditions involve one or more equality
conditions “AND”ed together; for example:

 R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

Slide 6- 40Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations: EQUIJOIN

 EQUIJOIN Operation
 The most common use of join involves join

conditions with equality comparisons only
 Such a join, where the only comparison operator used

is =, is called an EQUIJOIN.
 In the result of an EQUIJOIN we always have one or more

pairs of attributes (whose names need not be identical) that
have identical values in every tuple.

 The JOIN seen in the previous example was an EQUIJOIN.

Slide 6- 41Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations:
NATURAL JOIN Operation

 NATURAL JOIN Operation
 Another variation of JOIN called NATURAL JOIN — denoted

by * — was created to get rid of the second (superfluous)
attribute in an EQUIJOIN condition.

 because one of each pair of attributes with identical values is
superfluous

 The standard definition of natural join requires that the two
join attributes, or each pair of corresponding join attributes,
have the same name in both relations

 If this is not the case, a renaming operation is applied first.

Slide 6- 42Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations
NATURAL JOIN (contd.)
 Example: To apply a natural join on the DNUMBER attributes of

DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
 DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

 Only attribute with the same name is DNUMBER
 An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

 Another example: Q ← R(A,B,C,D) * S(C,D,E)
 The implicit join condition includes each pair of attributes with the

same name, “AND”ed together:
 R.C=S.C AND R.D.S.D

 Result keeps only one attribute of each such pair:
 Q(A,B,C,D,E)

Slide 6- 43Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of NATURAL JOIN operation

Slide 6- 44Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Complete Set of Relational Operations

 The set of operations including SELECT σ, PROJECT
π , UNION ∪, DIFFERENCE − , RENAME ρ, and
CARTESIAN PRODUCT X is called a complete set
because any other relational algebra expression can
be expressed by a combination of these five
operations.

 For example:
 R ∩ S = (R ∪ S) – ((R − S) ∪ (S − R))
 R <join condition>S = σ <join condition> (R X S)

Slide 6- 45Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Binary Relational Operations: DIVISION

 DIVISION Operation
 The division operation is applied to two relations
 R(Z) ÷ S(X), where X subset Z. Let Y = Z - X (and hence Z

= X ∪ Y); that is, let Y be the set of attributes of R that are
not attributes of S.

 The result of DIVISION is a relation T(Y) that includes a
tuple t if tuples tR appear in R with tR [Y] = t, and with

 tR [X] = ts for every tuple ts in S.

 For a tuple t to appear in the result T of the DIVISION, the
values in t must appear in R in combination with every tuple
in S.

Slide 6- 46Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of DIVISION

Slide 6- 47Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Recap of Relational Algebra Operations

Slide 6- 48Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations:
Aggregate Functions and Grouping

 A type of request that cannot be expressed in the
basic relational algebra is to specify mathematical
aggregate functions on collections of values from the
database.

 Examples of such functions include retrieving the
average or total salary of all employees or the total
number of employee tuples.

 These functions are used in simple statistical queries that
summarize information from the database tuples.

 Common functions applied to collections of numeric
values include

 SUM, AVERAGE, MAXIMUM, and MINIMUM.
 The COUNT function is used for counting tuples or

values.

Slide 6- 49Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Aggregate Function Operation

 Use of the Aggregate Functional operation ℱ
 ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value

from the EMPLOYEE relation
 ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value

from the EMPLOYEE relation
 ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from

the EMPLOYEE relation
 ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count

(number) of employees and their average salary
 Note: count just counts the number of rows, without removing

duplicates

Slide 6- 50Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Using Grouping with Aggregation

 The previous examples all summarized one or more
attributes for a set of tuples

 Maximum Salary or Count (number of) Ssn
 Grouping can be combined with Aggregate Functions
 Example: For each department, retrieve the DNO,

COUNT SSN, and AVERAGE SALARY
 A variation of aggregate operation ℱ allows this:

 Grouping attribute placed to left of symbol
 Aggregate functions to right of symbol


DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)
 Above operation groups employees by DNO

(department number) and computes the count of
employees and average salary per department

Slide 6- 51Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of applying aggregate functions
and grouping

Slide 6- 52Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Illustrating aggregate functions and
grouping

Slide 6- 53Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 Recursive Closure Operations
 Another type of operation that, in general,

cannot be specified in the basic original
relational algebra is recursive closure.

 This operation is applied to a recursive relationship.
 An example of a recursive operation is to

retrieve all SUPERVISEES of an EMPLOYEE
e at all levels — that is, all EMPLOYEE e’
directly supervised by e; all employees e’’
directly supervised by each employee e’; all
employees e’’’ directly supervised by each
employee e’’; and so on.

Slide 6- 54Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 Although it is possible to retrieve employees at each
level and then take their union, we cannot, in general,
specify a query such as “retrieve the supervisees of
‘James Borg’ at all levels” without utilizing a looping
mechanism.

 The SQL3 standard includes syntax for recursive closure.

Slide 6- 55Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)



Slide 6- 56Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 The OUTER JOIN Operation
 In NATURAL JOIN and EQUIJOIN, tuples without a

matching (or related) tuple are eliminated from the join
result

 Tuples with null in the join attributes are also eliminated
 This amounts to loss of information.

 A set of operations, called OUTER joins, can be used when
we want to keep all the tuples in R, or all those in S, or all
those in both relations in the result of the join, regardless of
whether or not they have matching tuples in the other
relation.

Slide 6- 57Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 The left outer join operation keeps every tuple in the
first or left relation R in R S; if no matching tuple is
found in S, then the attributes of S in the join result
are filled or “padded” with null values.

 A similar operation, right outer join, keeps every tuple
in the second or right relation S in the result of R
S.

 A third operation, full outer join, denoted by
keeps all tuples in both the left and the right relations
when no matching tuples are found, padding them
with null values as needed.

Slide 6- 58Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

Slide 6- 59Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 OUTER UNION Operations
 The outer union operation was developed to take the union

of tuples from two relations if the relations are not type
compatible.

 This operation will take the union of tuples in two relations
R(X, Y) and S(X, Z) that are partially compatible, meaning
that only some of their attributes, say X, are type
compatible.

 The attributes that are type compatible are represented only
once in the result, and those attributes that are not type
compatible from either relation are also kept in the result
relation T(X, Y, Z).

Slide 6- 60Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Additional Relational Operations (cont.)

 Example: An outer union can be applied to two
relations whose schemas are STUDENT(Name, SSN,
Department, Advisor) and INSTRUCTOR(Name, SSN,
Department, Rank).

 Tuples from the two relations are matched based on having the
same combination of values of the shared attributes— Name,
SSN, Department.

 If a student is also an instructor, both Advisor and Rank will
have a value; otherwise, one of these two attributes will be null.

 The result relation STUDENT_OR_INSTRUCTOR will have the
following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN, Department,
Advisor, Rank)

Slide 6- 61Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples of Queries in Relational
Algebra

 Q1: Retrieve the name and address of all employees who work for the
‘Research’ department.

RESEARCH_DEPT ← σ DNAME=’Research’ (DEPARTMENT)

RESEARCH_EMPS ← (RESEARCH_DEPT DNUMBER= DNOEMPLOYEEEMPLOYEE)

RESULT ← π FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

 Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS ← π SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) ← π ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS ← (ALL_EMPS - EMPS_WITH_DEPS)

RESULT ← π LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

Slide 6- 62Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Calculus

 A relational calculus expression creates a new
relation, which is specified in terms of variables that
range over rows of the stored database relations (in
tuple calculus) or over columns of the stored
relations (in domain calculus).

 In a calculus expression, there is no order of
operations to specify how to retrieve the query result
—a calculus expression specifies only what
information the result should contain.

 This is the main distinguishing feature between relational
algebra and relational calculus.

Slide 6- 63Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Calculus

 Relational calculus is considered to be a
nonprocedural language.

 This differs from relational algebra, where we must
write a sequence of operations to specify a retrieval
request; hence relational algebra can be considered
as a procedural way of stating a query.

Slide 6- 64Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Tuple Relational Calculus

 The tuple relational calculus is based on specifying a
number of tuple variables.

 Each tuple variable usually ranges over a particular
database relation, meaning that the variable may take
as its value any individual tuple from that relation.

 A simple tuple relational calculus query is of the form

{t | COND(t)}
 where t is a tuple variable and COND (t) is a conditional

expression involving t.
 The result of such a query is the set of all tuples t that

satisfy COND (t).

Slide 6- 65Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Tuple Relational Calculus

 Example: To find the first and last names of all
employees whose salary is above $50,000, we can
write the following tuple calculus expression:

{t.FNAME, t.LNAME | EMPLOYEE(t) AND
t.SALARY>50000}

 The condition EMPLOYEE(t) specifies that the range
relation of tuple variable t is EMPLOYEE.

 The first and last name (PROJECTION πFNAME, LNAME) of
each EMPLOYEE tuple t that satisfies the condition
t.SALARY>50000 (SELECTION σ SALARY >50000) will be
retrieved.

Slide 6- 66Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

The Existential and Universal Quantifiers

 Two special symbols called quantifiers can appear in
formulas; these are the universal quantifier (∀) and
the existential quantifier (∃).

 Informally, a tuple variable t is bound if it is
quantified, meaning that it appears in an (∀ t) or (∃ t)
clause; otherwise, it is free.

 If F is a formula, then so are (∃ t)(F) and (∀ t)(F),
where t is a tuple variable.

 The formula (∃ €t)(F) is true if the formula F evaluates to true
for some (at least one) tuple assigned to free occurrences of
t in F; otherwise (∃ t)(F) is false.

 The formula (∀ t)(F) is true if the formula F evaluates to true
for every tuple (in the universe) assigned to free
occurrences of t in F; otherwise (∀ t)(F) is false.

Slide 6- 67Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

The Existential and Universal Quantifiers

 ∀ is called the universal or “for all” quantifier
because every tuple in “the universe of” tuples must
make F true to make the quantified formula true.

 ∃ is called the existential or “there exists” quantifier
because any tuple that exists in “the universe of”
tuples may make F true to make the quantified
formula true.

Slide 6- 68Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example Query Using Existential
Quantifier
 Retrieve the name and address of all employees who work for the

‘Research’ department. The query can be expressed as :
{t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) and (∃ d)

(DEPARTMENT(d) and d.DNAME=‘Research’ and
d.DNUMBER=t.DNO) }

 The only free tuple variables in a relational calculus expression
should be those that appear to the left of the bar (|).

 In above query, t is the only free variable; it is then bound
successively to each tuple.

 If a tuple satisfies the conditions specified in the query, the
attributes FNAME, LNAME, and ADDRESS are retrieved for each
such tuple.

 The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the
range relations for t and d.

 The condition d.DNAME = ‘Research’ is a selection condition and
corresponds to a SELECT operation in the relational algebra,
whereas the condition d.DNUMBER = t.DNO is a JOIN condition.

Slide 6- 69Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example Query Using Universal
Quantifier
 Find the names of employees who work on all the projects controlled by

department number 5. The query can be:
{e.LNAME, e.FNAME | EMPLOYEE(e) and ((∀ x)(not(PROJECT(x)) or

not(x.DNUM=5)
OR ((∃ w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO))))}
 Exclude from the universal quantification all tuples that we are not

interested in by making the condition true for all such tuples.
 The first tuples to exclude (by making them evaluate automatically to true) are

those that are not in the relation R of interest.
 In query above, using the expression not(PROJECT(x)) inside the

universally quantified formula evaluates to true all tuples x that are not
in the PROJECT relation.

 Then we exclude the tuples we are not interested in from R itself. The
expression not(x.DNUM=5) evaluates to true all tuples x that are in the project
relation but are not controlled by department 5.

 Finally, we specify a condition that must hold on all the remaining
tuples in R.

 ((∃ w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO)

Slide 6- 70Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Languages Based on Tuple Relational
Calculus

 The language SQL is based on tuple calculus. It uses
the basic block structure to express the queries in
tuple calculus:

 SELECT <list of attributes>
 FROM <list of relations>
 WHERE <conditions>

 SELECT clause mentions the attributes being
projected, the FROM clause mentions the relations
needed in the query, and the WHERE clause mentions
the selection as well as the join conditions.

 SQL syntax is expanded further to accommodate other
operations. (See Chapter 8).

Slide 6- 71Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Languages Based on Tuple Relational
Calculus

 Another language which is based on tuple calculus is
QUEL which actually uses the range variables as in
tuple calculus. Its syntax includes:

 RANGE OF <variable name> IS <relation name>
 Then it uses

 RETRIEVE <list of attributes from range variables>
 WHERE <conditions>

 This language was proposed in the relational DBMS
INGRES.

Slide 6- 72Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

The Domain Relational Calculus

 Another variation of relational calculus called the domain
relational calculus, or simply, domain calculus is equivalent to
tuple calculus and to relational algebra.

 The language called QBE (Query-By-Example) that is related to
domain calculus was developed almost concurrently to SQL at
IBM Research, Yorktown Heights, New York.

 Domain calculus was thought of as a way to explain what QBE
does.

 Domain calculus differs from tuple calculus in the type of
variables used in formulas:

 Rather than having variables range over tuples, the variables
range over single values from domains of attributes.

 To form a relation of degree n for a query result, we must have n
of these domain variables— one for each attribute.

Slide 6- 73Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

The Domain Relational Calculus

 An expression of the domain calculus is of the form

{ x1, x2, . . ., xn |

COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}
 where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain variables

that range over domains (of attributes)
 and COND is a condition or formula of the domain relational

calculus.

Slide 6- 74Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example Query Using Domain Calculus

 Retrieve the birthdate and address of the employee whose name
is ‘John B. Smith’.

 Query :
{uv | (∃ q) (∃ r) (∃ s) (∃ t) (∃ w) (∃ x) (∃ y) (∃ z)

(EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and s=’Smith’)}
 Ten variables for the employee relation are needed, one to range

over the domain of each attribute in order.
 Of the ten variables q, r, s, . . ., z, only u and v are free.

 Specify the requested attributes, BDATE and ADDRESS, by the
free domain variables u for BDATE and v for ADDRESS.

 Specify the condition for selecting a tuple following the bar (|)—
 namely, that the sequence of values assigned to the variables

qrstuvwxyz be a tuple of the employee relation and that the values
for q (FNAME), r (MINIT), and s (LNAME) be ‘John’, ‘B’, and
‘Smith’, respectively.

Slide 6- 75Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE: A Query Language Based on
Domain Calculus (Appendix C)

 This language is based on the idea of giving an
example of a query using example elements.

 An example element stands for a domain variable and
is specified as an example value preceded by the
underscore character.

 P. (called P dot) operator (for “print”) is placed in
those columns which are requested for the result of
the query.

 A user may initially start giving actual values as
examples, but later can get used to providing a
minimum number of variables as example elements.

Slide 6- 76Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE: A Query Language Based on
Domain Calculus (Appendix C)

 The language is very user-friendly, because it uses
minimal syntax.

 QBE was fully developed further with facilities for
grouping, aggregation, updating etc. and is shown to
be equivalent to SQL.

 The language is available under QMF (Query
Management Facility) of DB2 of IBM and has been
used in various ways by other products like ACCESS
of Microsoft, PARADOX.

 For details, see Appendix C in the text.

Slide 6- 77Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE Examples

 QBE initially presents a relational schema as a “blank
schema” in which the user fills in the query as an
example:

Slide 6- 78Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE Examples

 The following domain calculus query can be
successively minimized by the user as shown:

 Query :

{uv | (∃ q) (∃ r) (∃ s) (∃ t) (∃ w) (∃ x) (∃ y) (∃ z)

(EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and
s=‘Smith’)}

Slide 6- 79Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE Examples

 Specifying complex conditions in QBE:
 A technique called the “condition box” is used in

QBE to state more involved Boolean expressions as
conditions.

 The C.4(a) gives employees who work on either
project 1 or 2, whereas the query in C.4(b) gives those
who work on both the projects.

Slide 6- 80Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

QBE Examples

 Illustrating join in QBE. The join is simple
accomplished by using the same example element in
the columns being joined. Note that the Result is set
us as an independent table.

Slide 6- 81Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Summary

 Relational Algebra
 Unary Relational Operations
 Relational Algebra Operations From Set Theory
 Binary Relational Operations
 Additional Relational Operations
 Examples of Queries in Relational Algebra

 Relational Calculus
 Tuple Relational Calculus
 Domain Relational Calculus

 Overview of the QBE language (appendix C)

	PowerPoint Presentation
	Chapter 6
	Chapter Outline
	Relational Algebra Overview
	Relational Algebra Overview (continued)
	Brief History of Origins of Algebra
	Slide 7
	Database State for COMPANY
	Unary Relational Operations: SELECT
	Slide 10
	Unary Relational Operations: SELECT (contd.)
	The following query results refer to this database state
	Unary Relational Operations: PROJECT
	Unary Relational Operations: PROJECT (cont.)
	Unary Relational Operations: PROJECT (contd.)
	Examples of applying SELECT and PROJECT operations
	Relational Algebra Expressions
	Single expression versus sequence of relational operations (Example)
	Unary Relational Operations: RENAME
	Unary Relational Operations: RENAME (contd.)
	Slide 21
	Example of applying multiple operations and RENAME
	Relational Algebra Operations from Set Theory: UNION
	Slide 24
	Example of the result of a UNION operation
	Relational Algebra Operations from Set Theory
	Relational Algebra Operations from Set Theory: INTERSECTION
	Relational Algebra Operations from Set Theory: SET DIFFERENCE (cont.)
	Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE
	Some properties of UNION, INTERSECT, and DIFFERENCE
	Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT
	Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)
	Slide 33
	Example of applying CARTESIAN PRODUCT
	Binary Relational Operations: JOIN
	Binary Relational Operations: JOIN (cont.)
	Example of applying the JOIN operation
	Some properties of JOIN
	Slide 39
	Binary Relational Operations: EQUIJOIN
	Binary Relational Operations: NATURAL JOIN Operation
	Binary Relational Operations NATURAL JOIN (contd.)
	Example of NATURAL JOIN operation
	Complete Set of Relational Operations
	Binary Relational Operations: DIVISION
	Example of DIVISION
	Recap of Relational Algebra Operations
	Additional Relational Operations: Aggregate Functions and Grouping
	Aggregate Function Operation
	Using Grouping with Aggregation
	Examples of applying aggregate functions and grouping
	Illustrating aggregate functions and grouping
	Additional Relational Operations (cont.)
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Examples of Queries in Relational Algebra
	Relational Calculus
	Slide 63
	Tuple Relational Calculus
	Slide 65
	The Existential and Universal Quantifiers
	Slide 67
	Example Query Using Existential Quantifier
	Example Query Using Universal Quantifier
	Languages Based on Tuple Relational Calculus
	Slide 71
	The Domain Relational Calculus
	Slide 73
	Example Query Using Domain Calculus
	QBE: A Query Language Based on Domain Calculus (Appendix C)
	Slide 76
	QBE Examples
	Slide 78
	Slide 79
	Slide 80
	Chapter Summary

