
Slide 11- 1Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 11

Relational Database Design
Algorithms and Further
Dependencies

Slide 11- 3Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

 0. Designing a Set of Relations
 1. Properties of Relational Decompositions
 2. Algorithms for Relational Database Schema
 3. Multivalued Dependencies and Fourth Normal Form
 4. Join Dependencies and Fifth Normal Form
 5. Inclusion Dependencies
 6. Other Dependencies and Normal Forms

Slide 11- 4Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DESIGNING A SET OF RELATIONS
(1)
 The Approach of Relational Synthesis (Bottom-up Design):

 Assumes that all possible functional dependencies
are known.

 First constructs a minimal set of FDs
 Then applies algorithms that construct a target set

of 3NF or BCNF relations.
 Additional criteria may be needed to ensure the

the set of relations in a relational database are
satisfactory (see Algorithms 11.2 and 11.4).

Slide 11- 5Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

DESIGNING A SET OF RELATIONS
(2)
 Goals:

 Lossless join property (a must)
 Algorithm 11.1 tests for general losslessness.

 Dependency preservation property
 Algorithm 11.3 decomposes a relation into BCNF

components by sacrificing the dependency
preservation.

 Additional normal forms
 4NF (based on multi-valued dependencies)
 5NF (based on join dependencies)

Slide 11- 6Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

1. Properties of Relational
Decompositions (1)

 Relation Decomposition and
Insufficiency of Normal Forms:
 Universal Relation Schema:

 A relation schema R = {A1, A2, …, An}
that includes all the attributes of the
database.

 Universal relation assumption:
 Every attribute name is unique.

Slide 11- 7Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (2)
 Relation Decomposition and

Insufficiency of Normal Forms (cont.):
 Decomposition:

 The process of decomposing the universal relation
schema R into a set of relation schemas D =
{R1,R2, …, Rm} that will become the relational
database schema by using the functional
dependencies.

 Attribute preservation condition:
 Each attribute in R will appear in at least one

relation schema Ri in the decomposition so that no
attributes are “lost”.

Slide 11- 8Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (2)
 Another goal of decomposition is to have each individual

relation Ri in the decomposition D be in BCNF or 3NF.
 Additional properties of decomposition are needed to prevent

from generating spurious tuples

Slide 11- 9Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (3)
 Dependency Preservation Property of a Decomposition:

 Definition: Given a set of dependencies F on R,
the projection of F on Ri, denoted by pRi(F) where
Ri is a subset of R, is the set of dependencies X
Y in F+ such that the attributes in X υ Y are all
contained in Ri.

 Hence, the projection of F on each relation
schema Ri in the decomposition D is the set of
functional dependencies in F+, the closure of F,
such that all their left- and right-hand-side
attributes are in Ri.

Slide 11- 10Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (4)
 Dependency Preservation Property of a Decomposition

(cont.):
 Dependency Preservation Property:

 A decomposition D = {R1, R2, ..., Rm} of R is
dependency-preserving with respect to F if the
union of the projections of F on each Ri in D is
equivalent to F; that is

((πR1(F)) υ . . . υ (πRm(F)))+ = F+
 (See examples in Fig 10.12a and Fig 10.11)

 Claim 1:
 It is always possible to find a dependency-

preserving decomposition D with respect to F such
that each relation Ri in D is in 3nf.

Slide 11- 11Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (5)
 Lossless (Non-additive) Join Property of a

Decomposition:
 Definition: Lossless join property: a decomposition D = {R1,

R2, ..., Rm} of R has the lossless (nonadditive) join property
with respect to the set of dependencies F on R if, for every
relation state r of R that satisfies F, the following holds, where *
is the natural join of all the relations in D:

* (π R1(r), ..., πRm(r)) = r
 Note: The word loss in lossless refers to loss of information,

not to loss of tuples. In fact, for “loss of information” a better
term is “addition of spurious information”

Slide 11- 12Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (6)
 Lossless (Non-additive) Join Property of a Decomposition

(cont.):
 Algorithm 11.1: Testing for Lossless Join Property

 Input: A universal relation R, a decomposition D = {R1, R2, ...,
Rm} of R, and a set F of functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D, and
one column j for each attribute Aj in R.

2. Set S(i,j):=bij for all matrix entries. (* each bij is a distinct symbol
associated with indices (i,j) *).

3. For each row i representing relation schema Ri
{for each column j representing attribute Aj
 {if (relation Ri includes attribute Aj) then set S(i,j):= aj;};};

 (* each aj is a distinct symbol associated with index (j) *)
 CONTINUED on NEXT SLIDE

Slide 11- 13Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (7)
 Lossless (Non-additive) Join Property of a Decomposition (cont.):
 Algorithm 11.1: Testing for Lossless Join Property
4. Repeat the following loop until a complete loop execution results in no changes to S

{for each functional dependency X Y in F
{for all rows in S which have the same symbols in the columns corresponding to

attributes in X
 {make the symbols in each column that correspond to an attribute in Y
be the same in all these rows as follows:

If any of the rows has an “a” symbol for the column, set the
other rows to that same “a” symbol in the column.

If no “a” symbol exists for the attribute in any of the rows,
choose one of the “b” symbols that appear in one of the rows for the attribute and set
the other rows to that same “b” symbol in the column ;};

};
};

5. If a row is made up entirely of “a” symbols, then the decomposition has the lossless join
property; otherwise it does not.

Slide 11- 14Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational Decompositions
(8)

Lossless (nonadditive) join test for n-ary decompositions.
(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and
EMP_LOCS fails test.
(b) A decomposition of EMP_PROJ that has the lossless join property.

Slide 11- 15Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational Decompositions (8)

Lossless (nonadditive) join
test for n-ary
decompositions.
(c) Case 2: Decomposition
of EMP_PROJ into EMP,
PROJECT, and
WORKS_ON satisfies test.

Slide 11- 16Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (9)
 Testing Binary Decompositions for Lossless Join Property

 Binary Decomposition: Decomposition of a
relation R into two relations.

 PROPERTY LJ1 (lossless join test for binary
decompositions): A decomposition D = {R1, R2}
of R has the lossless join property with respect to
a set of functional dependencies F on R if and only
if either

 The f.d. ((R1 ∩ R2) (R1- R2)) is in F+, or
 The f.d. ((R1 ∩ R2) (R2 - R1)) is in F+.

Slide 11- 17Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Properties of Relational
Decompositions (10)
 Successive Lossless Join Decomposition:

 Claim 2 (Preservation of non-additivity in
successive decompositions):

 If a decomposition D = {R1, R2, ..., Rm} of R has the
lossless (non-additive) join property with respect to a
set of functional dependencies F on R,

 and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri
has the lossless (non-additive) join property with
respect to the projection of F on Ri,

 then the decomposition D2 = {R1, R2, ..., Ri-1, Q1, Q2, ...,
Qk, Ri+1, ..., Rm} of R has the non-additive join property
with respect to F.

Slide 11- 18Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

2. Algorithms for Relational Database
Schema Design (1)
 Algorithm 11.2: Relational Synthesis into 3NF with Dependency

Preservation (Relational Synthesis Algorithm)
 Input: A universal relation R and a set of functional

dependencies F on the attributes of R.
1. Find a minimal cover G for F (use Algorithm 10.2);
2. For each left-hand-side X of a functional dependency that appears in

G,
create a relation schema in D with attributes {X υ {A1} υ {A2} ...

υ {Ak}},
where X A1, X A2, ..., X Ak are the only dependencies in G

with X as left-hand-side (X is the key of this relation) ;
3. Place any remaining attributes (that have not been placed in any

relation) in a single relation schema to ensure the attribute
preservation property.

 Claim 3: Every relation schema created by Algorithm 11.2 is
in 3NF.

Slide 11- 19Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (2)
 Algorithm 11.3: Relational Decomposition into BCNF with

Lossless (non-additive) join property
 Input: A universal relation R and a set of functional

dependencies F on the attributes of R.
1. Set D := {R};
2. While there is a relation schema Q in D that is not in BCNF

do {
choose a relation schema Q in D that is not in BCNF;
find a functional dependency X Y in Q that violates BCNF;
replace Q in D by two relation schemas (Q - Y) and (X υ Y);

};

Assumption: No null values are allowed for the join attributes.

Slide 11- 20Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (3)
 Algorithm 11.4 Relational Synthesis into 3NF with Dependency

Preservation and Lossless (Non-Additive) Join Property
 Input: A universal relation R and a set of functional

dependencies F on the attributes of R.
1. Find a minimal cover G for F (Use Algorithm 10.2).
2. For each left-hand-side X of a functional dependency that appears in

G,
create a relation schema in D with attributes {X υ {A1} υ {A2} ...

υ {Ak}},
where X A1, X A2, ..., X –>Ak are the only dependencies in G

with X as left-hand-side (X is the key of this relation).
3. If none of the relation schemas in D contains a key of R, then create

one more relation schema in D that contains attributes that form a key
of R. (Use Algorithm 11.4a to find the key of R)

Slide 11- 21Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (4)
 Algorithm 11.4a Finding a Key K for R Given a set F of

Functional Dependencies
 Input: A universal relation R and a set of

functional dependencies F on the attributes
of R.

1. Set K := R;
2. For each attribute A in K {

Compute (K - A)+ with respect to F;
If (K - A)+ contains all the attributes in R,

then set K := K - {A};
}

Slide 11- 22Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database Schema
Design (5)

Slide 11- 23Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database Schema
Design (5)

Slide 11- 24Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (6)

Slide 11- 25Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database Schema
Design (6)

Slide 11- 26Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (7)

 Discussion of Normalization Algorithms:
 Problems:

 The database designer must first specify all the
relevant functional dependencies among the
database attributes.

 These algorithms are not deterministic in general.
 It is not always possible to find a decomposition

into relation schemas that preserves
dependencies and allows each relation schema in
the decomposition to be in BCNF (instead of 3NF
as in Algorithm 11.4).

Slide 11- 27Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Relational Database
Schema Design (8)

Slide 11- 28Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

3. Multivalued Dependencies and Fourth
Normal Form (1)

(a) The EMP relation with two MVDs: ENAME —>> PNAME and
ENAME —>> DNAME.

(b) Decomposing the EMP relation into two 4NF relations
EMP_PROJECTS and EMP_DEPENDENTS.

Slide 11- 29Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

3. Multivalued Dependencies and Fourth
Normal Form (1)

(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has
the JD(R1, R2, R3). (d) Decomposing the relation SUPPLY into the
5NF relations R1, R2, and R3.

Slide 11- 30Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal
Form (2)

Definition:

 A multivalued dependency (MVD) X —>> Y specified on relation

schema R, where X and Y are both subsets of R, specifies the

following constraint on any relation state r of R: If two tuples t1 and

t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should

also exist in r with the following properties, where we use Z to

denote (R 2 (X υ Y)):

 t3[X] = t4[X] = t1[X] = t2[X].

 t3[Y] = t1[Y] and t4[Y] = t2[Y].

 t3[Z] = t2[Z] and t4[Z] = t1[Z].
 An MVD X —>> Y in R is called a trivial MVD if (a) Y is a subset of

X, or (b) X υ Y = R.

Slide 11- 31Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal
Form (3)

 Inference Rules for Functional and
Multivalued Dependencies:

 IR1 (reflexive rule for FDs): If X ⊇ Y, then X –> Y.
 IR2 (augmentation rule for FDs): {X –> Y} = XZ –> YZ.
 IR3 (transitive rule for FDs): {X –> Y, Y –>Z} = X –> Z.
 IR4 (complementation rule for MVDs): {X —>> Y} = X —>>

(R – (X ∪ Y))}.
 IR5 (augmentation rule for MVDs): If X —>> Y and W ⊇ Z

then WX —>> YZ.
 IR6 (transitive rule for MVDs): {X —>> Y, Y —>> Z} = X —>> (Z 2

Y).
 IR7 (replication rule for FD to MVD): {X –> Y} = X —>> Y.
 IR8 (coalescence rule for FDs and MVDs): If X —>> Y and there

exists W with the properties that
 (a) W ∩ Y is empty, (b) W –> Z, and (c) Y ⊇ Z, then X –> Z.

Slide 11- 32Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal
Form (4)

Definition:
 A relation schema R is in 4NF with respect to a set of

dependencies F (that includes functional dependencies
and multivalued dependencies) if, for every nontrivial
multivalued dependency X —>> Y in F+, X is a superkey
for R.

 Note: F+ is the (complete) set of all dependencies
(functional or multivalued) that will hold in every relation
state r of R that satisfies F. It is also called the closure of
F.

Slide 11- 33Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal
Form (5)

Decomposing a relation state of EMP that is not in 4NF:
(a) EMP relation with additional tuples.
(b) Two corresponding 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.

Slide 11- 34Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal Form
(6)

Lossless (Non-additive) Join Decomposition into 4NF
Relations:

 PROPERTY LJ1’
 The relation schemas R1 and R2 form a lossless

(non-additive) join decomposition of R with respect
to a set F of functional and multivalued
dependencies if and only if

 (R1 ∩ R2) —>> (R1 - R2)

 or by symmetry, if and only if
 (R1 ∩ R2) —>> (R2 - R1)).

Slide 11- 35Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multivalued Dependencies and Fourth Normal Form
(7)

Algorithm 11.5: Relational decomposition into 4NF
relations with non-additive join property

 Input: A universal relation R and a set of functional and
multivalued dependencies F.

1. Set D := { R };

2. While there is a relation schema Q in D that is not in 4NF do {

choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X —>> Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q - Y) and (X υ Y);

};

Slide 11- 36Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

4. Join Dependencies and Fifth Normal Form (1)

Definition:
 A join dependency (JD), denoted by JD(R1, R2, ..., Rn),

specified on relation schema R, specifies a constraint on
the states r of R.

 The constraint states that every legal state r of R should
have a non-additive join decomposition into R1, R2, ..., Rn;
that is, for every such r we have

 * (πR1(r), πR2(r), ..., πRn(r)) = r

Note: an MVD is a special case of a JD where n = 2.
 A join dependency JD(R1, R2, ..., Rn), specified on relation

schema R, is a trivial JD if one of the relation schemas Ri
in JD(R1, R2, ..., Rn) is equal to R.

Slide 11- 37Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Join Dependencies and Fifth Normal Form (2)

Definition:
 A relation schema R is in fifth normal form (5NF) (or

Project-Join Normal Form (PJNF)) with respect to a set F of
functional, multivalued, and join dependencies if,

 for every nontrivial join dependency JD(R1, R2, ...,
Rn) in F+ (that is, implied by F),

 every Ri is a superkey of R.

Slide 11- 38Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relation SUPPLY with Join Dependency and
conversion to Fifth Normal Form

Slide 11- 39Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

5. Inclusion Dependencies (1)

Definition:
 An inclusion dependency R.X < S.Y between two sets

of attributes—X of relation schema R, and Y of relation
schema S—specifies the constraint that, at any specific
time when r is a relation state of R and s a relation state
of S, we must have

πX(r(R)) ⊇ πY(s(S))
 Note:

 The ? (subset) relationship does not necessarily have to be
a proper subset.

 The sets of attributes on which the inclusion dependency is
specified—X of R and Y of S—must have the same
number of attributes.

 In addition, the domains for each pair of corresponding
attributes should be compatible.

Slide 11- 40Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Inclusion Dependencies (2)

 Objective of Inclusion Dependencies:
 To formalize two types of interrelational constraints which

cannot be expressed using F.D.s or MVDs:
 Referential integrity constraints
 Class/subclass relationships

 Inclusion dependency inference rules
 IDIR1 (reflexivity): R.X < R.X.
 IDIR2 (attribute correspondence): If R.X < S.Y

 where X = {A1, A2 ,..., An} and Y = {B1,
B2, ..., Bn} and Ai Corresponds-to Bi, then R.Ai < S.Bi

 for 1 ≤ i ≤ n.
 IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X <

T.Z.

Slide 11- 41Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

6. Other Dependencies and Normal Forms (1)

Template Dependencies:
 Template dependencies provide a technique for representing

constraints in relations that typically have no easy and formal
definitions.

 The idea is to specify a template—or example—that defines each
constraint or dependency.

 There are two types of templates:
 tuple-generating templates
 constraint-generating templates.

 A template consists of a number of hypothesis tuples that are
meant to show an example of the tuples that may appear in one or
more relations. The other part of the template is the template
conclusion.

Slide 11- 42Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Other Dependencies and Normal Forms (2)

Slide 11- 43Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Other Dependencies and Normal Forms
(3)

Slide 11- 44Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Other Dependencies and Normal Forms (4)

Domain-Key Normal Form (DKNF):
 Definition:

 A relation schema is said to be in DKNF if all constraints and
dependencies that should hold on the valid relation states can be
enforced simply by enforcing the domain constraints and key
constraints on the relation.

 The idea is to specify (theoretically, at least) the “ultimate normal
form” that takes into account all possible types of dependencies and
constraints. .

 For a relation in DKNF, it becomes very straightforward to enforce all
database constraints by simply checking that each attribute value in
a tuple is of the appropriate domain and that every key constraint is
enforced.

 The practical utility of DKNF is limited

Slide 11- 45Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Recap

 Designing a Set of Relations
 Properties of Relational Decompositions
 Algorithms for Relational Database Schema
 Multivalued Dependencies and Fourth Normal Form
 Join Dependencies and Fifth Normal Form
 Inclusion Dependencies
 Other Dependencies and Normal Forms

	PowerPoint Presentation
	Chapter 11
	Chapter Outline
	DESIGNING A SET OF RELATIONS (1)
	DESIGNING A SET OF RELATIONS (2)
	1. Properties of Relational Decompositions (1)
	Properties of Relational Decompositions (2)
	Slide 8
	Properties of Relational Decompositions (3)
	Properties of Relational Decompositions (4)
	Properties of Relational Decompositions (5)
	Properties of Relational Decompositions (6)
	Properties of Relational Decompositions (7)
	Properties of Relational Decompositions (8)
	Properties of Relational Decompositions (8)
	Properties of Relational Decompositions (9)
	Properties of Relational Decompositions (10)
	2. Algorithms for Relational Database Schema Design (1)
	Algorithms for Relational Database Schema Design (2)
	Algorithms for Relational Database Schema Design (3)
	Algorithms for Relational Database Schema Design (4)
	Algorithms for Relational Database Schema Design (5)
	Slide 23
	Algorithms for Relational Database Schema Design (6)
	Slide 25
	Algorithms for Relational Database Schema Design (7)
	Algorithms for Relational Database Schema Design (8)
	3. Multivalued Dependencies and Fourth Normal Form (1)
	Slide 29
	Multivalued Dependencies and Fourth Normal Form (2)
	Multivalued Dependencies and Fourth Normal Form (3)
	Multivalued Dependencies and Fourth Normal Form (4)
	Multivalued Dependencies and Fourth Normal Form (5)
	Multivalued Dependencies and Fourth Normal Form (6)
	Multivalued Dependencies and Fourth Normal Form (7)
	4. Join Dependencies and Fifth Normal Form (1)
	Join Dependencies and Fifth Normal Form (2)
	Relation SUPPLY with Join Dependency and conversion to Fifth Normal Form
	5. Inclusion Dependencies (1)
	Inclusion Dependencies (2)
	6. Other Dependencies and Normal Forms (1)
	Other Dependencies and Normal Forms (2)
	Other Dependencies and Normal Forms (3)
	Other Dependencies and Normal Forms (4)
	Recap

