

5th Edition

Elmasri / Navathe

Chapter 14

Indexing Structures for Files

macri / Navat

Chapter Outline

- Types of Single-level Ordered Indexes
 - Primary Indexes
 - Clustering Indexes
 - Secondary Indexes
- Multilevel Indexes
- Dynamic Multilevel Indexes Using B-Trees and B+-Trees
- Indexes on Multiple Keys

Indexes as Access Paths

- A single-level index is an auxiliary file that makes it more efficient to search for a record in the data file.
- The index is usually specified on one field of the file (although it could be specified on several fields)
- One form of an index is a file of entries <field value, pointer to record>, which is ordered by field value
- The index is called an access path on the field.

Indexes as Access Paths (contd.)

- The index file usually occupies considerably less disk blocks than the data file because its entries are much smaller
- A binary search on the index yields a pointer to the file record
- Indexes can also be characterized as dense or sparse
 - A dense index has an index entry for every search key value (and hence every record) in the data file.
 - A sparse (or nondense) index, on the other hand, has index entries for only some of the search values

Indexes as Access Paths (contd.)

- Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
- Suppose that:
 - record size R=150 bytes block size B=512 bytes r=30000 records
- Then, we get:
 - blocking factor Bfr= B div R= 512 div 150= 3 records/block
 - number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks
- For an index on the SSN field, assume the field size V_{SSN}=9 bytes, assume the record pointer size P_R=7 bytes. Then:
 - index entry size $R_1 = (V_{SSN} + P_R) = (9+7) = 16$ bytes
 - index blocking factor Bfr_i= B div R_i= 512 div 16= 32 entries/block
 - number of index blocks b= (r/ Bfr₁)= (30000/32)= 938 blocks
 - binary search needs log₂bl= log₂938= 10 block accesses
 - This is compared to an average linear search cost of:
 - (b/2)= 30000/2= 15000 block accesses
 - If the file records are ordered, the binary search cost would be:
 - $\log_2 b = \log_2 30000 = 15$ block accesses

Types of Single-Level Indexes

Primary Index

- Defined on an ordered data file
- The data file is ordered on a key field
- Includes one index entry for each block in the data file; the index entry has the key field value for the first record in the block, which is called the block anchor
- A similar scheme can use the *last record* in a block.
- A primary index is a nondense (sparse) index, since it includes an entry for each disk block of the data file and the keys of its anchor record rather than for every search value.

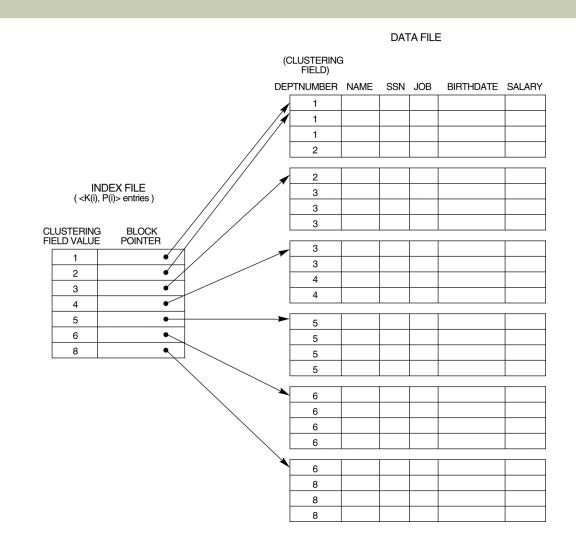
Primary index on the ordering key field

Figure 14.1

Data file Primary index on the ordering key field of (Primary the file shown in Figure 13.7. key field) Ssn Birth_date Job Salary Sex Name Aaron, Ed Abbot, Diane 1 Acosta, Marc Adams, John Adams, Robin 1 Akers, Jan Index file Alexander, Ed $(\langle K(i), P(i) \rangle$ entries) Alfred, Bob 1 Block anchor Allen, Sam Block primary key value pointer Aaron, Ed . Allen, Troy Adams, John • Anders, Keith 1 Alexander, Ed • Allen, Troy •--Anderson, Rob Anderson, Zach • Arnold, Mack • Anderson, Zach Angel, Joe 1 Archer, Sue Arnold, Mack Arnold, Steven . Atkins, Timothy . Wong, James ÷ Wood, Donald Wong, James : . Wright, Pam Woods, Manny • Wright, Pam Wyatt, Charles 1 Zimmer, Byron

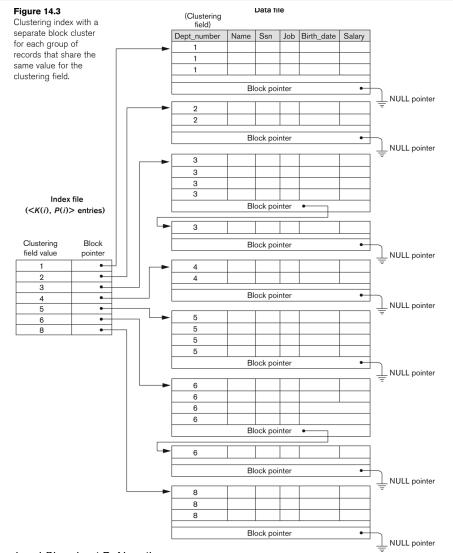
Slide 14-8

Types of Single-Level Indexes


Clustering Index

- Defined on an ordered data file
- The data file is ordered on a non-key field unlike primary index, which requires that the ordering field of the data file have a distinct value for each record.
- Includes one index entry for each distinct value of the field; the index entry points to the first data block that contains records with that field value.
- It is another example of *nondense* index where Insertion and Deletion is relatively straightforward with a clustering index.

A Clustering Index Example


 FIGURE 14.2

 A clustering index on the
 DEPTNUMBER
 ordering non-key
 field of an
 EMPLOYEE file.

Slide 14- 10

Another Clustering Index Example

Slide 14-11

Types of Single-Level Indexes

- Secondary Index
 - A secondary index provides a secondary means of accessing a file for which some primary access already exists.
 - The secondary index may be on a field which is a candidate key and has a unique value in every record, or a non-key with duplicate values.
 - The index is an ordered file with two fields.
 - The first field is of the same data type as some non-ordering field of the data file that is an indexing field.
 - The second field is either a **block** pointer or a record pointer.
 - There can be many secondary indexes (and hence, indexing fields) for the same file.
 - Includes one entry for each record in the data file; hence, it is a dense index

Slide 14- 12

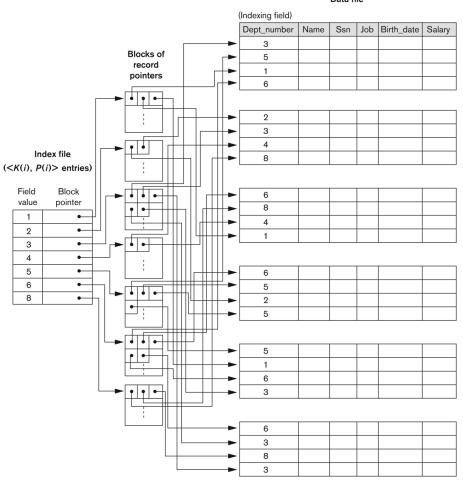

Example of a Dense Secondary Index

Figure 14.4

Slide 14-13

An Example of a Secondary Index

Data file

Figure 14.5

A secondary index (with record pointers) on a nonkey field implemented using one level of indirection so that index entries are of fixed length and have unique field values.

Slide 14- 14

Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

Type Of Index	NUMBER OF (FIRST-LEVEL) INDEX ENTRIES	Dense or Nondense	BLOCK ANCHORING ON THE DATA FILE
Primary	Number of blocks in data file	Nondense	Yes
Clustering	Number of distinct index field values	Nondense	Yes/no ^a
Secondary (key)	Number of records in data file	Dense	No
Secondary (nonkey)	Number of records ^b or Number of distinct index field values ^c	Dense or Nondense	No

^aYes if every distinct value of the ordering field starts a new block; no otherwise.

^bFor option 1.

^cFor options 2 and 3.

Slide 14-15

Multi-Level Indexes

- Because a single-level index is an ordered file, we can create a primary index to the index itself;
 - In this case, the original index file is called the *first-level* index and the index to the index is called the *second-level* index.
- We can repeat the process, creating a third, fourth, ..., top level until all entries of the *top level* fit in one disk block
- A multi-level index can be created for any type of firstlevel index (primary, secondary, clustering) as long as the first-level index consists of *more than one* disk block

A Two-level Primary Index

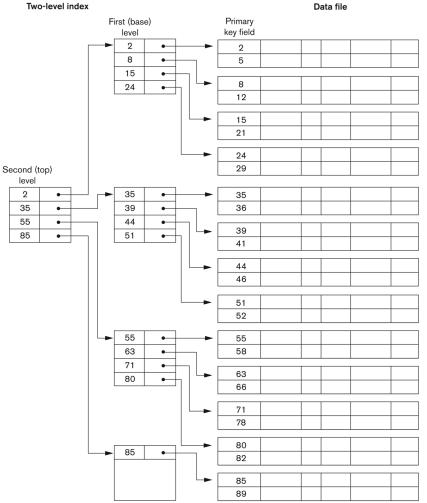
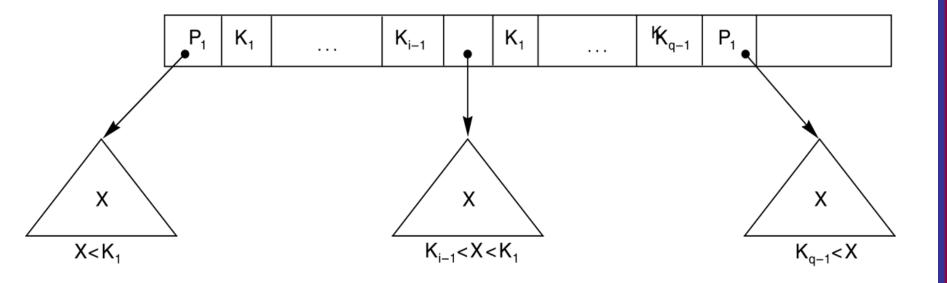


Figure 14.6 A two-level primary index resembling ISAM (Index Sequential Access Method) organization.


Slide 14- 17

Multi-Level Indexes

- Such a multi-level index is a form of search tree
 - However, insertion and deletion of new index entries is a severe problem because every level of the index is an *ordered file*.

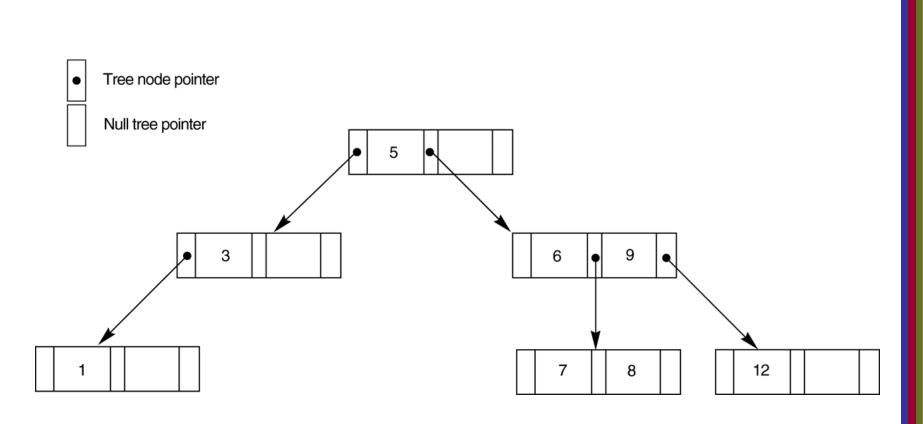

A Node in a Search Tree with Pointers to Subtrees below It

FIGURE 14.8

Slide 14-19

FIGURE 14.9 A search tree of order p = 3.

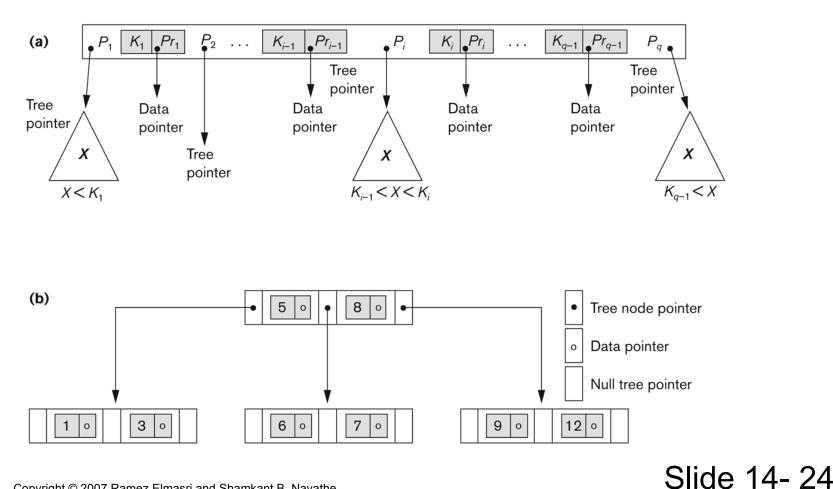
Slide 14-20

Dynamic Multilevel Indexes Using B-Trees and B+-Trees

- Most multi-level indexes use B-tree or B+-tree data structures because of the insertion and deletion problem
 - This leaves space in each tree node (disk block) to allow for new index entries
- These data structures are variations of search trees that allow efficient insertion and deletion of new search values.
- In B-Tree and B+-Tree data structures, each node corresponds to a disk block
- Each node is kept between half-full and completely full

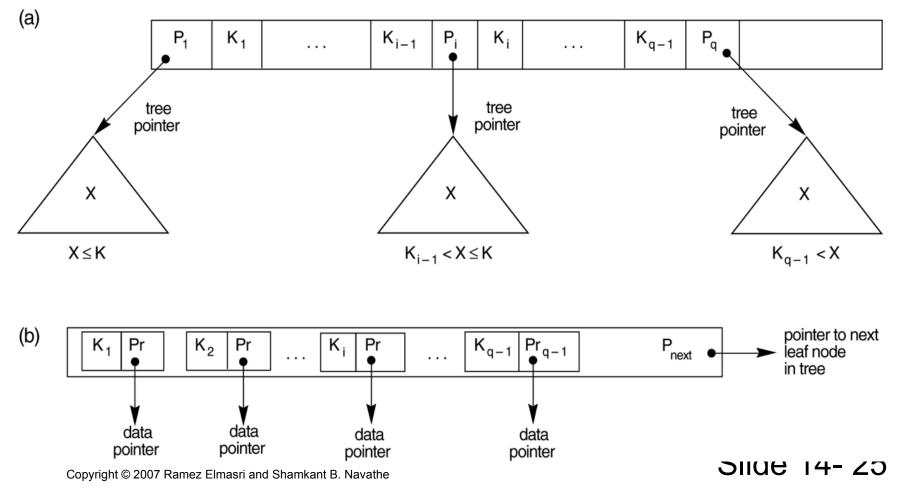
Dynamic Multilevel Indexes Using B-Trees and B+-Trees (contd.)

- An insertion into a node that is not full is quite efficient
 - If a node is full the insertion causes a split into two nodes
- Splitting may propagate to other tree levels
- A deletion is quite efficient if a node does not become less than half full
- If a deletion causes a node to become less than half full, it must be merged with neighboring nodes


Difference between B-tree and B+-tree

- In a B-tree, pointers to data records exist at all levels of the tree
- In a B+-tree, all pointers to data records exists at the leaf-level nodes
- A B+-tree can have less levels (or higher capacity of search values) than the corresponding B-tree

B-tree Structures


Figure 14.10

B-Tree structures. (a) A node in a B-tree with q - 1 search values. (b) A B-tree of order p = 3. The values were inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

The Nodes of a B+-tree

- FIGURE 14.11 The nodes of a B+-tree
 - (a) Internal node of a B+-tree with q –1 search values.
 - (b) Leaf node of a B+-tree with q 1 search values and q 1 data pointers.

An Example of an Insertion in a B+-tree

Insertion sequence: 8, 5, 1, 7, 3, 12, 9, 6 5 0 8 0 -Insert 1: overflow (new level) Tree node pointer 5 0 Data pointer 1050 • • 8 0 -Insert 7 Null tree pointer 5 • 70 1 0 5 0 8 0 Insert 12: overflow (split, propagates, new level) 3 • 5 • Insert 3: overflow (split) 5 0 7 0 8 0 3 0 1 0 • • 5 • 3 • 8 Insert 9 • **•** 7 0 8 0 • **•** 12 0 1 0 3 0 • • 5 0 5 • • 3 8 5 0 ▼ 7 0 8 0 • ▼ 9 0 12 0 1 0 3 0 +> 5 Insert 6: overflow (split, propagates) • 7 • • 3 8 1030 --5 0 ● **●** 6 0 7 0 ● **●** 8 0 • • 9 0 12 0

Figure 14.12

Slide 14-26

An example of insertion in a B⁺-tree with p = 3 and $p_{\text{leaf}} = 2$.

An Example of a Deletion in a B+-tree

Deletion sequence: 5, 12, 9

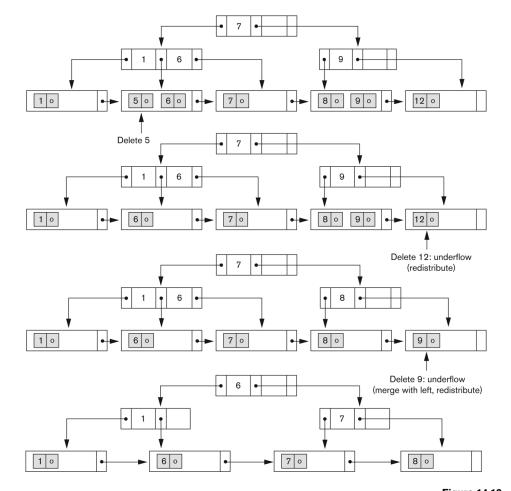


Figure 14.13 An example of deletion from a B⁺-tree.

Slide 14-27

Summary

- Types of Single-level Ordered Indexes
 - Primary Indexes
 - Clustering Indexes
 - Secondary Indexes
- Multilevel Indexes
- Dynamic Multilevel Indexes Using B-Trees and B+-Trees
- Indexes on Multiple Keys