
Slide 16- 1Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 16

Practical Database Design and
Tuning

Slide 16- 3Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

1. Physical Database Design in Relational Databases

2. An Overview of Database Tuning in Relational Systems

Slide 16- 4Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

1. Physical Database Design in Relational
Databases(1)

 Factors that Influence Physical Database Design:
A. Analyzing the database queries and transactions
 For each query, the following information is needed.

 The files that will be accessed by the query;
 The attributes on which any selection conditions for the query

are specified;
 The attributes on which any join conditions or conditions to

link multiple tables or objects for the query are specified;
 The attributes whose values will be retrieved by the query.

 Note: the attributes listed in items 2 and 3 above are
candidates for definition of access structures.

Slide 16- 5Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(2)

 Factors that Influence Physical Database Design (contd.):
A. Analyzing the database queries and transactions (contd.)
 For each update transaction or operation, the following

information is needed.
1. The files that will be updated;
2. The type of operation on each file (insert, update or delete);
3. The attributes on which selection conditions for a delete or update

operation are specified;
4. The attributes whose values will be changed by an update

operation.
 Note: the attributes listed in items 3 above are candidates for

definition of access structures. However, the attributes listed in
item 4 are candidates for avoiding an access structure.

Slide 16- 6Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(3)

 Factors that Influence Physical Database Design (contd.):
B. Analyzing the expected frequency of invocation of
queries and transactions

 The expected frequency information, along with the attribute
information collected on each query and transaction, is used
to compile a cumulative list of expected frequency of use
for all the queries and transactions.

 It is expressed as the expected frequency of using each
attribute in each file as a selection attribute or join attribute,
over all the queries and transactions.

 80-20 rule
 20% of the data is accessed 80% of the time

Slide 16- 7Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(4)

 Factors that Influence Physical Database Design (contd.)
C. Analyzing the time constraints of queries and
transactions
 Performance constraints place further priorities on

the attributes that are candidates for access paths.
 The selection attributes used by queries and

transactions with time constraints become higher-
priority candidates for primary access structure.

Slide 16- 8Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(4)

 Factors that Influence Physical Database Design (contd.)
D. Analyzing the expected frequencies of update
operations
 A minimum number of access paths should be

specified for a file that is updated frequently.

Slide 16- 9Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(4)

 Factors that Influence Physical Database Design (contd.)
E. Analyzing the uniqueness constraints on attributes
 Access paths should be specified on all candidate

key attributes — or set of attributes — that are
either the primary key or constrained to be unique.

Slide 16- 10Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(5)

 Physical Database Design Decisions
 Design decisions about indexing

 Whether to index an attribute?
 What attribute or attributes to index on?
 Whether to set up a clustered index?
 Whether to use a hash index over a tree index?
 Whether to use dynamic hashing for the file?

Slide 16- 11Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in Relational
Databases(6)

 Physical Database Design Decisions (contd.)
 Denormalization as a design decision for speeding up

queries
 The goal of normalization is to separate the logically related

attributes into tables to minimize redundancy and thereby
avoid the update anomalies that cause an extra processing
overheard to maintain consistency of the database.

 The goal of denormalization is to improve the performance
of frequently occurring queries and transactions. (Typically
the designer adds to a table attributes that are needed for
answering queries or producing reports so that a join with
another table is avoided.)

 Trade off between update and query performance

Slide 16- 12Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

2. An Overview of Database Tuning in
Relational Systems (1)

 Tuning:
 The process of continuing to revise/adjust the physical

database design by monitoring resource utilization as well
as internal DBMS processing to reveal bottlenecks such as
contention for the same data or devices.

 Goal:
 To make application run faster
 To lower the response time of queries/transactions
 To improve the overall throughput of transactions

Slide 16- 13Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (2)

 Statistics internally collected in DBMSs:
 Size of individual tables
 Number of distinct values in a column
 The number of times a particular query or transaction is

submitted/executed in an interval of time
 The times required for different phases of query and

transaction processing
 Statistics obtained from monitoring:

 Storage statistics
 I/O and device performance statistics
 Query/transaction processing statistics
 Locking/logging related statistics
 Index statistic

Slide 16- 14Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (3)

 Problems to be considered in tuning:
 How to avoid excessive lock contention?
 How to minimize overhead of logging and

unnecessary dumping of data?
 How to optimize buffer size and scheduling of

processes?
 How to allocate resources such as disks, RAM and

processes for most efficient utilization?

Slide 16- 15Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (4)

 Tuning Indexes
 Reasons to tuning indexes

 Certain queries may take too long to run for lack of an index;
 Certain indexes may not get utilized at all;
 Certain indexes may be causing excessive overhead because

the index is on an attribute that undergoes frequent changes

 Options to tuning indexes
 Drop or/and build new indexes
 Change a non-clustered index to a clustered index (and vice

versa)
 Rebuilding the index

Slide 16- 16Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (5)

 Tuning the Database Design
 Dynamically changed processing requirements

need to be addressed by making changes to the
conceptual schema if necessary and to reflect
those changes into the logical schema and
physical design.

Slide 16- 17Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (6)

 Tuning the Database Design (contd.)
 Possible changes to the database design

 Existing tables may be joined (denormalized) because certain
attributes from two or more tables are frequently needed
together.

 For the given set of tables, there may be alternative design
choices, all of which achieve 3NF or BCNF. One may be
replaced by the other.

 A relation of the form R(K, A, B, C, D, …) that is in BCNF can
be stored into multiple tables that are also in BCNF by
replicating the key K in each table.

 Attribute(s) from one table may be repeated in another even
though this creates redundancy and potential anomalies.

 Apply horizontal partitioning as well as vertical partitioning
if necessary.

Slide 16- 18Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (7)

 Tuning Queries
 Indications for tuning queries

 A query issues too many disk accesses
 The query plan shows that relevant indexes are not being

used.

Slide 16- 19Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (8)

 Tuning Queries (contd.): Typical instances for query
tuning

 In some situations involving using of correlated queries,
temporaries are useful.

 If multiple options for join condition are possible, choose
one that uses a clustering index and avoid those that
contain string comparisons.

 The order of tables in the FROM clause may affect the join
processing.

 Some query optimizers perform worse on nested queries
compared to their equivalent un-nested counterparts.

 Many applications are based on views that define the data
of interest to those applications. Sometimes these views
become an overkill.

Slide 16- 20Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (8)

 Tuning Queries (contd.): Typical instances for query
tuning

 In some situations involving using of correlated queries,
temporaries are useful.

 If multiple options for join condition are possible, choose
one that uses a clustering index and avoid those that
contain string comparisons.

 The order of tables in the FROM clause may affect the join
processing.

 Some query optimizers perform worse on nested queries
compared to their equivalent un-nested counterparts.

 Many applications are based on views that define the data
of interest to those applications. Sometimes these views
become an overkill.

Slide 16- 21Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

An Overview of Database Tuning in
Relational Systems (10)

 Additional Query Tuning Guidelines
 A query with multiple selection conditions that are

connected via OR may not be prompting the query optimizer
to use any index. Such a query may be split up and
expressed as a union of queries, each with a condition on
an attribute that causes an index to be used.

 Apply the following transformations
 NOT condition may be transformed into a positive expression.
 Embedded SELECT blocks may be replaced by joins.
 If an equality join is set up between two tables, the range

predicate on the joining attribute set up in one table may be
repeated for the other table

 WHERE conditions may be rewritten to utilize the indexes
on multiple columns.

Slide 16- 22Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Summary

 Physical Database Design in Relational Databases

 Database Tuning in Relational Systems

	PowerPoint Presentation
	Chapter 16
	Chapter Outline
	1. Physical Database Design in Relational Databases(1)
	Physical Database Design in Relational Databases(2)
	Physical Database Design in Relational Databases(3)
	Physical Database Design in Relational Databases(4)
	Slide 8
	Slide 9
	Physical Database Design in Relational Databases(5)
	Physical Database Design in Relational Databases(6)
	2. An Overview of Database Tuning in Relational Systems (1)
	An Overview of Database Tuning in Relational Systems (2)
	An Overview of Database Tuning in Relational Systems (3)
	An Overview of Database Tuning in Relational Systems (4)
	An Overview of Database Tuning in Relational Systems (5)
	An Overview of Database Tuning in Relational Systems (6)
	An Overview of Database Tuning in Relational Systems (7)
	An Overview of Database Tuning in Relational Systems (8)
	Slide 20
	An Overview of Database Tuning in Relational Systems (10)
	Summary

