
Slide 25- 1Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 25

Distributed Databases and
Client-Server Architectures

Slide 25- 3Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 25 Outline

1. Distributed Database Concepts

2. Data Fragmentation, Replication and Allocation

3. Types of Distributed Database Systems

4. Query Processing

5. Concurrency Control and Recovery

6. 3-Tier Client-Server Architecture

Slide 25- 4Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database Concepts

 A transaction can be executed by multiple networked
computers in a unified manner.

 A distributed database (DDB) processes Unit of execution (a
transaction) in a distributed manner. A distributed database
(DDB) can be defined as

 A distributed database (DDB) is a collection of multiple
logically related database distributed over a computer
network, and a distributed database management system
as a software system that manages a distributed database
while making the distribution transparent to the user.

Slide 25- 5Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages
 Management of distributed data with different levels of

transparency:
 This refers to the physical placement of data (files,

relations, etc.) which is not known to the user
(distribution transparency).

Slide 25- 6Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)
 The EMPLOYEE, PROJECT, and WORKS_ON tables may

be fragmented horizontally and stored with possible
replication as shown below.

Slide 25- 7Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)
 Distribution and Network transparency:

 Users do not have to worry about operational details
of the network.

 There is Location transparency, which refers to freedom of
issuing command from any location without affecting its working.

 Then there is Naming transparency, which allows access to any
names object (files, relations, etc.) from any location.

Slide 25- 8Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Advantages (transparency, contd.)
 Replication transparency:

 It allows to store copies of a data at multiple sites as
shown in the above diagram.

 This is done to minimize access time to the required
data.

 Fragmentation transparency:
 Allows to fragment a relation horizontally (create a

subset of tuples of a relation) or vertically (create a
subset of columns of a relation).

Slide 25- 9Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Other Advantages
 Increased reliability and availability:

 Reliability refers to system live time, that is, system
is running efficiently most of the time. Availability is
the probability that the system is continuously
available (usable or accessible) during a time
interval.

 A distributed database system has multiple nodes
(computers) and if one fails then others are
available to do the job.

Slide 25- 10Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distributed Database System

 Other Advantages (contd.)
 Improved performance:

 A distributed DBMS fragments the database to keep
data closer to where it is needed most.

 This reduces data management (access and
modification) time significantly.

 Easier expansion (scalability):
 Allows new nodes (computers) to be added anytime

without chaining the entire configuration.

Slide 25- 11Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Data Fragmentation
 Split a relation into logically related and correct parts. A

relation can be fragmented in two ways:
 Horizontal Fragmentation
 Vertical Fragmentation

Slide 25- 12Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Horizontal fragmentation
 It is a horizontal subset of a relation which contain those of

tuples which satisfy selection conditions.
 Consider the Employee relation with selection condition

(DNO = 5). All tuples satisfy this condition will create a
subset which will be a horizontal fragment of Employee
relation.

 A selection condition may be composed of several
conditions connected by AND or OR.

 Derived horizontal fragmentation: It is the partitioning of a
primary relation to other secondary relations which are
related with Foreign keys.

Slide 25- 13Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Vertical fragmentation
 It is a subset of a relation which is created by a subset of

columns. Thus a vertical fragment of a relation will contain
values of selected columns. There is no selection condition
used in vertical fragmentation.

 Consider the Employee relation. A vertical fragment of can
be created by keeping the values of Name, Bdate, Sex, and
Address.

 Because there is no condition for creating a vertical
fragment, each fragment must include the primary key
attribute of the parent relation Employee. In this way all
vertical fragments of a relation are connected.

Slide 25- 14Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Representation
 Horizontal fragmentation

 Each horizontal fragment on a relation can be specified by a
σCi (R) operation in the relational algebra.

 Complete horizontal fragmentation
 A set of horizontal fragments whose conditions C1, C2, …, Cn

include all the tuples in R- that is, every tuple in R satisfies (C1
OR C2 OR … OR Cn).

 Disjoint complete horizontal fragmentation: No tuple in R
satisfies (Ci AND Cj) where i ≠ j.

 To reconstruct R from horizontal fragments a UNION is
applied.

Slide 25- 15Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Representation
 Vertical fragmentation

 A vertical fragment on a relation can be specified by a ΠLi(R)
operation in the relational algebra.

 Complete vertical fragmentation
 A set of vertical fragments whose projection lists L1, L2, …, Ln

include all the attributes in R but share only the primary key of
R. In this case the projection lists satisfy the following two
conditions:

 L1 ∪ L2 ∪ ... ∪ Ln = ATTRS (R)
 Li ∩ Lj = PK(R) for any i j, where ATTRS (R) is the set of

attributes of R and PK(R) is the primary key of R.
 To reconstruct R from complete vertical fragments a OUTER

UNION is applied.

Slide 25- 16Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Representation
 Mixed (Hybrid) fragmentation

 A combination of Vertical fragmentation and
Horizontal fragmentation.

 This is achieved by SELECT-PROJECT operations
which is represented by ΠLi(σCi (R)).

 If C = True (Select all tuples) and L ≠ ATTRS(R), we
get a vertical fragment, and if C ≠ True and L ≠
ATTRS(R), we get a mixed fragment.

 If C = True and L = ATTRS(R), then R can be
considered a fragment.

Slide 25- 17Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Fragmentation schema
 A definition of a set of fragments (horizontal or vertical or

horizontal and vertical) that includes all attributes and tuples
in the database that satisfies the condition that the whole
database can be reconstructed from the fragments by
applying some sequence of UNION (or OUTER JOIN) and
UNION operations.

 Allocation schema
 It describes the distribution of fragments to sites of

distributed databases. It can be fully or partially replicated
or can be partitioned.

Slide 25- 18Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Fragmentation, Replication and
Allocation

 Data Replication
 Database is replicated to all sites.
 In full replication the entire database is replicated and in

partial replication some selected part is replicated to some
of the sites.

 Data replication is achieved through a replication schema.
 Data Distribution (Data Allocation)

 This is relevant only in the case of partial replication or
partition.

 The selected portion of the database is distributed to the
database sites.

Slide 25- 19Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Homogeneous
 All sites of the database

system have identical
setup, i.e., same database
system software.

 The underlying operating
system may be different.

 For example, all sites run
Oracle or DB2, or Sybase
or some other database
system.

 The underlying operating
systems can be a mixture
of Linux, Window, Unix,
etc.

Site 5
Site 1

Site 2Site 3
Oracle Oracle

Oracle
Oracle

Site 4

Oracle

LinuxLinux

Window

Window
Unix

Communications
network

Slide 25- 20Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Heterogeneous
 Federated: Each site may run different database system but the

data access is managed through a single conceptual schema.
 This implies that the degree of local autonomy is minimum. Each site

must adhere to a centralized access policy. There may be a global
schema.

 Multidatabase: There is no one conceptual global schema. For
data access a schema is constructed dynamically as needed by
the application software.

Communications
network

Site 5
Site 1

Site 2Site 3

Network
DBMS

Relational

Site 4

Object
Oriented

LinuxLinux

Unix

Hierarchical

Object
Oriented

RelationalUnix

Window

Slide 25- 21Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Distributed Database Systems

 Federated Database Management Systems Issues
 Differences in data models:

 Relational, Objected oriented, hierarchical, network,
etc.

 Differences in constraints:
 Each site may have their own data accessing and

processing constraints.
 Differences in query language:

 Some site may use SQL, some may use SQL-89,
some may use SQL-92, and so on.

Slide 25- 22Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases

 Issues
 Cost of transferring data (files and results) over the network.

 This cost is usually high so some optimization is necessary.
 Example relations: Employee at site 1 and Department at Site

2
 Employee at site 1. 10,000 rows. Row size = 100 bytes. Table

size = 106 bytes.

 Department at Site 2. 100 rows. Row size = 35 bytes. Table size
= 3,500 bytes.

 Q: For each employee, retrieve employee name and
department name Where the employee works.

 Q: ΠFname,Lname,Dname (Employee Dno = Dnumber Department)

Fname Minit Lname SSN Bdate Address Sex Salary Superssn Dno

Dname Dnumber Mgrssn Mgrstartdate

Slide 25- 23Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 Result

 The result of this query will have 10,000 tuples, assuming
that every employee is related to a department.

 Suppose each result tuple is 40 bytes long. The query is
submitted at site 3 and the result is sent to this site.

 Problem: Employee and Department relations are not
present at site 3.

Slide 25- 24Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 Strategies:

1. Transfer Employee and Department to site 3.
 Total transfer bytes = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send
the result to site 3.

 Query result size = 40 * 10,000 = 400,000 bytes. Total
transfer size = 400,000 + 1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, execute the join at
site 1, and send the result to site 3.

 Total bytes transferred = 400,000 + 3500 = 403,500 bytes.

 Optimization criteria: minimizing data transfer.

Slide 25- 25Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 Strategies:

1. Transfer Employee and Department to site 3.
 Total transfer bytes = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send
the result to site 3.

 Query result size = 40 * 10,000 = 400,000 bytes. Total
transfer size = 400,000 + 1,000,000 = 1,400,000 bytes.

3. Transfer Department relation to site 1, execute the join at
site 1, and send the result to site 3.

 Total bytes transferred = 400,000 + 3500 = 403,500 bytes.

 Optimization criteria: minimizing data transfer.
 Preferred approach: strategy 3.

Slide 25- 26Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 Consider the query

 Q’: For each department, retrieve the department name
and the name of the department manager

 Relational Algebra expression:
 ΠFname,Lname,Dname (Employee Mgrssn = SSN Department)

Slide 25- 27Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 The result of this query will have 100 tuples, assuming

that every department has a manager, the execution
strategies are:
1. Transfer Employee and Department to the result site and

perform the join at site 3.
 Total bytes transferred = 1,000,000 + 3500 = 1,003,500

bytes.
2. Transfer Employee to site 2, execute join at site 2 and

send the result to site 3. Query result size = 40 * 100 =
4000 bytes.
 Total transfer size = 4000 + 1,000,000 = 1,004,000 bytes.

3. Transfer Department relation to site 1, execute join at site 1
and send the result to site 3.
 Total transfer size = 4000 + 3500 = 7500 bytes.

Slide 25- 28Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 The result of this query will have 100 tuples, assuming

that every department has a manager, the execution
strategies are:
1. Transfer Employee and Department to the result site and

perform the join at site 3.
 Total bytes transferred = 1,000,000 + 3500 = 1,003,500 bytes.

2. Transfer Employee to site 2, execute join at site 2 and send
the result to site 3. Query result size = 40 * 100 = 4000
bytes.
 Total transfer size = 4000 + 1,000,000 = 1,004,000 bytes.

3. Transfer Department relation to site 1, execute join at site 1
and send the result to site 3.
 Total transfer size = 4000 + 3500 = 7500 bytes.

 Preferred strategy: Choose strategy 3.

Slide 25- 29Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases
 Now suppose the result site is 2. Possible strategies :

1. Transfer Employee relation to site 2, execute the query
and present the result to the user at site 2.
 Total transfer size = 1,000,000 bytes for both

queries Q and Q’.
2. Transfer Department relation to site 1, execute join at site

1 and send the result back to site 2.
 Total transfer size for Q = 400,000 + 3500 =

403,500 bytes and for Q’ = 4000 + 3500 = 7500
bytes.

Slide 25- 30Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing in Distributed
Databases

 Semijoin:
 Objective is to reduce the number of tuples in a relation

before transferring it to another site.
 Example execution of Q or Q’:

1. Project the join attributes of Department at site 2, and
transfer them to site 1. For Q, 4 * 100 = 400 bytes are
transferred and for Q’, 9 * 100 = 900 bytes are transferred.

2. Join the transferred file with the Employee relation at site
1, and transfer the required attributes from the resulting file
to site 2. For Q, 34 * 10,000 = 340,000 bytes are
transferred and for Q’, 39 * 100 = 3900 bytes are
transferred.

3. Execute the query by joining the transferred file with
Department and present the result to the user at site 2.

Slide 25- 31Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Distributed Databases encounter a number of concurrency
control and recovery problems which are not present in
centralized databases. Some of them are listed below.

 Dealing with multiple copies of data items
 Failure of individual sites
 Communication link failure
 Distributed commit
 Distributed deadlock

Slide 25- 32Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Details
 Dealing with multiple copies of data items:

 The concurrency control must maintain global
consistency. Likewise the recovery mechanism
must recover all copies and maintain consistency
after recovery.

 Failure of individual sites:
 Database availability must not be affected due to

the failure of one or two sites and the recovery
scheme must recover them before they are
available for use.

Slide 25- 33Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Details (contd.)
 Communication link failure:

 This failure may create network partition which would affect
database availability even though all database sites may be
running.

 Distributed commit:
 A transaction may be fragmented and they may be executed

by a number of sites. This require a two or three-phase
commit approach for transaction commit.

 Distributed deadlock:
 Since transactions are processed at multiple sites, two or

more sites may get involved in deadlock. This must be
resolved in a distributed manner.

Slide 25- 34Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Distributed Concurrency control based on a distributed copy of
a data item

 Primary site technique: A single site is designated as a
primary site which serves as a coordinator for transaction
management.

Communications neteork

Site 5
Site 1

Site 2

Site 4

Site 3

Primary site

Slide 25- 35Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Transaction management:
 Concurrency control and commit are managed by this site.
 In two phase locking, this site manages locking and

releasing data items. If all transactions follow two-phase
policy at all sites, then serializability is guaranteed.

Slide 25- 36Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Transaction Management
 Advantages:

 An extension to the centralized two phase locking so
implementation and management is simple.

 Data items are locked only at one site but they can be
accessed at any site.

 Disadvantages:
 All transaction management activities go to primary site which

is likely to overload the site.
 If the primary site fails, the entire system is inaccessible.

 To aid recovery a backup site is designated which behaves
as a shadow of primary site. In case of primary site failure,
backup site can act as primary site.

Slide 25- 37Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Primary Copy Technique:
 In this approach, instead of a site, a data item partition is

designated as primary copy. To lock a data item just the
primary copy of the data item is locked.

 Advantages:
 Since primary copies are distributed at various sites, a

single site is not overloaded with locking and unlocking
requests.

 Disadvantages:
 Identification of a primary copy is complex. A distributed

directory must be maintained, possibly at all sites.

Slide 25- 38Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Recovery from a coordinator failure
 In both approaches a coordinator site or copy may become

unavailable. This will require the selection of a new
coordinator.

 Primary site approach with no backup site:
 Aborts and restarts all active transactions at all sites. Elects

a new coordinator and initiates transaction processing.
 Primary site approach with backup site:

 Suspends all active transactions, designates the backup
site as the primary site and identifies a new back up site.
Primary site receives all transaction management
information to resume processing.

 Primary and backup sites fail or no backup site:
 Use election process to select a new coordinator site.

Slide 25- 39Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control and Recovery

 Concurrency control based on voting:
 There is no primary copy of coordinator.
 Send lock request to sites that have data item.
 If majority of sites grant lock then the requesting transaction

gets the data item.
 Locking information (grant or denied) is sent to all these

sites.
 To avoid unacceptably long wait, a time-out period is

defined. If the requesting transaction does not get any vote
information then the transaction is aborted.

Slide 25- 40Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Client-Server Database Architecture

 It consists of clients running client software, a set of servers
which provide all database functionalities and a reliable
communication infrastructure.

Client 1

Client 3

Client 2

Client n

Server 1

Server 2

Server n

Slide 25- 41Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Client-Server Database Architecture

 Clients reach server for desired service, but server does reach
clients.

 The server software is responsible for local data management
at a site, much like centralized DBMS software.

 The client software is responsible for most of the distribution
function.

 The communication software manages communication among
clients and servers.

Slide 25- 42Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Client-Server Database Architecture

 The processing of a SQL queries goes as follows:
 Client parses a user query and decomposes it into a

number of independent sub-queries. Each subquery is sent
to appropriate site for execution.

 Each server processes its query and sends the result to the
client.

 The client combines the results of subqueries and produces
the final result.

Slide 25- 43Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Recap

 Distributed Database Concepts
 Data Fragmentation, Replication and Allocation
 Types of Distributed Database Systems
 Query Processing
 Concurrency Control and Recovery
 3-Tier Client-Server Architecture

	PowerPoint Presentation
	Chapter 25
	Chapter 25 Outline
	Distributed Database Concepts
	Distributed Database System
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Data Fragmentation, Replication and Allocation
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Types of Distributed Database Systems
	Slide 20
	Slide 21
	Query Processing in Distributed Databases
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Concurrency Control and Recovery
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Client-Server Database Architecture
	Slide 41
	Slide 42
	Recap

