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ABSTRACT:  A transaction is a transformation of state which has the properties of atomicity 

(all or nothing), durability (effects survive failures) and consistency (a correct transformation).  

The transaction concept is key to the structuring of data management applications.  The concept 

may have applicability to programming systems in general.  This paper restates the transaction 

concepts and attempts to put several implementation approaches in perspective.  It then describes 

some areas which require further study:  (1) the integration of the transaction concept with the 

notion of abstract data type, (2) some techniques to allow transactions to be composed of sub-

transactions, and (3) handling transactions which last for extremely long times (days or months). 
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INTRODUCTION:  What is a transaction? 

 

The transaction concept derives from contract law.  In making a contract, two or more parties 

negotiate for a while and then make a deal.  The deal is made binding by the joint signature of a 

document or by some other act (as simple as a handshake or nod).  If the parties are rather 

suspicious of one another or just want to be safe, they appoint an intermediary (usually called an 

escrow officer to coordinate the commitment of the transaction. 

 

The Christian wedding ceremony gives a good example of such a contract.  The bride and groom 

“negotiate” for days or years and then appoint a minister to conduct the marriage ceremony.  The 

minister first asks if anyone has any objections to the marriage; he then asks the bride and groom 

if they agree to the marriage.  If they both say, “I do”, he pronounces them man and wife. 

 

Of course, a contract is simply an agreement.  Individuals can violate if they are willing to break 

the law.  But legally, a contract (transaction) can only be annulled if it was illegal in the first 

place.  Adjustment of a bad transaction is done via further compensating transactions (including 

legal redress). 

 

The transaction concept emerges with the following properties: 

 

Consistency: the transaction must obey legal protocols. 

Atomicity:   it either happens or it does not; either all are bound by the contract or none are. 

Durability:   once a transaction is committed, it cannot be abrogated. 
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A GENERAL MODEL OF TRANSACTIONS 

 

Translating the transaction concept to the realm of computer science, we observe that most of the 

transactions we see around us (banking, car rental, or buying groceries) may be reflected in a 

computer as transformations of a system state. 

 

A system state consists of records and devices with changeable values.  The system state 

includes assertions about the values of records and about the allowed transformations of the 

values.  These assertions are called the system consistency constraints. 

 

The system provides actions which read and transform the values of records and devices.  A 

collection of actions which comprise a consistent transformation of the state may be grouped to 

form a transaction.  Transactions preserve the system consistency constraints -- they obey the 

laws by transforming consistent states into new consistent states. 

 

Transactions must be atomic and durable:  either all actions are done and the transaction is said 

to commit, or none of the effects of the transaction survive and the transaction is said to abort. 

 

These definitions need slight refinement to allow some actins to be ignored and to account for 

others which cannot be undone.  Actions on entities are categorized as: 

 

Unprotected:  the action need not be undone or redone if the transaction must be aborted 

or the entity value needs to be reconstructed. 

 

Protected:  the action can and must be undone or redone if the transaction must be 

aborted or if the entity value needs to be reconstructed. 

 

Real:  once done, the action cannot be undone. 

 

Operations on temporary files and the transmission of intermediate messages are examples of 

unprotected actions.  Conventional database and message operations are examples of protected 

actions.  Transaction commitment and operations on real devices (cash dispensers and airplane 

wings) are examples of real actions. 

 

Each transaction is defined as having exactly one of two outcomes:  committed or aborted.  All 

protected and real actions of committed transactions persist, even in the presence of failures.  On 

the other hand, none of the effects of protected and real actions of an aborted transaction are ever 

visible to other transactions. 

 

Once a transaction commits, its effects can only be altered by running further transactions.  For 

example, if someone is underpaid, the corrective action is to run another transaction which pays 

an additional sum.  Such post facto transactions are called compensating transactions. 

 

A simple transaction is a linear sequence of actions.  A complex transaction may have 

concurrency within a transaction:  the initiation of one action may depend on the outcome of a 
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group of actions.  Such transactions seem to have transactions nested within them, although the 

effects of the nested transactions are only visible to other parts of the transaction (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Two transactions:  T1 is a simple sequence of actions.  T2 is a more complex 

transaction which demonstrates parallelism and nesting within a transaction. 
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NonStop™:  Making failures rare 

 

One way to get transaction atomicity and durability is to build a perfect system which never fails.  

Suppose you built perfect hardware which never failed, and software which did exactly what it 

was supposed to do.  Your system would be very popular and all transactions would always be 

successful.  But the system would fail occasionally because the people who adapted your system 

to their environment would make some mistakes (application programming errors) and the 

people who operated the system would make some mistakes (data entry and procedural errors).  

Even with very careful management, the system would fail every few months or years and at 

least one transaction in 100 would fail due to data-entry error or authorization error [Japan]. 

 

One may draw two conclusions from this: 

 

1. You don’t have to make a perfect system.  One that fails once every thousand years is 

good enough. 

 

2. Even if the system is perfect, some transactions will abort because of data-entry error, 

insufficient funds, operator cancellation, or timeout. 

 

This section discusses techniques for “almost perfect” systems and explains their relationship to 

transaction processing. 

 

Imperfection comes in several flavors.  A system may fail because of a design error or because of 

a device failure.  The error may become visible to a user or redundant checks may detect the 

failure and allow it to be masked from the user. 

 

A system is unreliable if it does the wrong thing (does not detect the error).  A system is 

unavailable if it does not do the right thing within a specified time limit.  Clearly, high 

availability is harder to achieve than high reliability. 

 

John Von Neumann is credited with the observation that a very reliable (and available) system 

can be built from unreliable components [Von Neumann].  Von Neumann’s idea was to use 

redundancy and majority logic on a grand scale (20,000 wires for one wire) in order to get mean-

times-to-failure measured in decades.  Von Neumann was thinking in terms of neurons and 

vacuum tubes which have mean-times-to-failures measured in days and which are used in huge 

quantities (millions or billions) in a system.  In addition, Von Neumann’s model was flat so that 

any failure in a chain broke the whole chain. 

 

Fortunately, computer systems do not need redundancy factors of 20,000 in order to get very 

long mean-times-to-failure.  Unlike Von Neumann’s nerve nets, computer systems are 

hierarchically composed of modules and each module is self-checked so that it either operates 

correctly or detects its failure and does nothing.  Such modules are called fail-fast.  Fail-fast 

computer modules such as processors and memories achieve mean times to failure measured in 

months.  Since relatively few modules make up a system (typically less than 100), very limited 

redundancy is needed to improve the system reliability. 
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Consider the simple case of discs.  A typical disc fails about once a year.  Failures arise from bad 

spots on the disc, physical failure of the spindle or electronic failure of the path to the disc.  It 

takes about an hour to fix a disc or get a spare disc to replace it.  If the discs are duplexed 

(mirrored), and if they fail independently, then the pair will both be down about once every three 

thousand years.  More realistic analysis gives a mean-time-to-failure of 800 years.  So a system 

with eight pairs of discs would have an unavailable disc pair about once a century.  Without 

mirroring, the same system would have an unavailable disc about eight times a year. 

 

Although duplexed discs have been used since the late sixties [Heistand], we have been slow to 

generalize from this experience to the observation that: 

 

• Mean-time-to-failure of modules are measured in months. 

• Modules can be made fail-fast:  either they work properly or they fail to work. 

• Spare modules give the appearance of mean time to repair measured in seconds or 

minutes. 

• Duplexing such modules gives mean times to failure measured in centuries. 

 

The systematic application of these ideas to both hardware and software produces highly reliable 

and highly available systems. 

 

High availability requires rethinking many concepts of system design.  Consider, for example, 

the issue of system maintenance:  one must be able to plug components into the system while it 

is operating.  At the hardware level, this requires Underwriters Laboratory approval that there are 

no high voltages around, and requires that components tolerate high power drains and surges 

and, and, and ….  At the software level, this means that there is no “SYSGEN” and that any 

program or data structure can be replaced while the system is operating.  These are major 

departures from most current system designs. 

 

Commercial versions of systems that provide continuous service are beginning to appear in the 

marketplace.  Perhaps the best known are the Tandem systems.  Tandem calls its approach to 

high availability NonStop (a Tandem trademark).  Their systems typically have mean times to 

failure between one and ten years.   At the hardware level, modules and paths are duplexed and 

all components are designed for reliable and fail-fast operation [Katzman].  At the software level, 

the system is structured as a message-based operating system in which each process may have a 

backup process which continues to work of the primary process should the primary process or its 

supporting hardware fail [Bartlett], [Bartlett2].  Alsberg proposed a related technique [Alsberg]. 

 

It is not easy to build a highly available system.  Given such a system, it is non-trivial to program 

fault-tolerant applications unless other tools are provided; takeover by the backup process when 

the primary process fails is delicate.  The backup process must somehow continue the 

computation where it left off without propagating the failure to other processes. 
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One strategy for writing fault-tolerant applications is to have the primary process “checkpoint” 

its state to the backup process prior to each operation.  If the primary fails, the backup process 

picks up the conversation where the primary left off.  Resynchronizing the requestor and server 

processes in such an event is very subtle. 

 

Another strategy for writing fault-tolerant applications is to collect all the processes of a 

computation together as a transaction and to reset them all to the initial transaction state in case 

of a failure.  In the event of a failure, the transaction is undone (to a save point or to the 

beginning) and continued from that point by a new process.  The backout and restart facilities 

provided by transaction management free the application programmer from concerns about 

failures or process pairs. 

 

The implementers of the transaction concept must use the primitive process-pair mechanism and 

must deal with the subtleties of NonStop; but, thereafter, all programmers may rely on the 

transaction mechanism and hence may easily write fault-tolerant software [Borr].  Programs in 

such a system look no different from programs in a conventional system except that they contain 

the verbs BEGIN-TRANSACTION, COMMIT-TRANSACTION and ABORT-

TRANSACTION. 

 

Use of the transaction concept allows the application programmer to abort the transaction in case 

the input data or system state looks bad.  This feature comes at no additional cost because the 

mechanism to undo a transaction is already in place. 

 

In addition, if transactions are implemented with logging, then the transaction manager may be 

used to reconstruct the system state from an old state plus the log.  This provides transaction 

durability in the presence of multiple failures. 

 

In summary, NonStop™ techniques can make computer systems appear to have failure rates 

measured in decades or centuries.  In practice, systems have a failure rates measured in months 

or years because of operator error (about one per year) and application program errors (several 

per year) [Japan].  These now become the main limit of system reliability rather than the 

software or hardware supplied by the manufacturer. 

 

This section showed the need for the transaction concept to ease the implementation of fault-

tolerant applications.  There are two apparently different approaches to implementing the 

transaction concept:  time-domain addressing and logging plus locking.  The following sections 

explain these two approaches and contract them. 

 

To give a preview of the two techniques, logging clusters the current state of all objects together 

and relegates old versions to a history file called a log.  Time-domain addressing clusters the 

complete history (all versions) of each object with the object.  Each organization will be seen to 

have some unique virtues. 
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UPDATE IN PLACE:  A poison apple? 

 

When bookkeeping was done with clay tablets or paper and ink, accountants developed some 

clear rules about good accounting practices.  One of the cardinal rules is double-entry 

bookkeeping so that calculations are self-checking, thereby making them fail-fast.  A second rule 

is that one never alters the books; if an error is made, it is annotated and a new compensating 

entry is made in the books.  The books are thus a complete history of the transactions of the 

business. 

  

The first computer systems obeyed these rules.  The bookkeeping entries were represented on 

punched cards or on tape as records.  A run would take in the old master and the day’s activity, 

represented as records on punched cards.  The result was a new master.  The old master was 

never updated.  This was due in part to good accounting practices but also due to the technical 

aspects of cards and tape:  writing a new tape was easier than re-writing the old tape. 

 

The advent of direct access storage (discs and drums) changed this.  It was now possible to 

update only a part of a file.  Rather than copying the whole disc whenever one part was updated, 

it became attractive to update just the parts that changed in order to construct the new master.  

Some of these techniques, notably side files and differential files [Severence] did not update the 

old master and hence followed good accounting techniques.  But for performance reasons, most 

disc-based systems have been seduced into updating the data in place. 
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TIME-DOMAIN ADDRESSING:  One solution 

 

Update-in-place strikes many systems designers as a cardinal sin:  it violates traditional 

accounting practices that have been observed for hundreds of years.  There have been several 

proposals for systems in which objects are never altered:  rather an object is considered to have a 

time history and object addresses become <name,time> rather than simply name.  In such a 

system, an object is not “updated”; it is “evolved” to have some additional information.  

Evolving an object consists of creating a new value and appending it as the current (as of this 

time) value of the object.  The old value continues to exist and may be addressed by specifying 

any time within the time interval that value was current.  Such systems are called “time-domain 

addressing” or “version-oriented systems”.  Some call them immutable object systems, but I 

think that is a misnomer since objects do change values with time. 

 

Davies and Bjork proposed an implementation for time-domain addressing as a “general ledger” 

in which each entity had a time sequence of values [Davies], [Bjork].  Their system not only kept 

these values but also kept the chain of dependencies so that if an error was discovered, the 

compensating transaction could run and the new value could be propagated to each transaction 

that depended on the erroneous data.  The internal book-keeping and expected poor performance 

of such a system discouraged most who have looked at it.  Graham Wood at the University of 

Newcastle showed that the dependency information grows exponentially [Wood]. 

 

Dave Reed has made the most complete proposal for a transaction system based on time-domain 

addressing [Reed].  In Reed’s proposal an entity E has a set of values Vi each of which is valid 

for a time period.  For example the entity E and its value history might be denoted by: 

 

E: < V0, [T0,T1) >,< V1, [T1,T2) >, < V2, [T2,*) > 

 

meaning that E had value V0 from time T0 up to T1, at time T1 it got value V1 and at time T2 it 

got value V2 which is the current value.  Each transaction is assigned a unique time of execution 

and all of its reads and writes are interpreted with respect to that time.  A transaction at time T3 

reading entity E gets the value of the entity at that time.  In the example above, if T3>T2 then the 

value V2 will be made valid for the period [T2,T3).  A transaction at time T3 writing value V3 to 

entity E starts a new time interval: 

 

E: < V0, [T0, T1) >,<V1, [T1, T2) >,< V2, [T2, T3) >,< V3, [T3,*) > 

 

If T2 > = T3 then the transaction is aborted because it is attempting to rewrite history. 

 

The writes of the transaction all depend upon a commit record.  At transaction commit, the 

system validates (makes valid) all of the updates of the transaction.  At transaction abort the 

system invalidates all of the updates.  This is done by setting the state of the commit record to 

commit or abort and then broadcasting the transaction outcome. 

 

This is a simplified description of Reed’s proposal.  The full proposal has many other features 

including a nested transaction mechanism.  In addition, Reed does not use “real” time but rather 
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“pseudo-time” in order to avoid the difficulties of implementing a global clock.  See [Reed2] and 

Svobodova] for very understandable presentations of this proposal. 

 

 
 

Figure 2. Representation of versions of object E.  Three committed versions and one proposed 

version are shown.  When version V3 is committed or aborted, the commit record and 

object header will be updated.  Adapted from [Svobodova]. 

 

Reed observes that this proposal is a unified solution to both the concurrency control problem 

and the reliability problem.  In addition, the system allows applications the full power of time- 

domain addressing.  One can easily ask questions such as “What did the books look like at year-

end?” 

 

COMMIT REFERENCE

PROPOSED END TIME

PROPOSED VERSION

CURRENT END TIME

CURRENT VERSION

COMMIT RECORD

PREV

T0

V0

CREF

COMMIT 0

PREV

T1

V1

CREF

COMMIT 1

PREV

T2

V2

CREF

COMMIT 2

PREV

T3

V3

CREF

COMMIT REFERENCE

PROPOSED END TIME

PROPOSED VERSION

CURRENT END TIME

CURRENT VERSION

COMMIT RECORD

PREV

T0

V0

CREF

COMMIT 0

PREV

T0

V0

CREF

COMMIT 0

PREV

T1

V1

CREF

COMMIT 1

PREV

T1

V1

CREF

COMMIT 1

PREV

T2

V2

CREF

COMMIT 2

PREV

T2

V2

CREF

COMMIT 2

PREV

T3

V3

CREF

COMMIT REFERENCE

PROPOSED END TIME

PROPOSED VERSION

CURRENT END TIME

CURRENT VERSION

COMMIT RECORD

PREV

T0

V0

CREF

COMMIT 0

PREV

T1

V1

CREF

COMMIT 1

PREV

T2

V2

CREF

COMMIT 2

PREV

T3

V3

CREF

COMMIT REFERENCE

PROPOSED END TIME

PROPOSED VERSION

CURRENT END TIME

CURRENT VERSION

COMMIT RECORD

PREV

T0

V0

CREF

COMMIT 0

PREV

T0

V0

CREF

COMMIT 0

PREV

T1

V1

CREF

COMMIT 1

PREV

T1

V1

CREF

COMMIT 1

PREV

T2

V2

CREF

COMMIT 2

PREV

T2

V2

CREF

COMMIT 2

PREV

T3

V3

CREF

 



 

  10 

There are some problems with time-domain addressing proposals: 

 

1. Reads are writes:  reads advance the clock on an object and therefore update its header.  

This may increase L/O activity. 

 

2. Waits are aborts:  In most cases a locking system will cause conflicts to result in one 

process waiting for another.  In time-domain systems, conflicts abort the writer.  This 

may preclude long-running “batch” transactions which do many updates. 

 

3. Timestamps force a single granularity:  reading a million records updates a million 

timestamps.  A simple lock hierarchy allows sequential (whole file) and direct (single 

record) locking against the same data (at the same time). 

 

4. Real operations and pseudo-time:  If one reads or writes a real device, it is read at some 

real time or written at some real time (consider the rods of a nuclear reactor, or an 

automated teller machine which consumes and dispenses money).  It is unclear how real 

time correlates with pseudo-time and how writes to real devices are modeled as versions. 

 

As you can see from this list, not all the details of implementing a time-domain addressing 

system have been worked out.  Certainly the concept is valid.  All but the last issue are 

performance issues and may well be solved by people trying to build such systems.  Many 

people are enthusiastic about this approach, and they will certainly find ways to eliminate or 

ameliorate these problems.  In particular, Dave Reed and his colleagues at MIT are building such 

a system [Svobodova]. 
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LOGGING AND LOCKING:  Another solution 

 

Logging and locking are an alternative implementation of the transaction concept.  The 

legendary Greeks, Ariadne and Theseus, invented logging.  Ariadne gave Theseus a magic ball 

of string which he unraveled as he searched the Labyrinth for the Minotaur.  Having slain the 

Minotaur, Theseus followed the string back to the entrance rather then remaining lost in the 

Labyrinth.  This string was his log allowing him to undo the process of entering the Labyrinth.  

But the Minotaur was not a protected object so its death was not undone by Theseus’ exit. 

 

Hansel and Gretel copied Theseus’ trick as they wandered into the woods in search of berries.  

They left behind a trail of crumbs that would allow them to retrace their steps by following the 

trail backwards, and would allow their parents to find them by following the trail forwards.  This 

was the first undo and redo log.  Unfortunately, a bird ate the crumbs and caused the first log 

failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The DO-UNDO-REDO protocol.  The execution of each protected action generates a 

log record which allows the action to be undone or redone.  Unprotected actions need 

not generate log records.  Actions which are not undoable (called real actions) use a 

related but slightly different protocol (see next figure). 
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The basic idea of logging is that every undoable action must not only do the action but must also 

leave behind a string, crumb or undo log record which allows the operation to be undone.  

Similarly, every redoable action must not only do the operation but must also generate a redo log 

record which allows the operations to be redone.  Based on Hansel and Gretel’s experience, these 

log records should be made out of strong stuff (not something a bird would eat).  In computer 

terms, the records should be kept in stable storage – usually implemented by keeping the records 

on several non-volatile devices, each with independent failure modes.  Occasionally, a stable 

copy of each object should be recorded so that the current state may be reconstructed from the 

old state. 

 

The log records for database operations are very simple.  They have the form: 

 

NAME OF TRANSACTION: 

PREVIOUS LOG RECORD OF THIS TRANSACTION: 

NEXT LOG RECORD OF THIS TRANSACATION: 

TIME: 

TYPE OF OPERATION: 

OBJECT OF OPERATION: 

OLD VALUE: 

NEW VALUE: 

 

The old and new values can be complete copies of the object, but more typically they just encode 

the changed parts of the object.  For example, an update of a field of a record of a file generally 

records the names of the file, record and field along with the old and new field values rather than 

logging the old and new values of the entire file or entire record. 

 

The log records of a transaction are threaded together.  In order to undo a transaction, one undoes 

each action is its log.  This technique may be used both for transaction abort issued by the 

program and for cleaning up after incomplete (uncommitted) transactions in case of a system 

problem such as deadlock or hardware failure. 

 

In the event that the current state of an object is lost, one may reconstruct the current state from 

an old state in stable storage by using the redo log to redo all recent committed actions on the old 

state. 

 

Some actions need not generate log records.  Actions on unprotected objects (e.g. writing on a 

scratch file), and actions which do not change the object state (e.g. reads of the object) need not 

generate log records. 
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Figure  4. Real actions (ones that cannot be undone) must be deferred until commit.  The 

logging approach to this is to apply the redo log of deferred operations as part of 

commit completion. 

 

On the other hand, some actions must initially only generate log records which will be applied at 

transaction commit.  A real action which cannot be undone must be deferred until transaction 

commit.  In a log-based system, such actions are deferred by keeping a redo log of deferred 

operations.  When the transaction successfully commits, the recovery system uses this log to do 

the deferred actions for the first time.  These actions are named (for example by sequence 

number) so that duplicates are discarded and hence the actions are restartable (see below). 

 

Another detail is that the undo and redo operations must be restartable, that is if the operation is 

already undone or redone, the operation should not damage or change the object state.  The need 

for restartability comes from the need to deal with failures during undo and redo processing. 

Restartability is usually accomplished with version numbers (for disc pages) and with sequence 

numbers (for virtual circuits or sessions).  Essentially, the undo or redo operation reads the 

version or sequence number and does nothing if it is the desired number.  Otherwise it 

transforms the object and the sequence number. 
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Figure 5. UNDO and REDO must be restartable, is if the action has already happened, they 

must not alter the object. 

 

In a log-based scheme, transaction commit is signaled by writing the commit record to the log.  

If the transaction has contributed to multiple logs then one must be careful to assure that the 

commit appears either in all logs or in none of the logs.  Multiple logs frequently arise in 

distributed systems since there are generally one or more logs per node.  They also arise in 

central systems. 

 

The simplest strategy to make commit an atomic action is to allow only the active node of the 

transaction to decide to commit or abort (all other participants are slaves and look to the active 

node for the commit or abort decision).  Rosenkranz, Sterns and Lewis describe such a scheme 

[Rosenkranz]. 

 

It is generally desirable to allow each participant in a transaction to unilaterally abort the 

transaction prior to the commit.  If this happens, all other participants must also abort.  The two-

phase commit protocol is intended to minimize the time during which a node is not allowed to 

unilaterally abort a transaction.  It is very similar to the wedding ceremony in which the minister 

asks “Do you?” and the participants say “I do” (or “No way!”) and then the minister says “I now 

pronounce you”, or “The deal is off”.  At commit, the two-phase commit protocol gets agreement 

from each participant that the transaction is prepared to commit.  The participant abdicates the 

right to unilaterally abort once it says “I do” to the prepare request.  If all agree to commit, then 

the commit coordinator broadcasts the commit message.  If unanimous consent is not achieved, 

the transaction aborts.  Many variations on this protocol are known (and probably many more 

will be published). 

 

If transactions run concurrently, one transaction might read the outputs (updates or messages) of 

another transaction.  If the first transaction aborts, then undoing it requires undoing the updates 

or messages read by the second transaction.  This in turn requires undoing the second 
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transaction.  But the second transaction may have already committed and so cannot be undone.  

To prevent this dilemma, real and protected updates (undoable updates) of a transaction must be 

hidden from other transactions until the transaction commits.  To assure that reading two related 

records, or rereading the same record, will give consistent results, one must also stabilize records 

which a transaction reads and keep them constant until the transaction commits.  Otherwise a 

transaction could reread a record and get two different answers [Eswaran]. 

 

There appear to be many ways of achieving this input stability and hiding outputs.  They all seem 

to boil down to the following ideas: 

 

• A transaction has a set of inputs “I”. 

• A transaction has a set of outputs “O”. 

• Other transactions may read “I” but must not read or write “O”. 

 

Some schemes try to guess the input and output sets in advance and do set intersection (or 

predicate intersection) at transaction scheduling time to decide whether this transaction might 

conflict with some already executing transactions.  In such cases, initiation of the new 

transaction is delayed until it does not conflict with any running transaction.  IMS/360 seems to 

have been the first to try this scheme, and it has been widely rediscovered.  It has not been very 

successful.  IMS abandoned predeclaration (called “intent scheduling”) in 1973 [Obermarck]. 

 

A simpler and more efficient scheme is to lock an object when it is accessed.  This technique 

dynamically computes the I and O sets of the transaction.  If the object is already locked, then the 

requestor waits.  Multiple readers can be accommodated by distinguishing two lock modes:  one 

indicating update access and another indicating read access.  Read locks are compatible while 

update locks are not. 

 

An important generalization is to allow locks at multiple granularities.  Some transactions want 

to lock thousands of records while others only want to lock just a few.  A solution is to allow 

transactions to issue a lock as a single predicate which covers exactly the records they want 

locked.  Testing for lock conflict involves evaluation or testing membership in such predicates 

[Eswaran].  This is generally expensive.  A compromise is to pick a fixed set of predicates, 

organize them into a directed acyclic graph and lock from root to leaf.  This is a compromise 

between generality and efficiency [Gray1]. 

 

If a transaction T waits for a transaction T’ which is waiting for T, both transactions will be 

stalled forever in deadlock.  Deadlock is rare, but it must be dealt with.  Deadlock must be 

detected (by timeout or by looking for cycles in the who-waits-for-whom graph), a set of victims 

must be selected and they must be aborted (using the log) and their locks freed [Gray1], [Beeri].  

In practice, waits seem to be rare (one transaction in 1000 [Beeri]) and dead locks seem to be 

miracles.  But it appears that deadlocks per second rise as the square of the degree of 

multiprogramming and as the fourth power of transaction size [Gray3], indicating that deadlocks 

may be a problem in the future as we see large transactions or many concurrent transactions. 
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SUMMARY 
 

The previous sections discussed apparently different approaches to implementing the transaction 

concept:  time-domain addressing and logging.  It was pointed out that to make log operations 

restartable, the object or object fragments are tagged with version numbers.  Hence, most logging 

schemes contain a form of time-domain addressing. 

 

If each log record is given a time stamp, then a log can implement time-domain addressing.  If 

Gretel had written a time on each crumb, then we could find out where they were at a certain 

time by following the crumbs until the desired time interval was encountered.  Logging systems 

write the old value out to the log and so do not really discard old values.  Rather, the log is a 

time-domain addressable version of the state and the disk contains the current version of the 

state. 

 

Time-domain addressing schemes “garbage collect” old versions into something that looks very 

much like a log and they use locks to serialize the update of the object headers [Svobodova]. 

 

I conclude from this that despite the external differences between time domain addressing and 

logging schemes, they are more similar than different in their internal structure.  There appear to 

be difficulties in implementing time-domain addressing.  Arguing by analogy, Dave Reed asserts 

that every locking and logging trick has an analogous trick for time-domain addressing.  If this is 

true, both schemes are viable implementations of transactions. 
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LIMITATIONS OF KNOWN TECHNIQUES 

 

The transaction concept was adopted to ease the programming of certain applications.  Indeed, 

the transaction concept is very effective in areas such as airline reservations, electronic funds 

transfer or car rental.  But each of these applications has simple transactions of short duration. 

 

I see the following difficulties with current transaction models: 

 

1. Transactions cannot be nested inside transactions. 

2. Transactions are assumed to last minutes rather than weeks. 

3. Transactions are not unified with programming language. 

 

 

NESTED TRANSACTIONS 

 

Consider implementing a travel agent system.  A transaction in such a system consists of: 

 

1. Customer calls the travel agent giving destination and travel dates. 

2. Agent negotiates with airlines for flights. 

3. Agent negotiates with car rental companies for cars. 

4. Agent negotiates with hotels for rooms. 

5. Agent receives tickets and reservations. 

6. Agent gives customer tickets and gets credit card number. 

7. Agent bills credit card. 

8. Customer uses tickets. 

 

Not infrequently, the customer cancels the trip and the agent must undo the transaction. 

 

The transaction concept as described thus far crumbles under this example.  Each interaction 

with other organizations is a transaction with that organization.  It is an atomic, consistent, 

durable transformation.  The agent cannot unilaterally abort an interaction after it completes, 

rather the agent must run a compensating transaction to reverse the previous transaction (e.g., 

cancel reservation).  The customer thinks of this whole scenario as a single transaction.  The 

agent views the fine structure of the scenario, treating each step as an action.  The airlines and 

hotels see only individual actions but view them as transactions.  This example makes it clear 

that actions may be transactions at the next lower level of abstraction. 

 

An approach to this problem that seems to offer some help is to view a transaction as a collection 

of: 
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• Actions on unprotected objects. 

• Protected actions which may be undone or redone. 

• Real actions which may be deferred but not undone. 

• Nested transactions which may be undone by invoking compensating transaction. 

 

Nested transactions differ from protected actions because their effects are visible to the outside 

world prior to the commit of the parent transaction. 

 

When a nested transaction is run, it returns as a side effect the name and parameters of the 

compensating transaction for the nested transaction.  This information is kept in a log of the 

parent transaction and is invoked if the parent is undone.  This log needs to be user-visible (part 

of the database) so that the user and application can know what has been done and what needs to 

be done or undone.  In most applications, a transaction already has a compensating transaction so 

generating the compensating transaction (either coding it or invoking it) is not a major 

programming burden.  If all else fails, the compensating transaction might just send a human the 

message “Help, I can’t handle this”. 

 

This may not seem very satisfying, but it is better than the entirely manual process that is in 

common use today.  At least in this proposal, the recovery system keeps track of what the 

transaction has done and what must be done to undo it. 

 

At present, application programmers implement such applications using a technique called a 

“scratchpad” (in IMS) and a “transaction work area” in CICS.  The application programmer 

keeps the transaction state (his own log) as a record in the database.  Each time the transaction 

becomes active, it reads its scratchpad.  This re-establishes the transaction state.  The transaction 

either advances and inserts the new scratchpad in the database or aborts and uses the scratchpad 

as a log of things to undo.  In this instance, the application programmer is implementing nested 

transactions.  It is a general facility that should be included in the host transaction management 

system. 

 

Some argue that nested transactions are not transactions.  They do have some of the transaction 

properties: 

 

 Consistent transformation of the state. 

 Either all actions commit or are undone by compensation. 

 Once committed, cannot be undone. 

 

They use the BEGIN, COMMIT and ABORT verbs.  But they do not have the property of 

atomicity.  Others can see the uncommitted updates of nested transactions.   These updates may 

subsequently be undone by compensation. 
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LONG-LIVED TRANSACATIONS 

 

A second problem with the travel agent example is that transactions are suddenly long-lived.  At 

present, the largest airlines and banks have about 10,000 terminals and about 100 active 

transactions at any instant.  These transactions live for a second or two and are gone forever. 

Now suppose that transactions with lifetimes of a few days or weeks appear.  This is not 

uncommon in applications such as travel, insurance, government, and electronic mail.  There will 

be thousands of concurrent transactions.  At least in database applications, the frequency of 

deadlock goes up with the square of the multiprogramming level and the fourth power of the 

transaction size [Gray3].  You might think this is a good argument against locking and for time-

domain addressing, but time-domain addressing has the same problem. 

 

Again, the solution I see to this problem is to accept a lower degree of consistency [Gray2] so 

that only “active” transactions (ones currently in the process of making changes to the database) 

hold locks.  “Sleeping” transactions (travel arrangements not currently making any updates) will 

not hold any locks.  This will mean that the updates of uncommitted transactions are visible to 

other transactions.  This in turn means that the UNDO and REDO operations of one transaction 

will have to commute with the DO operations of others. (i.e. if transaction T1 updates entity E 

and then T2 updates entity E and then T1 aborts, the update of T2 should not be undone).  If 

some object is only manipulated with additions and subtractions, and if the log records the delta 

rather than the old and new value, then UNDO and REDO, may be made to commute with DO.  

IMS Fast Path uses the fact that plus and minus commute to reduce lock contention.  No one 

knows how far this trick can be generalized. 

 

A minor problem with long-running transactions is that current systems tend to abort them at 

system restart.  When only 100 transactions are active and people are waiting at terminals to 

resubmit them, this is conceivable (but not nice).  When 10,000 transactions are lost at system 

restart, then the old approach of discarding them all at restart is inconceivable.  Active 

transactions may be salvaged across system restarts by using transaction save points: a 

transaction declares a save point and the transaction (program and data) is reset to its most recent 

save point in the event of a system restart. 

 

 

INTEGRATION WITH PROGRAMMING LANGUAGES 
 

How should the transaction concept be reflected in programming languages?  The proposal I 

favor is providing the verbs BEGIN, SAVE, COMMIT and ABORT.  Whenever a new object 

type and its operations are defined, the protected operations on that type must generate undo and 

redo log records as well as acquiring locks if the object is shared.  The type manager must 

provide UNDO and REDO procedures which will accept the log records and reconstruct the old 

and new version of object.  If the operation is real, then the operation must be deferred and the 

log manager must invoke the type manager to actually do the operation at commit time.  If the 

operation is a nested transaction, the operation must put the name of the compensating 

transaction and the input to the compensating transaction in the undo log.  In addition, the type 

manager must participate in system checkpoint and restart or have some other approach to 

handling system failures and media failures. 
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I’m not sure that this idea will work in the general case and whether the concept of transaction 

does actually generalize to non-EDP areas of programming.  The performance of logging may be 

prohibitive.  However, the transaction concept has been very convenient in the database area and 

may be applicable to some parts of programming beyond conventional transaction processing.  

Brian Randell and his group at Newcastle have a proposal in this area [Randell].  The artificial 

intelligence languages such as Interlisp support backtracking and an UNDO-REDO facility.  

Barbara Liskov has been exploring the idea of adding transactions to the language Clu and may 

well discover a new approach. 
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SUMMARY 

 

Transactions are not a new idea; they go back thousands of years.  The idea of a transformation 

being consistent, atomic and durable is simple and convenient.  Many implementation techniques 

are known and we have practical experience with most of them.  However, our concept of 

transaction and the implementation techniques we have are inadequate to the task of many 

applications.  They cannot handle nested transactions, long-lived transactions and they may not 

fit well into conventional programming systems. 

 

We may be seeing the Peter Principle in operation here:  “Every good idea is generalized to its 

level of inapplicability”.  But I believe that the problems I have outlined here (long-lived and 

nested transactions) must be solved. 

 

I am optimistic that the transaction concept provides a convenient abstraction for structuring 

applications.  People implementing such applications are confronted with these problems and 

have adopted expedient solutions.  One contribution of this paper is to abstract these problems 

and to sketch generalizations of techniques in common use which address the problems.  I expect 

that these general techniques will allow both long-lived and nested transactions. 
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