EX1: Search Cost with Index versus Binary Search

Example 1. Suppose that we have an ordered file with r = 300,000 records stored on
a disk with block size B = 4,096 byte5.5 File records are of fixed size and are unspanned,
with record length R = 100 bytes. The blocking factor for the file would be
bfr = L(B!R)J = |_(4,D96;’ IGD)J = 40 records per block. The number of blocks needed
forthe fileis b = r(rf bfrﬂ = |_(3{]0,[}U{};"4{})-| = 7,500 blocks. A binary search on the data
file would need approximately [log, b |=[(log, 7,500) | = 13 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointer
is P = 6 bytes long, and we have constructed a primary index for the file. The size of
each index entry is R; = (9 + 6) = 15 bytes, so the blocking factor for the index is
bfr; = L(B/R))] = |(4,096/15)] = 273 entries per block. The total number of index
entries r; is equal to the number of blocks in the data file, which is 7,500. The number
of index blocks is hence b; = [(r/bfr;) | = [(7,500/273) | = 28 blocks. To perform a
binary search on the index file would need |_(log2 b,-)-| = r(logz 28)-| = 5 block accesses.
To search for a record using the index, we need one additional block access to the data
file for a total of 5 + 1 = 6 block accesses—an improvement over binary search on the
data file, which required 13 disk block accesses. Note that the index with 7,500 entries
of 15 bytes each is rather small (112,500 or 112.5 Kbytes) and would typically be kept
in main memory thus requiring negligible time to search with binary search. In that
case we simply make one block access to retrieve the record.

EX2: Clustering Index Cost

Example 2. Suppose that we consider the same ordered file with r = 300,000
records stored on a disk with block size B = 4,096 bytes. Imagine that it is ordered by
the attribute Zipcode and there are 1,000 zip codes in the file (with an average 300
records per zip code, assuming even distribution across zip codes.) The index in this
case has 1,000 index entries of 11 bytes each (5-byte Zipcode and 6-byte block
pointer) with a blocking factor bfr; = L(BfRf)J —| (4,096/11)] = 372 index entries per
block. The number of index blocks is hence b; = |_(r,-£’ bfr;)-| =[(1,000/372) | = 3 blocks.
To perform a binary search on the index file would need [(log, b;) | =[(log, 3) =2
block accesses. Again, this index would typically be loaded in main memory (occu-
pies 11,000 or 11 Kbytes) and takes negligible time to search in memory. One block
access to the data file would lead to the first record with a given zip code.

EX3: Search Cost with Secondary Index

Example 3. Consider the file of Example 1 with r = 300,000 fixed-length records
of size R = 100 bytes stored on a disk with block size B = 4,096 bytes. The file has
b = 7,500 blocks, as calculated in Example 1. Suppose we want to search for a record
with a specific value for the secondary key—a nonordering key field of the file that is
V = 9 bytes long. Without the secondary index, to do a linear search on the file would
require b/2 = 7,500/2 = 3,750 block accesses on the average. Suppose that we con-
struct a secondary index on that nonordering key field of the file. As in Example 1, a
block pointer is P = 6 bytes long, so each index entry is R; = (9 + 6) = 15 bytes, and the
blocking factor for the index is bfr; = |_(B;r R,-)J = |_(4,D96! IS)J = 273 index entries per
block. In a dense secondary index such as this, the total number of index entries r; is
equal to the number of records in the data file, which is 300,000. The number of blocks
needed for the index is hence b; =[(r;/bfr;) | =[(300,000/273) | = 1,099 blocks.

EX4: Search Cost with Multilevel Index

Example 4. Suppose that the dense secondary index of Example 3 is converted
into a multilevel index. We calculated the index blocking factor bfr; = 273 index
entries per block, which is also the fan-out fo for the multilevel index; the number of
first-level blocks b; = 1,099 blocks was also calculated. The number of second-level
blocks will be b, = r(blf 0) 1 =1(1,099/273) | = 5 blocks, and the number of third-
level blocks will be b3 = {(bzifoﬂ =[(5/273)] = 1 block. Hence, the third level is the
top level of the index, and t = 3. To access a record by searching the multilevel index,
we must access one block at each level plus one block from the data file, so we need
t+1=23+1=4Dblock accesses. Compare this to Example 3, where 12 block accesses
were needed when a single-level index and binary search were used.

