
Systolic (VLSI) Arrays for Relctional Database Operations

H. T. Kung and Philip L. Lohman

Dopartmcnt of Computer Scicnco
Carncgio-Mellon Univorrity

Pittsburgh, Pennsylvania I52 13

Abstract

This paper proposes Ihe u:,c of VLSI tcchnoloSy to

perform relational database opcralions directly in hardware.

It is shown that relational computations, such as intcrscctiorc,

remove-duplicates, union, join, and division, can all be

pipelined elegantly and efficicn!ly on networks of

prdccssors havine an array strurturc. These (systolic)

processor arrays arc readily and COstrcffcctivcly

implementable with prcscnl teclirrolo~,y, due to lhc .cxlrer&

simplicity of their process&s, and the I1izl-i regularity of

th&r intcrconncction structures.

1. Introduction

LSI tcclinology allows tens of thousands of dcviccs to fit

on a single chip; VLSI technology promise: an inc,rca::c of

this’ number by at Icast one or two orders of m.lOnitudc in

the next decade. This paper propores one ~~~li:otl of

exploiting this technology aclv;intc: tlic construction of

special-purpose VLSI chips for relational ciat abase

operations. Thr~? r.prcial-purpor.c chip?. iire to ho at tachcd

to a conventional host computer, or used as a cotnponcnt in

p larger spccinl-purpose syslem, I.LICII as a database

machine. (WC suSSc.st one c~~cl~,clal~basc machine al thE-end

of this paper.)

This research was supported ‘in part by the Dcfensc
Advanced Research Projects A~cncy (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics l.aboratory Unclcr
Contract , F33615-78-C-1551, IllC Nat,ional~ Science

Foundation under Grant MCS 76-236-76; and the 0ffic.e of
Naval Rcscarch under Contracfc N00014-76-C-0370 and
,NOOO14-80-C-0236.

~&ssion to copy without fee all or part of tbii material is granted
provided that the copies are not made or distributed for d&t
comm&at advantage, the ACM copyrisht notice and the title of the
public&ion and its date a$#xw, and notice is given *tit copying is by
p&&n of the, Association for Computing Machmcry. Tt.copy
otherwise, or to republish, quires a fee and/or specific permission.

Q 1980 ACM 0-897914184/80/0500/0105 $00.75

105

In [5] a str.ucture called a systolic array* is proposed for

~implemcntation in VLSI. Those arrays 01 ‘processors have

the followinS dcsirablc properties:

I. They can be designed ancl implcrnentcd with
only a /cw different typco of sin+ cells.

2. ‘The array’s data and control flow is simpfc and
rcptlar, so that cells can be connected by a
network will1 local and rcy.ular intcrconncctions.
Long distance or irrc~,ular c0rnmunicalion is not
nccdod.

3. The array uses cxtcnsivc pipcfiking and
multiprocessint-t. Typically, scvcral data strc,~ms
move at ‘constant velocity. over fixed paths in
the network, interacting whcrc they meet. in

this fashion, a large. proporlion of the
processors in tbc array can ho kept active, so
that the array can sustain a high rate of data
flow.

VLSI designs based on systolic arrays tend to bc simple (a

consequence of property 11, modular (property 2) and of

high performance (property 3) -- for more discussion of the

attroctivcncsc. Of Ill0 systolic array approach, kc [3]. In

the present paper we illustrate the USC of systolic arrays in

performing relational database operations.

In section 2 WC give details conccrninO the notion of

systohc arrays, and present some concrpts and notation for

discussing relational database operations. In sctlion 3, we

describe lhc basic building block of several of our systolic

arrays: a systolic processor array to compare two tuples.

Section 4 includes a dctailrtl systolk cxamplc: an array to

rapidly perform the intcrscction (or diflcrcncc) operation on

two relations. In scciion 5 We use an array irlcnlical to the

intersection/difference array, to remove duplicates from a

collection of tuplcs, and 10 perform lhc operations of union

and projection on relatipns. In sections C and 7 we dctail

relational operations (join and division) that are substantially

different from the interscc!ion-like operations, but still lend

themsclvcs to simple implcmcnlatiorr with systolic arrays.

Section E remarks on some implcmcnlalion and pcrformancc

aspects of the systolic arrays proposed in this paper.

Section 9 discusses the architectural issues of an integrated

system capable of using many types Of systolic arrays.

2. Systolic Arrays and Relational Dztabasc
Co’nsidarations

2.1 Systolic Arrays

Regular geometric structures arc typically used in systolic

arrays. For the present paper WC use predominantly

orthogonally and linearly connected arrays of processors

(both of which are shown in figure 2-11, although

hexagonally connected arrays as in [5] would work as well

in many instances.

Figure 2-1: Orthogonally and linearly
connected processor arrays.

We find that lhesc arrays facilitale many relational database

operations by allowing swift inlcraction among the tuplcs of

two relations, with a set of temporary results also traveling

through ,tho array. Typic ally, 1 hc rclat ions move

top-to-bottom and bottom-to-top, and the temporary results

move left-to-rip,ht. All of the data in the array moves

106

synchronously. As a piece of data passes through a

processor, it may have ::~rne c0rr:putatj0n performed on it;

then it is passed on to tbc next pAoc.cssor. The final results

of the. array are son1 out a side of the array,

2.2 Procckors

Figure 2-2:.Orthogonal and linear processor prototypes.

. .
In figure 2-2 wc show lhc protolypc for the protc5sor

used in the orlhoy,onally or linearly ~onncclcd systolic

structure. The processor has three input tines and three

output lines. For cnch “pulse” of the systolic array, inputs

come in on the input’ lines, and outputs lcavc the processor

on the output lines. In the inlcrvcnin~ time, all of the work ’

(computation) of the processor is performed --. the

processor computes some simple transformation on the data

which it has just received, in preparation for shi(iping it ‘o.ut

at the next pulse. VLSI arrays arc greatly simplified if most

processors in tnc array arc identical. This is lhc case for

the arrays prcscntcd in this paper. Oivcn the orthogondity

or linearly connected array structure, and the processor

protolype d&cribed hcrc, it is Ihe a$orilhm actually

executed by each procc,, ccor 11~1 dctcrmincc tile function of

the array. Thcrcforc, to dcfinc a systolic array to perform

a specific rclalional operation, we specify the algorithm for

the processors in a systolic array. The sections below

consist of such spccificalions and an explanation of how

they actually produce the desired result.

2.3 Reprcscntation of Relations

In the following di&ussion, WC assurnc some familiarity

with the bar&s of relational database theory (see; for

example, (1, 21). A relation is a set of tuplcs. Each tuple

consists of an ordered scquencc of elements. It is these

elements that arc fed through our systolic arriys. The

tuples in a r&ion, howcvc’r; arc not n&s&ily brdbrcd in ,~, -,
any particular fashion. ,+, ,‘i ’ ,; , ,i: ,‘I

. I.-

In a ‘relation, an element can tc of any data type: an

integer, a boolean value, a strins, etc. WC wish to o,ive all of

thcso a uniform rcprcscntation, in order to simplify Ihc

design of systolic arrays to process relations. The

assumption we make is a common one in the implcmcntation

of rela!ional database ‘systems. WC aSSUliSC that the

elements from any particular column- in a relation are

sclectcd only from one underlying clo~n~in. Each member of

the domain is uniquely and rcvcrsahly cncodcd into an

integer. Thcsc integer cncodin, -5 arc the form in which the

elements are stored in Ihc relations, arid llie list of

encodings is storctl separately. Whenever necessary, the

integers arc dccoclcd into the appropriate value; however,

encoding and decoding arc usually only necessary for input

or output: that is, for USC by humans. Most relational

operations are logically the same whcthcr they operate on

integers or, say, strings or calcridar rldtcs. Since -- for our

purioses -- inteecr operations are more convenient, we

assurne that relations arc stored as tuplcs of integers (and

WC arc not concerned with cncocline and decoding).

2.4 Union-Compatibility

Certain relational operation: slIcl1 a5 union ZWI

intersection can only bc performed hetwccn rrlationo that

are uni.on-compntiblo. TWO r&iion’c arc caid to be

union-c0mpatiblc if the following two tondilions hold:

-‘They have the same number of columns (and
thus tuplcs from the two rclalions have the
same number of oitrics).

- Corresponding columns from the two relations
have cnlrics drawn from the same undcrlyin&
dornain.

This definition is an attcrnpt to capture f!ie informal notion

that a tuple from one relation co&d lccolly bc a n~cn&r of

the other m&ion, in that the rcspcctivc columns of the two

relations are dcfincd on the same domains.

2.5 Multi-rdatiohs

A multi-rclotion is an extension Of the concept of a

relation in which cluplicalc luplrr. arc allowed. (This is by

analogy with the term “multi-sct,l(since a klation can be

viewed as a set of ,tuplcs.) This is a nolion that we will find

useful later in the paper. Multi-relations are usually

generatccl as the, intcrmediatc results of relational

opcrationl;. For example, suppor.c WC remove a few columns

from a relation (which is the projection operation). The

intermediate construit WC obtain before WC r&move

duplicate tuples to produce the new (result) relation is a

multi-relation.

2.6 Notation

We briefly summarize the notation used in the remainder

of the paper. Relations and multi-relations arc denotetl by

capital letters: A, 0, C. Tuptes that are mumbcrc of these

are dcnotcd by subscripted lower-case Ictlcrs. The ith

tuple of A is dcnotcd ‘by ai, ,or by ai{A, if we wish to

indicate membership. In turn, elements in tuplcs are

double-subscriptccl: aik is file kth &!llWnf Of o.~, and the

whole tpplc can bc cxhikd as “i 7 <a. c.Jtai,2P.Bain~‘* The

Icttcr n is usually LIVXI’IO drnolc the number of tuplcs in a

relation (the cardinality of the rclalion;sincc a relation is a

set): l/II = n. The letter nr usu~~lly dc5ignatcs lhc number of

elements in P tuplc in the relation in question.

Letter T rcprcscnts a boolcan malrix that contains results

of logical opcralions. The (i,j+Hh entry of T, tii’ is usually

used to dcnolc the result of a comparison between the ith

tuple of a relation and lhc ith tuple of another. Where we

wish to display the formation of tii over time, we use the

notation tk for the result aflcr lh; kth time step; tfyiticrl
and pm1 LJ

ij denote speiific instances (the first and the lait) of

tf, (When no confusion wiH thcrcby rcsu)l, we use the same

Gtation Iii t0 rcfcr t0 tfjfor any k.1 ‘Finally, Ihc notation ti

is used to dc-.ignatc! the result of somr logical operation on

all of the members of the ith row of T, for example, the OR

or AND of ti/~, for all k.

3. Arrays for Tuplc Comparison

In scvcral Of tllc? rclatibnal opcr.3tions tlescribcd below, it

is necessary to test for cqualily hctwccn a pair of tuplcs,

one from each of two relations. (Two tuplcs, ai’A and b,xB,

where A and B arc union-compatible relations or

multi-relations, arc said to be equal if and only if elcmcnt

a& equals dcmcnt hjk for 1 r k I m.) For example, in the

intersection operation, tho intersection of two relations, say

A and B! consists of those tuplcs which are in both A :ind

B..Forming this intersection, then, rcquircs ,many tests for

equality bctwccn fuples, ni (A and 6 rB.
J

In this section, we

first describe a linear syslolic array of processors capable

of performing, one such comparisbn. We then combine many

copies of this basic structure to form a t\rio-dimensional

systolic array that can pipeline many tuple comparisons.

107

3.1 Linear Comparison Array for Performing Ond
fuplt? c omparicon

ai,

\1
a. r2

J
&T

cl--
FINAL

.->
&PUT

Jf

bJJ r r
bj2 ’

T
b

hs

Figure 3-l : Tuple comparison array.

alN b OUT

t
OUT* ’ IN A (?N = blN)

“OUT6 ?N

b cb
OUT IN

-> t OUT

Figure 3-2: Indi,vidual comparison processor.

A tifplc comparison can bc ddnc by Ihc linear array of

processors in Figure 3-1. A sin& processor from the array

is shown in more detail in Figure 3-2. One CM tee that the

procebsor array in Figure 3-1 Is able to ComPulc the /lND of

the comparison results from all of the individual &mcnt

comparisons. More precisely, at each step the kth

processor (from the left) in the array compares .thc, two

etements a& and bjk) and oU!putS 011 itr, OutPut lint touT

the AND of this iomparison rcr.ult with the input to the

processoi on input lint ttN (which is the’ outpui of the

(k-i j5t procc?sr;ot+ Thus, if the input lo the left-most

processor is the value IRUE, then, by induction, after m

time steps the Output at the right-most processor of the

processor array will bc’ a bit indicatin:, whethrr the two

tuplcs arc equal. That is, this output will hc fR(/E if and

only if all of the comparisons of individual clcmcnts

produced TRf./C. (Notice also that if the initial input is

FALSE, then the output at the right side of the, array is

guaranteed to be false. Surprisin$y, this fact will be useful

in later sections Of the paper.)

TO mako this all work, all of the dal.1 must bc in the right

place at the right time. This is why the inputs to the

individual prorer.r.ors arc “!;tay,::ercct” (as thaws by the

“ddnted” input ttrph in ficurc! 3-l) $0 thd dC!mllts a& ad

bjk arrive at the kth &occxor &cl arc compared at the kth

time step. Also at that time ihc IV/D of ihc results of

previous comparisons arrives at the same processor, :o that

it can bc ANDed with the new comparison re:.ult al Ihc

processor.

WC summarize the function Of the lhCiV comparison array

shown in figure 3-l. This array compares two tuplcs

(presumably one from each of Iwo rela!ions), and forms the

result of the compkrison by propaSaiin:: intermediate

versions of that rcr,ult to the right tl,rou:h the array. By

staggering cnirics from the tuplcc one cnn.assuro that the’

output from the right-most proc.cr.sor of the array will be

the result of the equality test on Ihc two tuplcs.

3.2 Two-Dimensional Comparison Array ‘for
.Pipcfining Many Tuple Comparisdns

We concatenate,’ vertically, several of the linear

comparison arrays described above, tQ form a 2-dinicnsional

processor array; as c,hown in Fic,trrc 3..3. This ‘orthogonally

connett6d, 2-?imcnsion.?t processor array can perform many

.tUplc comparisons in parallel. To arcompliih.this, WC fcccl

the relations A and B into the nrrdy, ,froni the top iind

bottom, respec’tivcly.

-WC feed 11% relation:; at timc5 5uch th;It thr
nlcmcnts of any r,ivcn .tuplc, say’ oi, arc
“sf a?,gcrcd,” so ttia! the chcn~ aik cn!crs the
array OIIC time step bcforc the ‘clcmi!ilt ~,i k+l.
This has the cffcct of sta:;gr:rin;:‘thc inpul’s to
each of t,he component lincar arrays, 50 that it
will perform exactly as Ihe single linear array
dcscribcd above.

- WC pipeline tuolcs. in each relation throu;:h the
orthogonal processor array, in such a way that
each tuplc is two steps bchincl Ihc tuplc ihnt
prccccdcd it into the airay. This assures that
any particular pair of tupIc:. ai,cA and b,;B will
evdntu;?Hy cross each otl~cr. IJorc sp’cclficiilly,

108

Figure 3-3: Two-dimensional (orthoson& comparison array.

first Qi 1 will meet bj 1 in the loft:most
process& of tome row in’lhc processor array.
Thcsc Iwo clcmonts will bc compared, and the
result of this comparison will bc /lNl)cd with
Iho initial input to that rnw, of pro(cssors
(TRUE for. our present purposes). At the next
time step, as Ihc tuples ripple throu~,li the
&ray, .clemcnt ai 2 will meet b. 1.2 in the
processor to the ribhI, in the same row. Th&y
will be compared there, and the result of the
comparigon will bc ANDcd with lhe output from
the first processor to produce the output of the
second proccs5or. Proccsr.ing coniinucs in this
fashion, and Ihe inlcrmrdiatc boolean result of
,thc ANDs propazalcs to the righI through that
parlicular row of processors, until -- as
discussed above -- the right-m05t processor
outputs a boolean value that indicates whether
tUplC Qi qquals tUplC bj.

In Figure 3-4, the tij reprcsont intermediate values for

the results of comparing ,tuplcs Oi with tuples 6i (Note that

in the figure, the initial value for t3,3 is just about to cntcr

the processor array.)

3.3 Matrix .Notation

For convenience in discussion, WC cxprcss the results

produced by a compariron array in the form of d matrix

” T, The elements of the matrix are dcfincd as follows:

t ij

1 TRiJE if tfytial=TRUE, and yk=bjk
f6r all lck<=-nr,

FALSE otherwise.

b
11

a
33

r33

b
33

Figure 3-4: Ma moving throu:;h Ihc compcrrison array,

We see that it is these tij that are produced at the

right-most column of the array described in Section 3.2.

In the follov& sections, WC add additional processors

which manipulale these tij’S after tliey leave Ihc comparison

array. These ‘manipulatibns will be shown to produce the

equivalent Of relational operations.

4. Arrays for intarssction --‘A Datakd
Example

In the preceding section, we saw how’ we could use a

systolic comparison array to quickly do pairwise

comparisons on sets of tuples. The results of these

comparisons (tij) are sent out from the right side of the

array. By examining. a particular relational operation,

namely intersection, in some dclail, we illustrate how these.

individual results are combined in applications.

109

4.1 The Intcrscction Operation
.

C=AnB.

Consibsr the operation of finding, Ihc inlerscciiorr of two

union-compatible rclalions

The relation C conr.ists of those tuplcs that arc in both

relation A and relation 13. This is exactly the same a~. finding

thosa luplc~ in A which arc also in l3. Thus WC need only

examine the tuples in A for mcrnbcrship in B. This is the

basis for our “intersection array.” We compare .cach tctplc

ai<A pairwise with each tuple bj<!3. For each ni if ai

matches sonze b. then ai is a member of the intcrscction.
I’

This is where the cotiparison array described in the

preceeding section comes in handy.

Comparison
Array

AccumiMion
Array

ESULTS

Figure 4-l: intcrscctioi) array, co&sling of two moclulcs:
(2-&n) comparkon array on the left, and
(l-dim) accumulation array on the ri$t.

110

The intersection array for p.crforming t,hc intcr:,cction

operation consists of a (two-dimcn:ion;ll) comparkon array

on the loft and a (linear) accumalaiion array on the right

(see fig&e 4-l). The cpmparison array performs

4.2 The Intersection Array

comparisons bctwrcn ttrplcs in A and ti~plcs in B, t0 prodUce

the matrix T, w&ear. lhc acclmrulalion array accumtllater. tij

to form:

ti c ORl<j<n ‘ii. (4.1)

One can easily set ,that a tllple Ri’ A is a mrmhcr of the

intersection, i.e. Oi matches some bJ4R, if and only if ti is

true.

Figure 4-1 ilturlralcs how Ihc intcrcrrtion array ,.

computes the intersection Of IWO 3 x 3 relations.

Processors in the aCCUrrilllatiOi~ arr.ly arc CdliXl aCciimulation

processors; thr?ir function is as fdllows. At c.1c.h time step,

an accumulation processor takes ilr. left itlpui (some tij from

the comparison array), OR’s that with lhc tcp input (some

ii), and passes on ihc rcsull as its output (thr ~rptiidccl Ii) 10

the processor below. More spccificilliy, a ti is fortiicd in the

accumulation array’ in the following manner. First ti 1
,

reaches an accumulation processdr from the comparison

array on the left. At the next time slcp, this value is scnl to

the accumiilation processor below. Durin?7, lhc same tirnc

Step, ti,2 1.. ‘c scnl into that accuiiulation processor iroln :hc

left, and is ORctl with tl,l. Sitnil;:rly, at the next time stop,

the rCsUlt of tlli*. OR is sent tlow ow procc:,zor, and is

ORcd wrih ii 3, which is jllst arrivin:l, from’ the left. In an

implcmcntatidn, the first XCWddtiO~l processor can be

identical in function IO thr other*:, pro~.kk~d WC initiali7c the

value moving=, tl0wrr tliroit;h ilic acc~mitil.3tion array as F&SE

(Lc., li initinL - f&SE; in tlic fi$ikrc, t :‘. i!; ahout to ctitcr the

array wilh its inilial value). Thk v;~l~r: is. 5ucccs!.i\.+/ ORed

with all of the Ii,:, for all k, nncl wiicn it leaves the boltoli> of

the accumUlation.array, it takes on the value ti, spccificd in

equation (4.1). This ti dcsignatcs whelhcr ai is a member of

the. intersection C, and it ipI then a sirriplc matter to.use the

tj’s t0 generate C from A.

At any time step, accumulation procczsors that aren’t

busy (i.e. that have 110 tij comin:: in from tllc kit) simply

pa5s Otl IhC Ii tll;11 IIWY IlklVr:. II I.ll:~S IF.5 illrlll lhc liN~,lh

of the accumulation array to product: a t‘, but diikrcnt ti

arc produced in diffcrcnt r.uh-.lrr,lyr..

4.3 Rcnmrk
”

We have ilhlstr~lr~cl the 1ic.i: of t)lc so-called nrrumulntion

array ‘at the right Of thr! c0lnpMkon array to iiilplclilcnt a

dcsircd relalional operation, llaIiir:ly, ! he inirrscct’ion

operation. In r.cnc?ral, 35 shown in tlbr rc5t of the’ pap’cr,

only simple chnnccs in Ihc accunrul,tlion array or in the

input data arc required to ill:cr t!icb OUtpUt Of Ihe array to

produce other uscfcrl IUnctions. Tllc n\Gi “hardware” -- the

comparison array -- is sufficiently gcncral thaT it need not

be chanecd at al,l.

As an illu~tralion, wc see thdl ilftcr a slight modification

the intcrscction array can bc trsrd to perform tllc d(/~e~cnc~

operation on two relations. l-lx! di/fcrmc, c, of two

union-compatible relations A and B, rlcnotcd C = A - B,

consists of th0r.c tuplcs that 3rc mcriilmx of A, but arc tlot

mcmbcrs of 0. When wc compulr! Ihc intcizcction with Ihc

intcrscction array, wc notice tl1#11 Ii i5 7X/K for any tuplo

ai that kin both A and 13 (i.e., A n E?). WC can al*:0 SCP Ihat

ti is F-/ILSE for any ni lh;lt was in A, lrul /lot in I?, which is

precisely the condition for cii bcine in the di//c:,ozcc.

Thercforc, to form A - B, WE CM usu 1110 inlcr:.cctiorr array,

wilh the modification that the tuplcs in the rcsulling rrlnlion

correspond to tllo5o ti’s whith Rrc F/l/SE, instc.d of TN/E.

(Alternatively, WC COLIM just put an invcrtcr on the output

tine of the ac.cumulation array.)

5. Arrays for Rcmovn! of Duplicate Tup!w

The opcrnlion rcr,rouc-dtcp’ical~~r . . transforms a

multLrclation (drfincd in section 2.!i), A, into a rrlation, A’,

which contains all of the tuplcs in A, crccpt that no tuplc is

duplicated in A’. The systolic array u+rd for inirrscction in

the last section ran 211~0 be u:..cd for the operation

renrove-rlrlplicafcs. Inr.tc,id of rolllp;lrin$ rt:latioli A to

relation r3, WI? tomparr: rcIAtion A to it.wlj; lay IiVilin;, ii into

both the top and botlom of the array. (Notr that A is

union-compatible wilh itself.) I.$ c!oilV:, 7.0, we product a

matrix, T, whose clcmcnts arc:

1 Tli’lIC
I

tij r 1

1 F/lLSC otlicrwisc.

Our strategy for rliminatin :; d~iplicatc tuplrs frbri A is to

rcmovc all tuph that ilrc prc:ct~:rl~rd hy wnoth:r Iupk Ihat

equals it. For cramplc if tuptcr. 05, nfo, and o.73 arc all

equal, then in proclucin~ A’, wc Liish to rcmovc ti,p and n13

from A, Icaving o5 iv A’ (no! ncrcY.arily as 12; bccAur.c, for

example,’ a3 mir,lrt cqilal a.,). In our Matrix nolalion, the

problem is tlrr:li tl1;1t of rct,lovin:; any’ tl.lrJc al, vtl~cro tl;crc

exists a Jij=TNl/K, for jci. Thk i,; rc!uiv;drnt to r..3yinz, tht

WC wish to rc<tnove any ti~plc rorrrrpordih:, to d co::’ in the

matrix T which contains a “TI{f./C” in lhc l~wci trian~lc (Icft

of the main Cfiilf,Oll~l). Wc could find the appr+ri;tk ni 1~)

O&g across CHC~ row of T, a:, far 8:; (but not iiicludiny.) the

main dia::onal. Alt~:rnafivcly, wc (o111d *.r>t NIX! m;lin tli;l::ol;al

and tlic upper tri;lnglc all to I-/1/..5r, m’ flwn td.c tlic OR

across the whole row. Thir. sr:t~~~d <CIIcllii: ic. :vl~nt WC will

do.

For those tii on the maili cliay.onal and in the upper

triangle (i<j), w; set tlVitial
LJ

to I-AI.SE. This implir:~:, that tij

will bc F/lLSE for i::j, Gncc Ihc comp;lri:.on array work:. by

ANDing each individual conlparison result with tlrc current

value of tij. The accumulation processors in the

renrovc-cluplicatcs array act iclcntically to those in the

intersection array. They forni the! OR of each row of the

matrix T. To proclucc A’, WC climinalc from A any row whcrc

the rcsultinp, ti is TRUE, and keep the rest. (This is fhe

opposite of tl~o intcrscctiori opcralion, where WC keep those

rows with TRUE tile

Our rol~ovc-dlrplicnfcs array can br? usc’cl to implcincnt the

followin& relational opcralions:

Union

The union C 5 A u 0 of two lrlriorl-colllpa!iblc relations, A

and B, is the rel,ltion containin?, all tuplcs in ~G~/(IY A or B,

without tluplicalcs. It is strai::l~tforwar.(l lo form A U iI3 by

wpbiw Ill0 rcmouc-clrr fJli’!“lt..~ opCrk\tioii to the

cOncatnn;ltiOn A II3 of A and D:

C 7: rcnlor/c-c/~cplicatc?s(A t l3).

In practice, this rncans that wc fir*;t form the concatenation

of A and B a:. WC retricvc thcrn. We Ihar put tllc

concatenation throup,h both r:idc. 3 Of the rtn:ouc-dtrplicafes

array, and what comes out is a bit-c.trin:, indkatin~, which

tuplc5 of the coricatcnation shoi~ld bc in thr! trnion.

Projection

Tf~c prbjcction opcralion is r.ilni!arly c~r.y, with our

fcnlol/c-drcplicatcs 0pcr;:tion. V/c :.pc2k Of the projection Of

a relation A over a column, or lic.1 01 colun,lns, J (Ll~l:ally, f

is of tljc form “1irr.t COlUIIin, :.c*iOntl Cdul~ill, fiftll COlUhMl,” or

“name coltii8in, snl;lry column, 6 thi’til Cn cOlllh~n.“) l'hc

projccliorl i:; produtcd hy fir-t findin;: for @XII tl.@c oi<A,

the corrcspondin~ (tmallcr) tuplr: fii,p which contains only

those col.umn9 from ai tlkit I~ilvc~ 1k’c.n 5pccificd in / - Ihi:.

can bc done convcnioltly cluritl:: !llc time when the OriGinsI

tuplcs arc . rctriovrtf from stOl,il”L’. LI The cd (if -- a

multi-rc:lation in gcncr;ll -- -of lhr: rc5illling 5tikallcr tiJpli5 is

thcb transformed in10 a relation ’ by rcmovin~ Chpkatc

tupk?s. Tllis it; plcciscly Ihc funclioci pcrforlncd by our

rcnlovc.-r/rf,plict,?Irs arriiy. (Duplic alt*l: my Occur in ,A/ sike

w’c: arc t;,kiny. tl~c pl ojc*c tion Of ic c’cl:ktiOn whirl, ni.;)’ contain

tuplcs illat differ only in colulnn~. thlt srr! nOt in J)

111

6. Arrays for Join

6.1 The Join Operation

We itiustratc the join operation by describing a special

case; tho join over a single column. 111~ more general ca:,e

is sketched later in this scclian. The join, C, of Iwo

relations, A and B, over columns CA and CD rcsprctivcly, is

written C = A JrC,,C,3i B. The join, C, is the set of luplcs,

Ck, such that Ck ., a: 1 b .,
‘ jC,J. i J

VJ~C~Q a;,~* = bj,CB’ for

a$A and bJdB. (For the jdm 9 o be well-ticfined, columns CA

and Cc must be drawn from ihc sarnc unc!crlying dornaiii.)

The orator “I~cA,c.l ” is defined to be the concatenation

of its two arguments, with the cxccption that only one of

aiecA and b SC
Js B

is included in the cor\calcnation.i!

Intuitively, WC check all pairs of tliplrr., ni and bp taken

from relation A and B, r,cspcctivcly. Whcrc Ihoy match in

the columns spccifiod by CA and CD, we concatcn.Itc the

Iwo tuplcs. After removine one of the Iwo matchino, columns

(to eliminate redundancy), we add the concatenation to the

join, relation C.

6.2 The Join Array

We can formuiatc the resulfs of a join again ir, lcrrns of a

matrix. Let the matrix T bc defined as

1 TRUE if 0.C I,
t = I

A = bj,cB

ij
1 FALSE otherwise.

That is, ‘ii is true if and only if (1~ and bj tnatch in the

specified columns.

If we havo th& matrix T, it is ~.lrai~l~lforwarcl lo ecncratc

the relation C. For each tij that 11.1~ tliu val~o TN/E (and for

only those tij), WC simply rclricvc “i and bp ai;d

concatenate Iheni, rcmoying Ihe redundant colunm. The size

of the join, ICI, mip.ht be as IarSc acJ the product IA&3[. (This

happens in the degenerate cake whcrc all tuplcr. in A matih

all tuplcs in 13 in the spccificd tolmnr~~.) tlowcvcr, for most

applicati&ns the number of TRUC ti/s in T is far ICSS than

this product. Thercforc, we can usually gcncratc C fast,

provided we can produce T quickly. A fast way of

producing T is the concern of this r.cction.

t
31

t 32 t
21

t
22

t
II

t
12

t
23

t 13

Figuro 6-I : .loin array.

Consider the linear array of proccsrors in fisurc 6-1. We

use this array to produce the II\aIrix’T. The column CA of

relation A (tolumn 3 in the cxamplc in lhc pichrrcf ir input

to the processor array from ils tpp, and moves down.

Similarly, the column CB Of !3 (colrlrnn 1 ‘in the ‘example) is

sent through the array from I~OttOlX to top. As the two

columns “pa%% through” each olhcr, cac.h Q’,C will meet

each b J, u C B. (WC send the columns throu$ thi a;?rsy in such

a way that c,ach elcmcnt follows its prcdcccssor aflcr two

time steps SO that all pairs Of 0’~
‘1 A

and “j,Cc, meet.) When

Qi,CA meets 1~ .C
JP 0’

a simple colnparisoi>, suffices to dctcrmine

the value al ‘ii.. T~CVZ tij are cbllccted at the right of the

array. (In the fieurc, the ‘ii arc shown coming out from the

array.) Unlike some of the operations discussed earlier,

here Lo are i&crcslcd in the. tij individual!y, and do not

perform further accumulation operations on them.

6.3 General Case 7. Arrays far Division

6.3.1 Join Over More Than One Column

In the fgzncral cast, CA and Cg specify n)orc than one

column. Their specifications are constrained in the following

way:

- the number of columns specified by CA mur,t be
the same as fhat spccificd by Co, and

- the respective columns in lhc specifications
must bc b,lscd on the same underlying domains
(up to a permutation, which can easily be
handled).

Given this, ck (= ai1
F&RI J

6 ,I c C only if a,+-+ = bj,CB,

which means thal tuplc ai must malch tuple bi in’& of the

columns specified by CA and CP; The -concatenation

0pcl;ator “1
(CAJ$

is defined analogously: the

concatenation J’ inclu es only one copy of the columns over

whidh A and B are being joined.

The c.orrcsponding modification to the prockor array in

figure G-1 is timplc. Inr.lcac! Of havine 0w colunin Of

processors in the array, wc have 5e.vcral columns: one for

each relational colutn~r over which A and l3 are to be joined.

Each processor cohlmn is rcsponSible for comparing ni and

bj in come particular column pair, and the rcsult tij is

propagalcd to the right, in csscniially the baiiic w.iy as in

the intcrscction array. When Ihey rcnch Ihc right side of

the prbcessor array, fhc tijs arc used directly, wilhout an

i,ntcrvening accumulation array.

6.3.2 Non-Equi-Join

ihe join operation we have been considering so far in

this section is usually referred to a% the wp.+joitt, since the

‘join is pcrformcd on tuplcs for which Ihr values in.columns

CA equal those in columns CD This notion can be

generalized to allow any sorl of binaiy comparison (e.::. -c, >,

etc.) io be clone between the r&van! columns of the two

tuples.

The processor array lo pcrforln such an operation is easy

to .construct. ‘For greater-than-join, say, processors in fhe

array would simply perform that comparison between CA’

and CB The particular operation, lo bc pcrformcd k&t be

encoded in a few bile, and passed along with thr (1.. and 1. 0
Or, it might be prkondcd info the array of process& This

illustrates that some dccrcc of pro~ramnbilily can often be

piovidod to’ a fkkessor array at Iho expense of additional

IO&.

Division .io en operation bctwccn two relations ,(the

dividend and the divisor) which produces another relation

(the quotient) as its result. The notation

“C - * -f JC&CB) 9” me& that C is the result of dividing A

by B over the columns CA of A and CB of B.

We thpw how to perform Ihc division operation by a

processor array for a reslriclcd case of division: A is a

binary relation and B is a unary relation. Furlhcr, CA and

CB specify only single columns, The exlcnrion from this to

the general cast is straightforward (as in the preceding

section on the join).

Let the dividend A have columns At and /lz and let the

divisor B have column B~,‘nnd Ict /l2 and I31 be dcfipd on

the same underlying domain (which makes their elements

comparable). Then the divide operation C = A f +A31 B

produces a quotient C, having column Cl defined on the

same domain as Al; a value z will appear in Cl if and only if

-the pair (s,y) appears in A for cvcr$ value y appearing in 81

[23. An example of the division operation is shown in figure

7-1.

A C

Figure 7-1: Example of relational division

Cl --
i
Ii

Ovr systolic array for performins relational division

consists of two modules: a dividend array and a divisor

array. Figure 7-2 illustrates how lhc division array works

on the cxamplc given in figure 7-l. The left-hand column of

the two columns of processors in the dividend array stores

(disiinct) clcmcnts appearing in column Iii, one clcmcnt lo a

processor. (These 6lcmcnts -- ii, j, k) for Ihis example --

can be identified by the rer,Iovc-dtcplicnfcs array.) Similarly,

elcmcnts appcarinp, in the divkor RI are prcloadcd into

each row of ‘proccs:,ors in the divkor array. In the figure,

circled clcmcnte rcprcscnl those olcmcnk which are stored

113

DIVIDEND ARRAY DIVISOR ARRAY

j b

f f
i C

. I‘
. C

(elements in A,) l

l

(etcmcnts in AZ)

Figure 7-2: Division array (in opcratiorr).

at processors.

The dividend array comptltcs for each clcmcnt I

appearine in Al the set of ‘y such lhat (r,y)cA. It works as

foltows. We take each pair (r,yPA, and pass it into the

dividend array .from the’bottom; the z into the left column

and y into the right column. At each time step, the .z wilt be

in the same processor as some prcloadrd ctcmcnt J, and the

y will bc’followiny, one step behind it, in the column to the

right. We compare 2 ,to z, and if they match, WC output a

TRUE from the rip,ht..side of the proccwor; Okvrisc, vJ1,c

produce a fALSE. This boolean viltU<! I arrivcas at the

processor in the right column, just a:. the nssociatcd y

arrives there. If t is true, thcn,y is output from the right

side of the processor. Olhcrwisc, some null value is otrtput.

Thus for each I appearin?, in “1, the non-null values,

output from the dividend array at, the row whose left

processor has x stored, arc those y’s such thal (x,y)lA. We

see that if these y’s include all the elonlcnts Tin Bl, then y

belongs to Cl. This is checked by the correspondins row bf

processors, in the divisor ‘array, which takes the y’s as

inputs. More prcciscly, each processor of the row check; if

the clement it is.sloring match 05 any Of Ihc y’s passin: from

left to right alon Ihc row. If every pro&or of the row

finds at Icast one such match (which is chr~kcd hy cloin~ an

AND across tllc row after Ihc dividend passes throu~,h 1ll.e

array), then the y’s contain a, b, c, and d, and thus z bc4on~s

to Cl. This is the essential idea hchind the division array.

One can already see that the clivisiorr array provides the

same kind of rapid computations (rlrin:; simple and re,o.ular

structures) as other arrays discu-.scd carhcr.

,

8. Remarks on fmplmx?ntation and
Performance

During the past year, we have dcrigncd prototypes of

several special-purpose chips al CMIJ. Thusc incluclc a

pattern-maich chip [3], an imp:,,c-prorccsinL>, chip [e], and a

tree processor for database applications [9]. The

pattern-match chip can be viowrd a: ‘a scaled-down version

of the comparic.on array in Section 3. (This chip has been

fabric.atcd, t&cd, an? found to work.) The. following

comments and projections arc based portly on our

experience with the pattern-rnaicll chip.

Iti s~tnc of the schemes prescntrd in this p+er, it is the

case ihat only half of the processors in a systotic array are

busy at any one lime. This inefficiency can bc avoided in

the following implcmcntation: rallier lhan marchine two

relations against each ot:ier along ~IIR systolic, array, we let

only one relation imve while the other remains fixed. Alsc,

for simplicity, we have so far a:.sumctl that processors in

systolic arrays op&alc on words.‘ In implcmcntation, each

word processor can bc parlitioncd into bit processors to

achieve modularity at the I~i~4cv.4. A trar~sformation of a

design from word-love1 !O bit-lcvcl is tlcmorr~fr,~tccl in [3].

In gcncrat, many variations on the r.ysiolic Gray., T ,,c, .5 ‘. CL,pr*p.tCd

are possible. All of thcsc arc cquivalcnl, and cliffcr only in

implcmcntalion dctailr..
,I

Below, we give fiz+ures for a rt!ar.onahle array size for

imptcmcntation. White MJCh an array would ho tnrl!c CnOU$

for many applicalions, il is also possih!c to u5c the array t0

solve problems that will not fit cnlircly 0.n it, This calls for
/

the techniqud of dccomposin:: problems. Tl!c trchniquc is

best illustralcd by a simplr! e~amplc. In the intcrscclion

problem, consiclcr tile malrix, T, of rctult’r. For {I, ‘t,ar,$,’
problem, one c.an simply ‘.. partition this .matrix into

sub-‘problcmr, small enough to fit 011 tiic? array; CX.~ of the%?

114

sub-problems would gcneratc a piccc of the matrix.

lnterscction is one of Ihc most compulationally demanding

relational operations, since it rcquirt>s fit11 tuplc cOmparis0ns

between nlf possible pairs of tuples. VJr cxaminc the speed

with which systolic arrays can perform intcrscction.

We make Ihc following assumptions conc.crniny, the kc of

a typical relation:

- A tuplc is of size 1500 bits (or about 200
characters).

- A relation is of size 10’ tuplcs.

The following (conscrvativc) cstirnatcs arc typical of results

that have been achicvcd wilh present NMOS tcchnoiopy:
.

- A bit-comparator, lhc? fund;rmcntal workhorse
unit of our arrays, if. about 24041 x 150~ in
arca. The comparison is performed (very
conscrvali\ely!) in about 3’30~, including lime
for on-chip and Off-chip d&a transfer.

- With present technolo::y, chips are about
6000~ x 6000/1 in arca. DiviG0n gives us about
1000 bit-compara,tors per cllip. (Notice that
this calc~rlation is realktic only if the cfc~.i~,n is
rcpctitivcly regular, which is the &EC for our
systolic arrays.) WC can a:.:.ttrIIc that nonr ‘of
the comparators on a cllip inc’urs d&y fic~c to
pin limitaiion~; since the time ior a compdrkon

is large rclalivc lo Off-cl+ tran:,fcr lime
(:30rrs), WC can multiple;; about JO bits on a pin
during a sin:,lc comparison.

- It is praclical to construct dcviccs involvin& a
few thousand chips. WC acm~iic 1000 rhips.
This,p,ivcs UT. tho capability of pcrforminc 106
comparisons in parallel.

Based on thcsc assumptions, WC citn inskc Ihr? following

performa& predictions for inlcrscction. The intcrscction

rcquircr a total Of 1.5 x lO’l IJil colnparisons, since WC

need 1500 bit-comparisons for each of the (lO”$ tuplc

comparisons. The time to perform il;tcrsrction, thcreforo, is:

(1.5 x lOI ‘comparkons) x (35Ons / lO‘cor~~p~~ri~.o~~s),

which is ahout 50,rrs. WC brlirvc 111;11 this c5!imtf: is

extrcmcCy ConScrvativc, even with c:tislin:: lcthnolo~,y. If

WC assume inslcad, for cxamplc, 2OOf1.:/tollll.,ariscjn, and

3000 chips, we derive a fisurc of db0ul IOm:.

The proccsGi2 spk~l ob!;~in;lMc from thc:.r: systolic

arrays can keep up wilh the c!a!n r;i!r.‘actlit.S, ‘-‘I ~hlc yith Ihe

fast ma5r. sioragc tlcviccs nv,siM,lr in prcscnl Irchnology.

Fo; exatiiplc, a mc,ving-hcxacl 4c.k. rplalcs at aboul 3600

r.p.m., or aboilt nncc cvcry 17rn.t As+:lliiic that wc ciin rccrd

an cntirc cyl,intlcr in 0nc’ rrvolution, a*. in :mOlliC of the

.propor.f!d cl,ilitha~.c mnclGnr<. (for a survey of these

machines, GCC [4J). This is a rnlc Of Bout 500,000 I>;Gcs in

17ms. In a comparable pc?i-iod of tikc, our systolic array

can process (for examptc, can intcrsecl) two rclalions, each

of about 2 million bytes.

9. Remarks on the Or~anktion of an
Integrated Systolic System

Systolic arrays inlroducccl in preccec!iirg sections are

capable of rapid’proccs5ing of individual rclation;ll dats!)azc

OperalionS. To process ali of fhc operations rcquircd in: a

single transaction or a set of transactions, an ihtcr,rated

system containinK several systolic arrays is nccdcd. Many

strategies are possible for tlic interconnection of the

systolic dcvic.cs. TO dccidc which intcrronncclion slratcsy

to choose, One must consider the sy:,tum rcquircmcnts:

- I~lit-& capacity for data transfer. As dcscribcd in
the last section, it is fcar.ihlc lhnt a r:ystolic

array my process huntlrcds of thousands of
bytes per milliscconcl.

- ‘Flcxibilily and f.cncrality. .Thc rvccution order
Of s)istOtic rlcvicf5 vat ic*s grc.llly Iroil, one
transaction i0 anolhcr irzn~;aclion. Rrlatiota;
may have lo hc doccrmpo*.cd lo fil lhc (fiucd)
tiZIqs of . syr.lolic array:.. lk%lllr. IlTwli

subrelations must bc storrd outsitlc tiic systolic
arrays before Ihcy Xc finil!ly cornl)inccl.

01x organiiation thit scctijr. to watch the. bptcnl

rcquircmcntc. is the crossbar switch in!crc0n~~cttia~~,cl~pictctl

in Figure 9-1. Typically, lhc syr.tc~n works I?:: follows.

Initially, the relevant relalions are read froni diqkr. it30

memories. (Disks with “lo!:ic-per-track” capabililics [S] can

of ,courso bc incorporalckl into the r.ystcrn, ~0 thnt sonic

simple queries ncvcr have to IX! proccssc>tl 0utGd0 the

disks.) Then the crossbar swilrh is confi:,urc4 T.O kt the

relevant mcmorics arc conncclcd lo llic :;y:;tolic iirrily that

will perform the first operation of the Ir.lnsaclion in

question. Thr: cl;114 is pipclinrd froin Ilk: mciliol ir5 throui,h

the switch and through thr: prcccr.r,or array. The output of

the array ir, pipclincd back into anoihrr mumory. This is

repeat& for each t+l~~tional opc~ration .iii thr trni&tion.

Du0 to ttrc crossbar siructurc, r:cvcral opcr.~lion!. may be

run concurrently. The final rc:,ult!; ar0 cventu.+IIy rcturncd

to the dish (or a u%cr?. trrmin~il, or prinlo, clc.) from :hc

memory in which they reside.

In ‘the future, WC plan lo perform a dclailrd analysis and

comparkan of the crossliar schcinr: and of 0ther altkrnative

struclurcs.

115

1 Memory -

czl
Memory -

cl- Memory

. .

Figure 9-t : Systotl. .Ji ‘: system
using crossbar switch.

References

[II

123

D3

141

[53

Codd, E.F.
A Relational Model of Data ior Large Shared Data

Banks.

Comm~o~icatioris of the ACM 13(6h377-387, June,
1970.

Date, C.J.
An Inrroduction to Databnsc Syslons.
Addison-Wcslcy, Rcadmg, Mass., 1977.

Foster, M. J. and Kung, ti.7’.
The Design of Special-qurposc VLSI Chips.
Computer Macazine 13(I)PG-40, J.wtary, 19SO.
*An early version of the papc’r, cntilled “Design of

..Special-Purpose VLSI Chips: Example and
Opinions”, is lo appear in Procccdines o/t/z 7th
Intcnrotiokl Sympositm on Compulo
Rrclzlfcctrtrc, La Baulr, Frantc, May 1980.

Hsiao, D.K.
Dst’abase Computers.
In Yovits, M.C., editor, Admnccs in Comptctcrs, Vol.

19. Academic Press, New York, 19sO.
To appear.

Kung, H.T. and Leincrson, C.2.
Systolic Arrays (for VLSI).

163 Kur$,, H.T. and Sonet SW.
A Systolic Array Chip for the C.orwolution Operator in

imap proaf3sinp
Technic al Report VLSl Documcht VO46,

Carncgic-t&lion University, Ocpartmcnt of
Computer Scicncc, 1980.

c73 Kung, H.T.
Let’s Design Algorithms for VLSI Systems.
In Froc. Co~fcrcncc on Very Larp Scnlc Itltcpation:

Architcc~urc, Dcsigtr. Fnhrication, papp 65-90.
California Instilulc of Technology, January, 1979.

Also available as a CMU Computer Sticntc
Dcpartmcnt technical rcporl, Scptcmbcr 1979.

193

In Duff, I. S. and Sk-wart, G. W., editor, Spar;c /,fotrix
Procccdinp 1974 pap Xt-2Ei2. Society for
hdusfrisl and Applied Mathelwlits, 1979.

A sligldty different vcrsiou appcxs in Introduction

to VLSI Systems by C. A. t&ad and L. A. Conway,
Adtlir.on-Wwlcy, I9I;O, Scciion 8.3;

Slotnick, U.L.
Logic per Track Dcviccs.
In Tou, J., editor, /lrlvnnccs in Contputcrs. Vol. JO,

pages 291-296. Academic Press, P!ew York,
1970.

Song, S.W.
A Database Akchinc with No:4 Spncc Allocation

Algorithms.
Technical Report VLSI Docu~r~cnl VO4?,

Carnqic-Mellon UnivcrGty, Dopartmcnt of
Computer Scicnrc, 1920.

116

