Systolic (VLSI) Arrays for Relstional Database Operations

H. T. Kung and Philip L. Lechman

Department of Compuler Scienco
Carncgio-Mcllon University
Pittsburgh, Pennsylvania 15213

Abstract

This paper proposes the use of VLSI technolopy to
perform relational database operalions directly in hardware.
It is shown that relational compulations, such as intérscction,
remove-duplicates, union, join, and division, can all be

pipelined elegantly and efficiently on networks of

processors having an array structure. These (systolic)

processor arrays are recadily and cosi-effectively

implementable wilh present technology, due to the exireme
simplicity of their processors, and the hish regularity of

fheir interconnection structures.

I. Introduction

LSI technology allows tens of thousands of devices to fit

on a single chip; VLSI technology promises an incrcase of

this number by at lcast one or two orders of magnitude in
the next decade. This paper proposes one method of
exploiting this !ochnology advance: the construction of
special-purpose VLS for

operations. These special-purpose chips are 1o be attached

chips relational database

to a conventional host computer, or used as a component in

a larger special-purpose system, such as a database

machine. (We suggest one such dalabane machine al the end

of this paper.)

This rescarch was supported "in part by the Defense
Advanced Research Projects Azency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory Under
Conlract . F33615-73-C-1551, the Nalional . Science
Foundation under Grant MCS 78-236-76, and the Office - of

Naval Rescarch under Contracls NOG014-76-C-0370 and .

'NODO14-80-C-0236.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. Tg_copy _
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 ACM 0-89791-018-4/80/0500/0105 $00.75

105

In [5] a structure called a systolic zn'rayI is proposed for
implementation in VLSL. These arrays of ‘processors have
the following desirable properties:

.1' They can be designed and implemented with
only a few different types of simple cells.

2. The array’s data and control flow is simple and
repular, so. that cells can be connected by a
network wilh local and regular interconnections.
Long distance or irregular communicalion is not
nceded.

3. The array wuses extensive pipeliring and

multiprocessing. Typically, several data streams

move at ‘constant velocity, over fixed paths in

the network, interacting where they meet. in

this fashion, a large proporlion of the

processors in the array can be kept aclive, so

that the array can sustain a high rate of data

flow.
VLSI designs based on systolic arrays tend to be simple (a
consequence of property 1), modufar (property 2) and of
high performance (property 3) -~ for more discussion of the
attractivencss of the syslolic array approach, see [3) In
the present papcr we illustrate the use of syslolic arrays in
performing relational database operations.

In section 2 we give delails concerning the notion of
systolic arrays, and present some concepts and notation for
discussing rclational database operations. In scclion 3, we
describe the basic building block of several of our systolic
arrays: a syslolic processor array to compare two tuples.
Section 4 includes a detailed systolic example: an array to
rapidly perform the intersection (or difference) Opcréfion on
two relations, In seclion 5 we use an array identical 1o the

intersection/difference array, to remove duplicates from a

Yhe word "syslole” wan borrowed from physiolegists, whe use it o
rofer Yo the rhythmically recurrent conlraclions of the hearl, which pulse
blood through the bady. Tor a systolic areay, the aclion of a coll or
processor is analognus to that of the heart. Ench cell regularly pumps data in
and out {prrforming some short computation before each “contraction™), so
that » regular flow of dala is kegt up in lie network Many wystolic arrays
have benn dngignnd recontly, and are surveyed in [7]

collection of tuples, and to perform lhe operations of union
and projection on relations. In sections 6 and 7 we detail
relational opcrations (join and division) that are substantially
different from the iﬁiei’scciien—iike operations, but siili fend
themselves to simple implementation with systolic arrays,

Section & remarks on some implementation and performance

aspects of the
Section 9 discusses the architectural issues of an integrated

systolic arrays proposed in this paper.

system capable of using many types of systolic arrays.

2. Systolic Arrays and Relational Database
Caonsiderations

2.1 Systolic Arrays

Regular geometric struclures arc {ypically used in systolic
arrays. For lhe present paper we use predominantly
orthogonally and linearly connected arrays of processors
(both of which are shown in figure 2-1), although
.hexagonally connected arrays as in [5] would work as well

in many instances.

(b)

Figure 2-1: Orthogonally and lincarly
connected processor arrays.

We find that these arrays facilitate many relational database
operations by allowing swift inleraclion among the tuples of
two relations, with a set of temporary results also fraveling
through the array. Typically,
top-fo-bottom and boltom-to-fop, and the temporary results
move left-to-right. All of the dala in the array moves

the relations - move

106

any particular fashion, - v

synchronously. As a piece of data passes through a

I} ' «
processor, it may have some compulation performed on it;

“then it is passed on to the next procescor, The final results

ciclo of

of the arrav are sont out a5 the arrav
PSR TSy TS St W T WL W BT rlvlﬂ]-
2.2 Processors
I+ s
— - — -
BRE R
i

(b)

Figure 2-2: Orthogonal and lincar processor prototypes.

In figure 2-2 we show the protolype for the bn."occ';sor
used in the orlhogonally or tincarly connecled s’ys.tblic
structure. The processor has three inpul lines and three
output lines. For cach "pulse” of the syslolic array, inputs
come in on the inpuf lines, and outpuls lcave the processor
on the outpul lines. In the intervening time, all of the work
(computation) of the processor is the

performed
processor computes some simple transformation on the data
which it has just received, in preparation foé”shif:;‘ming it ‘out
at the next pulse. VLSI arrays arc greatly simplified if most
processors in the array are identical. This is the case for
the arrays presenied in this paper. _.Givcn the orthogonally
or linearly connecled array structure, and the processor
protolype described here, it is the algorithm actually
executed by each processor that dotermines the function of
the array. Thercfore, to define a systolic :;'rrn'y to perform
a specific relational operation, we specify the algorithm for
the processors in a sbystolic array. The seclions below
consist of such specifications and an explanation of how
they actually produce the desired result, '

2.3 ’Reprcscn'tatior.u of Relations .

In the following discussion, we ascuine some familiarity
with the basics of relé\ional database theory ({sece; for
example, ‘["l, 2]. A relation is a set of tuples. Each tuple
consists of an ordered sequence of elements. It is these
~ The
arily ordered in

elements that are fed through our systelic array
tuples in a relation, however, are not nocess:

I

In a relation, an element can be of” any data type: an

integer, a boolean value, a string, etc. We wish to give all of

these a uniform representation, in order to simplify the
The
assumption we make is a common one in the implementation
that

elements from any particular column-in a relation are

design of systolic arrays to process relalions.

of relational database "systems. We assume the
selected only from one underlying domain. Each member of
the .domain is uniquely and reversably encoded into "an
integer. Thesc integer encodings are the form in which the
list of

Whenever necessary, the

elements are stored in the relations, and the
encodings is stored separalely.
integers are decoded into the appropriale value; however,
encoding and deccoding arc usually only necessary for input
or output: that is, for use by humans. Most relational
operations are logically the same whether they operate on
integers or, say, strings or calendar dates. Since -- for our
pur;;o-;es -- integer operations are more convenient, we
assume that relations are stored as tuples of integers (and

we are not concerned with encoding and decoding).

2.4 Union-Compatibility

Certain rclational opcrations such as union and
intersection can only be performed between relations that
are union~compatible. Two relations are said to be
union-compaltible if the following two conditions hold:
- They have the same number of columns (and
‘thus tuples from the lwo relations have the

sanic number of entrics).

- Corresponding columns from the two relations
have cntries drawn from the same underlying
dornain.
This definition is an attempt to capture the informal notion
that a tuple from one relation could legolly be @ member of
the other relation, in that the _rcs-pcctiyo columns of the two
relations are defined on the same doriains,

2.5 Multi-relations

A multi—rclﬁtion is an cxtension of the concepl of a
(This is by

since a relation can be

relation in which duplicate tuples are allowed.
analogy with the term "mulli-set,”
viewed as a sct of tuples.) This is a nolion that we will find
hseful later in the 'paper. MLsItifrclatior1s are usually

generated as the. intermediate results of retational

operations. For cxample, suppose we remove a few columins
The
romove

from a rclation (which is the projection opceration).

intermediate construct we obtain before we
duplicate tuples to produce the new {result) relation is a

multi-relation,

107

2.6 Notation

We briefly summarize the notation used in the remainder

of the paper. Relalions and multi-relations are denoted by -

capital letters: A, B, C. Tuples that are membeors of these
The éth

or by e;fA, it we wish to

are denoted by subscripted lower-case letters.

tuple of A is denoted by a;

indicate membership. In turn, elements in tuples are

double-subscripted: e is the kth element of o, and the
The

whole tuple can be exhibited as o; = <a; 1,6; Jpjpm>

letter n is usually used lo denote the number of tuples in a

relation (the cardinality of the relation, since a relation is a
set): |A| = n. The letter m usually designates the number of
elements in a tuple in the relation in question.

Letter T represents a boolean malrix that contains results
of logical operations. The (i,j)-lh entry of T, t;jo is usually
used to denole the result of a comparison belween the ith
tuple of a relation and the jth tuple of another. Where we
wish to display the formation of tii over time, we use the
notation t¥ for the result after the kth time step; tinitial
a’:\d ‘t{j’ml denote specific instances (the first and the last) of
i

1 (When no confusion will thereby resull, we use the same
notation 'U to refer to t:‘jfor any k) Finally, the notation t
is used {o designate the result of some logical operation on
all of the members ot the ith row of T, for example, the OR

or AND of t, for all k.

3. Arrays for Tuple Comparison

In several of the relational operations described below, it
is necessary to test for equality-heh;veen a pair of tuples,
onc from each of two relations. (Two tuples, a;/A and be,
where A and B are
multi-relations, are said {o be equal if and only if element

union-compatible relations or
o, equals element l”jk for 1 £k < m) For example, in the
intersection operation, the intersection of two relations, say
A and B, consists of those tuples which are in both A and
B. Forming this interscdion, then, requires many tests for
equality bctwccr) fuples, a;fA and bJCB. In this section, we
first describe a linear sysiolic array of processors capable
of performing onc such comparison. We then combine many
copies of this basic structure to form a two-dimensional
systolic array that can pipeline mnny tuple comparisons.,

3.1 Linear Comparison Array for Performing Onc
"ruple Comparison

FINAL
TRUE—'} ~= —> —> s
' _ i 3 QUTPUT
oI i
By T 1\
b .
W2 1\
b,"a
Figure 3=1: Tuple comparison array.
aw Bour
four=tin ™ Py ™ By L _ l
\
a a .
our "IN fy —> St
our IN /,\

v

A our by
Figure 3=2: Individual comparison processor.

A tuple comparison can be donc by the lincar array of
processors in Figure 3-1. A single processor from the array
is shown in more detail in Figure 3-2. One can sec that the
processor array in Figure 3-1 Is able to compute the AND of
the comparison results from all of the individual element
comparisons. More preciccly, at each slep the kth
processor (from the Icff) in the array compares -the: two
elemenls a; and bjkv and oulputs on its oulput'lin‘c tout
the AND of this comparicon result with the input to the
processor on input line tyy (which is the oulpul of the

108

(k-1)st processor). Thus, if the input to ‘the left<most
processor is the value TRUE, then, by induclion, after m
time steps the output at the right-most processor of the
processor-array will be* a bit indicating whether the two
tuples arc equal. That is, this output will he TRUE if and
only if all of the comparisons ot
produced TRUE. (Notice also that il the initial input is
FALSE, then the oulput at the right side of the array is
guaranteed to be false. Surprisingly, this fact will be useful

individual eclements

in later sections of the paper.) -

To make this all work, all of the dala must be in the right
place at the right lime.
individual processors

This is why the inputs to the
are “stagnered”. (as

g2

shown by the
"stanted” input Iuplcg in figure 3-1) 50 thal clements oy and
bjk arrive at the kth processor and are compared at the kth
Also at that time the AND of the resulls of
previous comparisons arrives at the same processor, so that

time step.

it can be ANDed with the new comparison result al {he
processor.

We summarize the funclion of the lincar comparison array

shown in figure 3-1. This array compares {wo tuples

(presumably one from each of lwo relalions), and forms the
¥

result of the comparicon by propagaiing intermediate

versions of that result to the right throuzh the array. . By
staggering cntrics from the tuples one can assure that the
output from the right-most processor of the array will be
the resull of the equality test on the two tuples.

3.2 Two-Dimensional Comparison Array for
Pipclining Many Tuple Comparisons

We concalenate, vertically, several of the lincar
comparison arrays described above, tQ form a 2-dimensional
processor array, as shown in Figurc 3-3. This brthogonally
connected, 2-dimensional processor array ¢an porform many

tuple comparisons in parallel. To accomplish .this, we feed

the relations A and Binto the array, from ihe “top and
bottom, respectively. ‘

- We feed the relations al times such that the
cletents of any given tuple, say’ o; are
"staggered,” so that the element ay enters the
array one time slep before the ‘clemant @ kot
This has the effect of stazpering the inpuls to
each of the component lincar arrays, so that it
will perform exactly as the single lincar array

described above.

- We pipeline tuples.in cach relation throuph the
orthogonal processor array, in such a way that
cach tuple is two steps behind the tuple that
preceeded it into the array.” This assures that
any particular pair of tuples e A and b 4B will
eventually cross cach olher. More speifically,

Figure 3-3: Two-dimensional (orthogonal) comparison array.

first a; y will meet b;y in the lcft-most
processor of some row in the processor array.
These two elements will be compared, and the
result of this comparison will be ANDed with
the initial input to thal row of protessors
(TRUE for. our present purposes) At the next
time step, as the tuples ripple through the
array, clement %2 will meet- b;y in the
processor to the righl, in the same row. They
will be compared there, and the result of the
comparison will be ANDed with the output from
the first processer to produce the output of the
second processor. Proceseing condinues in this
fashion, and the inlermediate boolean result of
the ANDs propapates to the right through that
parlicular row of processors, until -- as
discussed above -- the right-most processor
outputs a hoolean value thal indicates whether
tuple ¢; equals tuple bj.

In Figure 3-4, the tij represent intermediate values for
the results of comparing fuples a; with tuples bj. {Note that
in the figure, the initial value for t3,3 is just about to enter
the processor array.)

3.3 Matrix .Notation

For convenience in discussion, we express the resulls
produced by a comparican array in the form of a matrix
T. The elements of the matrix are defined as follows:

if 40442l TRUE, and a;y<b
for all 1sk<m,

TRUE

I
woe
ij =

|

FALSE otherwise.

109

a
33 .

i

...-._>‘ o b > >
12
1K)
5 V]
a1ty Y3ty
—_ b = — b'L...__>
21 i 13
Y
t ot
33 22t 5 '
—> 1 b, [T >
22
\.
\
a
21823 43 tiol
~ b - ~ b >
31 23
\
2t
1
—) — >
32
(I
a
T
b
32

Figure 3=4: Dala moving through the comparison array.

We see that it is these 'ij that are produced at the
right-most column of the array described in Section 3.2,

In the follovu}ing sections, we add additional processors
which manipulate these tij’s after they leave the comparison
array. These manipulations will be shown to produce the
equi.valent of relational operations. '

4, Arrays for Intersection == A Detailad
Example

In the preceding section, we saw how we could use a

systolic comparison array to quickly do - pairwise

comparisons on sets of tuples. The results of these

comparisons (t,;j) are sent out from the right side of the

array. By examining. a particular relational operation,

namely inlerseclion, in some delail, we illustrate how these -

individual results are combined in applications,

4.1 The Interscction Opceration

Consider the operéﬁon of finding the intersection of two
union-compatible relations
C=AnB
The relation C consists of those tuplcs.that are in both
relation A and relation B. This is cxactly the same as finding
those tuples in A which are also in B Thus we need only

examine the tuples in A for membership in B. This is the

basis for our "intersection array." We compare each tuple

For each a; if o;

matches some bj, then o; is a member of the intersection.

This is where the comparison arfay described in the

ai(A pairwise with each tuple ij.B.

preceeding section comes in handy.

4,2 The Intersection Array

Comparison Accuraulation
Array Array
ts
A

T WY s

1 1

"E’> a2) Tar '

:) 1

T Y R

> ERS [y s u:~> t, s

!] 1

RS % S

) ;

‘T:'-‘-* fss] >t :‘{ Y

1 A L—.__ v ,I

B N N

>t P |
1

' A ,] 1

CTE U gE

-l el

3 1

RESULTS

Figure 4-1: Intcrsection array, consisting of two modules:
: {2-dim) compar.son array on the left, and
(1-dim) accurulation array on the right.

The intersection array for performing the intersection

operation consists of a (two-dimensional) comparison array
on the left and a (linear) accurulation array on ihe right

(see figure A-1). The comparicon array performs

110

compatisons belween tuples in A and tuples in B, to produce
the matrix T, whereas the accumulation array 5ccumulate.~: ‘U
to form:

t; = ORlsjsn tij _ {4.1)
One can easily sce ’tlimt a tuple agA is a member of the
intersection, i.c. a; matches sonw bJ«B, if and only if t; is
true.

Figure 4-1 jlluslrales how the interseclion array
3x3

Processors in the accumulation array are called accumulation

computes the intersection of two refations,

processors; their function is as follows. At cach time step,
an accumulation processor takes its lefl input (sorac 'i/' from
the comparison array), OR’s that with the top input (some
ti)’ and passes on lhe resull as ils output (the updaled ii) fo
the processor below. More specifically, a 1; is forracd in the
accumulation array in the following manner. First ti1
reaches an accumulation processor from the comparison
array on the left. At the next time step, this value is sonl to
the accumulation processor below. During the same time
step, ‘5,2 is sent inlo that accurrudation processor from the
left, and is ORed with ‘i,l' Similarly, at the next time step,
the result of this OR is sent down one proceutor, and is
ORed with ‘i,S' which is jui-t arriving from’ the lefl. In an
implementation, the first accuinulation processor can be
identical in function o the others, provided we inilialize the
value moving down through the accumulation array as FALSE
(i.c., 12"“’"” = FALSE; in the figure, 1 is about to enier the
array with its initial value). This valug-is succensively ORcd
with all of the t;j for all k, and when it leaves the boltem of

the accumulation array, it takes on the value t; specified in

-equation (4.1). This t‘? designates whelher o, is a member of

the. intersection C, and it is then a siriple matler {o.use the

t;’s to generale »C from A,

At any time slep, accumulation processors that - arent
busy (i.e. that have no t;; coming in from the loft) simply
pass on the t; that they have. U lakis Iese than the length

of the accumulation array o produce a t, but dificrent t;

arc produced in different sub-arrays.

4.3 Remark

We have illustrated the use of the co-calied accumulation

array ‘at the right of the comparicon array to implement a

desired relational operation, namcly, the inlersection’

operation.
only simple. changes in the accumulation array ‘or in_ the
input data are required to aller the outpul of the array to
produce other useful tunctions. The main "hardware” -~ the
comparison array -- is sufficienlly gencral that it nced not

In general, as shown in tlie rest of the papér, -

be changed at all.

As an iflustration, we see that aftor a slisht modification
the intersection array can be used to perform the difference
The difference, C, of two
union-compatible relalions A and B, tdenoted C=A-B,

operation on two relations.

consists of those tuples that are mombers of A, but are not
members of B. When we compute the intersection with the
intersection array, we notice that {; is TRUL for any tuple
“a; that is in both A and B3 {i.e., AN B). We can aleo see that
t; is FALSE for any e; thal was in A, bul not in B, which is

the condition for «; the

i
Therefore, to form A - B, we can use the inlersection array,

preciscly being in difference.
wilh the modification that the tuples in the resulling relation
which are FAISE, instead of TRUE,

(Alternatively, we could just put an inverter on the output

correspond to those 1%

line of the accumulation array.)

5. Arrays for Remova! of Dunlicate Tuples
Pl f

The

multi-relation (defined in scclion 2.5), A, into a relation, A,

operation remove-duplicates transforins a

‘which contains all of the tuples in A, cxcept that no tuplc is
duplicated in A°. The systolic array ured for inlerseclion in

the last section can also be used for the eperation

A to
relation I3, we compare relation A to itself, by ferding it into
(Note that A s

By deing so, we produce a

remove-duplicates. Inslead of comparing relation
both the top and bollom of the array.
union-compaliblc wilh itself.)

matrix, T, whose clements arc:

TRUE it (1L TRUE, and oa .
for all lzkeim,

|
|
t.. =
ij

|

FALSE othorwise.

Our strategy for climinating duplicate tuples from A is to
temove all tuples that are prececdnd by another tuple that
equals it. For example if tuples ag, ayg and o3 are all
equal, then in producing A°, we wish 1o remove dyo and ayy
from A, leaving ag in A’ (not necessarily as oy because, for
example, ay might equal e). In our malrix notation, the
problem is U‘u:n'll'ml of removing nny'luplcr a, where there

exists a .tijnTRl/[f, for j=i. This is cauivalent to saying that

we wish to remove any tuple correaponding to a row in the

matrix T which contains a "TRUL" in the lower trianzle (left
of the main diagonal). We could find the appropriate a; by
Oﬁ;i‘ng across cach row of 7, a4 far as {(but nol incdluding) the
maiﬁ diagonal. I\ltm'nnl'ivcly, wo could wrl the main diagonal
all to FALSE, ond then fake the OR

Thin necand scheme is what we will

and the upper triangle
across the whole row,
do.

111

For those t;; on the main diagonal and in the upper
triangle (i<), we sct t;;?‘“"” to FALSE. This implics that t;
will be FALSE for izj, since the comparinon array works by
ANDing each individual comparison result wilth the current
The

array act idcnficaily to those in the

value of t; accurulation processors -in the

i
renzouc~tlupli:atcs
intersection array. They form the OR of cach row of the
matrix T. To produce A’, we climinale f_rorh A any row where
(This is the
opposite of the intersection operation, where we keep those

rows with TRUE t,).

the resulting t; is TRUE, and heep the rest.

following relational operalions:

Union

The union C = A U B of two union-compatible relations, A
and B, is the relation containing all tuples in either A or B,
without duplicales.
applying
concatenation A+B of A and I:

Hoie straiohlforward 1o form AV B by

the remove-duplicates operation to the
C = removec-duplicates(A + B).

In practice, this cans that we first form the concatenation

of A and B a-

concatenation through both sided of the removc-duplicates

we retrieve them. We thon put the
array, and what comes out is a bit-string, indicating which

tuples of the concatenation should be in the union.

Projection

The projeclion operalion is similarly casy, with our
rcnzor/c-clupl.icah:'s operation. We wpeak of the projection of
a relation A over a coluran, or list of columns, £ (Usually, [
is of the form “firsl column, secand caluan, fifth column,” or
"name coluin, salary column, children colimn.) The

projection is produced by first finding for cach tuple a;tA,

_the corresponding {(smaller) tuple @ f wh‘ich contains only

those columns from a; thal liave been specilied in f - this
can be done conveniontly during e time when the original
tuples arc retrieved from storagze. The sct A.f -- a
multi-relation in general == of the reculling smaller tuples is
then transformed into a relation” by removing duplicate
tuples. This is precisely the funclion performed by our.
remove-duplicates arvay. (Duplicales way occur in ,l\f since
we ;sl;t: taking the projection of 4 relation which may contain

tublcs that differ only in columns that are not in f)

6. Arrays for Join

6.1 The Join Qpcration

We illustrate the join operation by describing a special
case: the join over a single column, The more peoneral case
is sketched later in this soction. The join, C, of two
relaﬁ'ons, A and B, over columns Cp and Cp, respectively, is
writfen C=A J{CA'CB} B. The join, C, is the sct of tuples,
ep such that ¢ = a; »"C

\ bj, where a‘;'CA = bj’CB' for

) nCp e
o,‘:(A and‘ble. (For the jgi’nQO be well-defined, (plumns CA

and Cg must be drawn from the same underlying domain.)

The operator "} “ is defined to be the concatenation

of its two argumé};t—g? with the exception that only one of
o . tan 2
%.Ch and b/'CB is included in the concalenation.

Intuitively, we check all pairs of tuples, e; and bj, taken
from relation A and B, respectively. Where thay match in
the columns specified by CA and Cp, we concatenate the
two tuples. After removing one of the two malching columns
(to eliminate redundancy), we add the concalenation to the

join, relation C.

6.2 The Join Array

We can formuiate the results of a join again i, terms of a
matrix. Let the matrix T be defined as
| TRUE if ai»CA = bj'CB

FALSE otherwise.

That i5. t‘j
specified columns.,

If we have the malrix T, it is straighlforward to gencrate

the relation C. For cach ‘ij that has the value TRUE (and for .

only those tU i and

concatenate them, removing the redundant coluwn, The size

), we simply relricve o; and b

of the join, [C|, might be as large as the product JA|IBl. (This
-happens in the degenerate case where all tuples in A match
all tuples in B in the specified columns} However, for most
applicalidns the number of TRUE tje in T is far less than
this product. Therefore, we can usually generatec C fast,
provfded we can produce T quickly, A fast way of

producing T is the concern of this section,

2Ac\ua\|y, authors differ ao to whelher ihe redundant column appears: in
the join. For oxample, Date [2] includen ity but Conld's original paper [1] omits
it. .

is true if and only if a; and bj match in the

112

—>

‘15;3)51“?
1{.1
> Yy
T
Eabaz"”> Yar,
21
v
| t32 121
v
aa:ﬁaa > to t
a4
vI
>ty 12
3
[1 t
"
o
—> ',
vT
an:;:)m"""'
51

Figure 6-1: Join array,

Consider the linear array of processors in fisure 6-1. We
use this array to produce the matrix T, Thc_cpiumn Cp of
relation A (column 3 in the example in the picture) is input
to the processor array from its top, and movcs down.
Similarly, the cojumn Cp of B {colurn 1 .in the ‘example) is
sent through the array from botlori to top. As the {wo

columns "pass through™ each olher, cnc.h‘ai,CA will meet -

each b j'CB' {We send the columns through tihe array in such
a way that cach eloement follown its predecessor afler two

time steps so that all pairs of and bj.CB meet.) When

4Cp,
“},CA meets bj’CB’ a simple comp.?ru:.on‘_ suffices to ﬁetornm»ne
the value of t,:j.. These tij are colected at the right of the

array. (In the figure, the ‘ij arc shown coming out from the -

array.) Unlike some of the operalions dis-cus:-cﬁ earlier, .
here we are inleresled in the L j individually, and do not ..

perform further accurulation operations on them.

6.3 General Case

6.3.1 Joi_n Over More Than One Column

In the general case, Cp and Cy cpecily more than one
column. Their specifications are constrained in the folléwing
way:

- the number of columns specificd by CA riust be
the same as that specified by CB, and

- the respective columns in the specifications
must be based on the same underlying domains
(up to a poermutation, which can casily be
handled). '

this, i Ca, mb) /'CB
which means thal tuplc a must malch tuple b in‘all of the

Given e (=a; C only if Q‘CA

colurans spocmcd by CA and Cg. The concatcnahon

"I, " s the
X

concatenalion mcluJes only one copy -of the columns over

which A and B are being joined.

operator defined analogously:

The corresponding modification to the proccssor array in

figure 6-1 is simple. Instcad of having one column of

processors in the array, we have several columns: one for
each relational column over which A and B zre to be joined.
Each processor column is responsible for comparing a; and
b
J
propagaled to the righl, in cssentially the same way as

in some particular column pair, and the result t . s

the interscction array. When lhey reach the right side of
the processor array, the 1L-j‘s are used direclly, wilhout an

intervening accumulation array.

6.3.2 Non-Equi~Join

The join operation we have becn considering 6 far in
this section is usually referred to as the equi-join, since the
"join is performed on tuples for which the values in.columns
' This
generalized to allow any sort of binary comparison (e.g. <, >,

Ca cquol those in columns Cp notion can be
etc.) fo be done between the relevant columns of the two
tuples. - '

The processor array {o perform such an operation is casy

to construct; For greater-than-join, say, processors in the

array would simply perform that comparison belween Cp

and Cg. The particular operation to be performed might be

encoded in a few bils, and passed along with the a; ; and | iy
This

that some degree of programabilily can often be

ij
Or, it might be prclondcd into the array of processors

illus trales
provided to a processor array at thc expense of additional
logic.

7. Arrays for Division

Division
dividend and the divisor) which produces another rclation
(the The notation
"C=A tiCpCal B means that C is the result of dividing A
by B over the columns Cp of A and Cgof B,

an opcration between two relations (the

15

quotient) as its result.

We
processor array for a resiricled case of division:

show how to perform the division operation by a
Ais a
binary relation and B is a unary rclation. Furiher, CA and
Cg specify only single columns, The exlension from this to
the gencral case is straightforward (as in the preceding
seclion on the join). '

Let the dividend A have columns Ay and Ay and let the
divisor B have column 8y, and let Ay and B} be defined on
the same underlying domain (which makes their elements

fAZ'B.l B
a quotient C, having column Cj defincd on the

comparable). Then the divide operation C = A
produces

same domain as A}; a value x will appear in C; if and only if

»the pair (x,y) appears in A for cvery value y appearing in By

113

[2) An example of the division operation is shown in figure

7-1.

AlAjl A2 BB C|Cy
i a v a = — i .
i la b
L b c k
ilb d
ifc
I e
k|a
itd
v b
ke
k| d

Figure 7-1: Example of relational division
Our ystolic array *for performing relational division

cons Ms of two modules: a dividend array and a divisor
array. Figure 7-2 illustrates how the division array works
on the example given in figure 7-1. The left-hand column of -
the two calumns of processors in ‘the dividend array stores
(disfinct) elements appearing in column Aj, one clement to a
processor. (These elements -- {i, j, k} for this example --
can be identified by the remove-duplicates array.) Similarly,
elements appearing in the divicor B) are preloaded into
each row of processors in the divisor array.

represent those clements which are stored

In the figure,

circled elements

DIVIDEND ARRAY DIVISOR ARRAY

r)
1 i e ——
' 1 3) O .
oy Ny IRCE NG I
v |
' |
1 '
: :Dk —>1 __:.>® __>® .._;;c _.>®
P A |
1 '
]] . >

Q) C K§
| CREN b > _->F’) ENONNNY)
1 ,}\ l)
NP/ . S S e mm e e —————

i

(elements in Al) .

(elements in AZ)

Figure 7-2: Division array (in operation).
at processors.

The dividend array computes for each clement x
appearing in A] the set of 'y such that (x,y}A
follows,

It works as
We take each pair {(z,9}A, and pass it into the
dividend array .from the “bottom; the z into the left column
-and y into the right coluran. At cach time step, the z will be
in the same processor as some preloaded clement x, and the
y will bc'following one slep behind ity in the column o the
right. We compare z to x, and if they match, we output a
TRUE from the right_side of the processor; otherwise, we
produce a FALSE. This
processor in the right column, just as the associaled y
arrives Iftis

side of the processor. Otherwise, some null valuc is output.

boolean value ¢ arrives at the

there. true, then y is output from the right

Thus for each xz appearing in A the non-null values,
output from the dividend array at the row whose loft

processor has z stored, arc those y's such thal (xy» A We

114

see that if these y's include all the elements in By, then «
belongs to C). This is checked by the corresponding row of
processors, in the divisor "array, which lakes the y's as
inputs. More precisely, each processor of the row checks if
the element it is-storing matche

left to right along the row,

s any of lthe y’s passing from
If every processor of the row
finds at Ieast one such match (which is checked by doing an
AND acrass the row after the dividend passes through the
array), then the y's contain a, b, ¢, and d, and thus x belongs
to Cl'

One can already sece thal the division array provides the

This is the essential idea hehind {he division array.

same kind of rapid compulations (using sirple and regular

structures) as other arrays discussed carlier,

8. Rcmarks on Implementation und
Pcrformanco

During the past year, we have designed prototypes of
special-purpose chips al CMU. These include a
pattern- ~malch chip [3}, an imago- processing chip [6], and a

tree processar for

several
database applications [9] ~ The
pattern-match chip can be viewcd as 'a scaled-down version
of the comparison array in Section 3.
tested,
and projections

(This chip has been

fabricated, and found to work) The- following

partly on our

comments arc based

experience with the pallern-match chip.

In some of the schemes presented in this paper, it is the

case {hat only half of the pfoc_ns.sor:, ina :.yf.’toﬁc array are’

busy at any one lfime. This incfficiency can be avoided in

the following implementation: rathier lhan marching two
relations against each other along thn systolic array, we let
only one relation move while the other remains fixed. Alsc,
for simplicify, we have so far- assumed that processors in

systolic arrays operale on words. In implementation, each

word processor can be parlilioned inlo bit proccssars to

achieve modularity at the I)Ji't-lcve! A transformation of a
design from word-level to bnt Iovol is dr-monrh.ucd in [3}
In gencral, many variations on the ry»iohc arrays ug;{_r.:ried
are possible. All of thcﬁo are r:quwcdcnl, and differ only in

implementalion details.

Below, we give fisures for a rc'afbnahle ar rdy m:e for

implementation. While ¢ such an array would he larye cnou\,n

for many applicalions, il is also ponmh!o to use the array to

solve problems ihat will not fit cnhrcly on it Thig cails for

the technique of decomposing prob.cu--' Thc \o(hmquc is

best illusiraled by a simple mmmp!n In thc m!cr ochon

problem, consider the malrix, T, of rus sults. . For] Iarwe

problem, one can siply "'p:urtitidn lhl“ matnx mto

sub:probicms small enough to fit on the array; cach of theco

sub-problems would generate a picce of the matrix.

Interscoction is one of the most compulationally demanding
relational 6peraiiom, since it requires full tuple comparisons
between all possible pairs of tuples. We ecxamine the speed
with which systolic arrays can perform intersection.

We make the following assumptions concerning the size of

a typical relation:

- A tuple is of size 1500 bits (or about 200
characters).

- A relation is of size 108 tuples.

The following (cOn:.crvaﬁvo).cslirnatos are typical of resulls
that have been achieved with present NMOS technolozy:

- A bit-comparator, the fundamental workhorse
unit of our arrays, is about 240u x 150p in
area. The comparison is performed (very
conservatively!) in about 3%0ns, including time
for on-chip and off-chip data transfer,

- With present technology, chips are about
6000u x 60004 in arca. Division gives us about
1000 bit-comparators per chip. (Notice that
this calculation is realistic only if the desipn is
repetitively regular, which is the case for our
systolic arrays.) We can assume that nonc ‘of
the comparators on a chip incurs delay due to
pin limitalions; since the tirae for a compartson
is large rclalive lo off-chip tranuler lime
(z30ns), we can multiplex about 10 bits on a pin
during a single comparison.

- It is praclical to construct devices involving a
fow thousand chips. We assume 1000 chips,
This gives us the capability of performing 10V
comparisons in parallel,
Based on these assumptlions, we can make the following
performance predictions for inlersection. The infersection
requires a lotal of 15 x 10“ hit comparisons, since we
need 1500 bit-comparisons for cach of the (10%2 tuple
comparisons, The time {o perform interceclion, therefore, is:
(1.5 x 10! lcomparisons) x (350ns / 10%comparisons), .
thal

extremely conservalive, even with cxisling {echnolog, It

/e

which is about 50ms. We believe this estimate s
we assume inslcad, for example, 200nsfcomparison, and

3600 chips, we derive a figure of about 10ms.

The processing speed obltainable from thewe systolic
arrays can hoeop up with the dala rale achicvable with the
fast mass slorage devices available in present lechnology.
For example, a moving-head dickh rolales at aboul 3600
r.p.m, or aboul once every J7ms. Awsume thal we con read
an cntire cylinder in one revolution, an in vome of the
machines (for a survey of these

proposed database

machincs, sce [4)). This is a rate of about 00,000 byles in

115

17ms. In a comparable period of time, our systolic -array
can process {for example, can intersecl) two relations, each

of about 2 million byles.

9. Remarks on the Organization of an
Integrated Systolic Sysiom

Systolic arrays inlroduced in preceeding seclions are
capable of rapid processing of individual relational database
operalions. To process ali of the opcrafions required in: a
single transaction or a sel of transadionﬁ, an integrated
system coﬁtaining several systolic arrays i needed. Many
strategies are possible for the inlerconnection of the
systolic devices. To decide which interconneclion sirategy
to choose, ong must consider the s.y.',lém-roquircmcnts:

- High capacity for data transier. As described in
the last. section, it is feasible that a systolic

array may process hundreds: of thousands of
byles per millisccond.

- Flexibilily and penerality. The execution order
of systolic devices vatins greally from one
transaction 1o another {ransaction. Relations
may have lo be decomponed o il the (fixed)
sizes . of syslolic arrayr. Resulls from
subrelations must be stored outside the systolic
arrays before they are finally combined.

Onc organiZation that cecme to match the, system
requirements is the crossbar swilch interconnection depictod
in Figurc 9-1. Typically, the sysicm works as follows.
Initially, the relevant relalions are read from dishs into
memorics, (Disks with "logi(-pci"frack" capabilitios {8 can
of course be incorporated into the system, o thal some
simple queries never have fo be processed outside the
disks.) Then the crosshar swilch is confisured so that the
relevant memories are connccled lo the systolic array that
will perform the first operation of the lransaclion in
questibn. Thee dala is pipelined frop the memories through
the swilch and through the proccszer array. The output of
the array is pipclined back inlo ancther memory. This is
repeated for cach relational oporation in the transaction.
Due to the crossbar structure, several operalions may be
run concurrently. The final results are eventually returned
to the disk {(or a user’s terminal, or printer, clc.) from ithe

memory in which they reside.

In the future, we plan to perform a delailed analysis and
camparisan of the crossbar scheme and of other alternative

structures.

Memory D ()..__—Q)-___.____,C)
L Mcrory - (L) (b . &)
Memory -Cp ﬁ) —(13 D

. C
—{Memory QP—P @D)
Inter- i I User
secl Je /0

0B Q0B

Figura 9=1: Systoh. e ® system
using crossbar switch,

References

[1] Codd, EF.

A Relational Model of Data for Large Shared Data ‘

Banks.

Communications of the ACM 13(6):377-387, June,
1970,

[2] Date, C.l.
’ An Introduction to Databasc Systems.
Addison-Wesley, Reading, Mass., 1977,

[3} Foster, M. J. and Kung, H.T. _
The Design of Special-Purpose VLST Chips. |
Computer Megazine 13(1):26-40, January, 1930.
An early version of the papcr, entitled "Design of
_Special-Purpose VLSI Chips: bxample and

Opinions”, is to appcar in Froceedings of the 7th

International Symposium on Computer
Architecture, La Baule, France, May 1950,

“[4] Hsiao, D.K.
. Database Computers.
In Yoviis, M.C, editor, Advances in Computers, Vol
_ 19. Academic Press, New York, 1980.
To appear.

5] Kung, H.T. and Leiserson, CE.
Systolic Arrays (for VLSI).

{63

(71

(el

{3

In Buff, 1. S. and Stewart, G. W, editor, Sparse Matrix
Froceedings 1978, pagoes 2")6 282. Society for
Industrial and Applied Mathematics, 1979,

A slighlty different version appears in Innoduc'non
to VLST Systems by C, A. Mead and L. A. Conway,
Addison-Wesley, 1980, Scclion 8.3,

Kunp, H.T. and Song, SW. ’ :

A Systolic Array CGhip for the Conwolution Operetor in
unapc prom*.tsum

Technical Report VLS Docureit V0A6,
Carncgie-Mellon University, Department of
Computer Science, 1980,

Kung, H.T. -

Let’s Design Algorithms for VLSI Systems.

In Proc. Confecreacc on Very Large Scale Intepration:
" Architecture, Design, Fabricotion, pages 65-90.
California Institute of Technology, January, 1979,

Also available as a CMU Computer Science
Department technical report, September 1979,

Slotaick, D.L.

Logic per Track Devices.

In Tou, [, editor, Advances in Computers, Vol. 10,
pages 291-296. Academic Press, New York,
1970.

Song, S.W.

A Database Machine with Nouel Space Allocauon
Algorithms.

Technical Report VLS] Document V04‘2,
Carncgic-Mellon University, Departimont of
Computer Scicnce, 1980.

