

CS44800 Project 2

Buffer Manager

Total Points: 7 points

Learning Objectives

1. Understand the design and architecture of lower-level database systems components.

2. Implement the buffer manager component in a simplified database system.

3. Implement a replacement policy for the buffer management layer.

Project Description

The goal of this project is to implement a simplified version of a Buffer Manager layer, without

support of concurrency control or recovery. For this assignment you will be given the code for

the lower layer (which is the Disk Manager layer).

This project is based on Minibase, a small relational DBMS, structured in several layers in order

to allow a modular, abstract approach to implementing a DBMS. This approach allows for ease

of implementation, as no layer relies on any specific implementation of any lower layer – they

only have to make the appropriate calls to functions defined in an API.

In this project, you will be implementing one of the lower levels of a DBMS: the Buffer Manager

level that is responsible for bringing pages into and out of main memory from the disk. The

actual disk access functionality is already implemented for you in the Disk Manager layer of

Minibase - the source files for the Disk Manager are included in the diskmgr package if you

would like to investigate them, but this is not necessary in order to complete this project. Do not

make any changes to the diskmgr package.

You should begin by reading Section 16.3 from Chapter 16 (Disk Storage, Basic File

Structure, Hashing, and Modern Storage Architecture) on the Textbook (Fundamentals of

Database Systems by Elmasri & Navathe, 7th Edition) to get an overview of the buffer

manager. This material will be covered in class and during the PSO sessions. In addition, a

conceptual overview of Minibase is available here and the Java documentation of the classes is

available in here.

This handout first provides a description of the Minibase components you will be working with.

The actual requirements you need to complete are described in the “Buffer Manager Interface”

section of this handout.

Due: February 15, 2023, 11:59PM

Spring 2023

http://www.cs.wisc.edu/coral/minibase/minibase.html
https://www.cs.purdue.edu/homes/bb/cs448f19/minibase/

Buffer Manager Components

The Buffer Manager consists of several data structures that are used to manage and track pages

in-memory:

Buffer Pool: The Frame Pool is an array of Page objects, defined in the skeleton code as

bufPool. This array consists of n elements, where n is a parameter defined at the creation of the

database (in this case, 100). This is where the contents of pages are actually stored while they are

resident in memory. A Page object is essentially an array of bytes. Minibase provides methods to

read and write datatypes to the pages – you should not have to change the actual contents of any

Page within your Buffer Manager implementation, but you can see these methods used in the test

cases.

More information about using the Page and PageId classes are given later in this handout. and

are also available in the Javadocs linked above.

Frame Descriptors: An array of FrameDescriptor objects, defined in the skeleton code as

frmDescr. This is also an array consisting of n elements, where each element in frmDescr

corresponds to an element in bufPool. A FrameDescriptor tracks information about the contents

of each frame:

• the ID of the Page stored in the frame (-1 if no Page is stored in that frame),

• the pin count of a frame, and

• the dirty bit (true if the page has been written to since being brought into memory, false

otherwise).

Hash Table: A Java HashTable with key=PageID and value=FrameNumber, defined in the

skeleton code as pageMap. This hash table associates a Page with the Frame that the page is

stored in. If the page is not present in memory, then the hash table should not contain an entry for

the Page. This HashTable allows the Buffer Manager to quickly determine whether a page needs

to be brought into memory or which frame that page is stored in otherwise.

Replacement Policy: The Buffer Manager will need to implement a replacement policy in order

to manage bringing pages into and out of memory. If the Buffer Pool is full when a page needs to

be brought into memory, the Replacement Policy will be used to select the appropriate unpinned

page to evict. In this project, we ask you to implement a FIFO replacement policy, and you may

use the fifo Queue object to manage this. A further description of the structure of how it is used

in the implementation, is given in the “Replacement Policy” section in this handout.

Page Representation

A database reads data from disk in units called blocks rather than read one byte at a time. This

improves the efficiency of I/O operations to and from the disk. In Minibase, this data is stored in

Pages, where a page is the same size as a block that is read from disk.

The Page object in-memory is not the same as a Page stored on disk. It is only a container for the

byte data stored in that page. All pages are identified by a PageId – a globally unique value

generated by Minibase when pages are allocated. This PageId is what Minibase uses to actually

access pages from the disk – a call to the Disk Manager is made to read or write the page with

the given PageId, and then the DiskManager will either read or write data from/to the provided

Page object.

PageId:

The PageId class contains an integer “pid” field that stores the page ID. You can change or set

this value directly in order to set a PageId to the appropriate page. This is essentially a wrapped

for the primitive integer value of pid.

Page:

Although you should not have to manipulate any data in pages directly within your code, you

will have to set the value of Page reference parameters in the pinPage() and newPage() methods.

You can use the ".setPage(Page aPage)” method to set the data in the calling page to point to the

provided aPage’s data. Refer to the Javadocs for documentation of the method(s).

The Disk Manager

The Disk Manager provides methods that handle allocation of new pages on disk, reading pages,

and writing pages. The Disk Manager stores certain data – such as the map of

allocated/unallocated space on disk – in pages itself. It will use the Buffer Manager to manage

these pages and bring them into and out of memory as necessary.

The different modules of the DBMS are implemented in Minibase as static instances. In order to

call the Disk Manager, you need to access this instance as follows:

Minibase.DiskManager.<method_to_call>()

where <method_to_call> is whichever method you are trying to execute.

Several methods are provided to enable you to use the Disk Manager. The methods you will need

to use are as follows:

void read_page(PageId pageno, Page apage)

Reads the page denoted by the pageno PageId from disk and stores the contents of the page

in the apage parameter.

void write_page(PageId pageno, Page apage)

Writes the contents of the Page apage to the page denoted by the pageno PageId

PageId allocate_page(int run_size)

Allocates a contiguous run of pages of size run_size on disk and returns the PageId of the

first page in that run.

void deallocate_page(PageId start_page, int run_size)

Deallocates a run of pages on disk of size run_size, starting with the PageId start_page.

void deallocate_page(PageId pageno)

Deallocates a single page.

The Buffer Manager Interface

The simplified Buffer Manager interface that you will implement in this assignment allows a

client (a higher-level program that calls the Buffer Manager) to allocate/de-allocate pages on

disk, to bring a disk page into the buffer pool and pin it, and to unpin a page in the buffer pool.

Some methods of the Buffer Manager are already provided to you. You must implement the

following methods:

void pinPage(PageId pageno, Page page, boolean emptyPage)

The pinPage() method attempts to pin the requested page. The emptyPage parameter is

not used for this assignment and can be ignored. This procedure follows several steps:

• Determine if the page is already present in memory.

If it is already in memory, all that needs to be done is to increase the pin count.

Also, consider that if the pinCount of the page was 0 before the call, the page was

a replacement candidate, but is no longer a candidate to be evicted. If the page is

not in memory, we need to bring the page into memory and proceed to the next

step.

• Determine an appropriate frame to store the new page in.

If there is an unoccupied frame in the Buffer Pool, choose that to store the page

in. Use the disk manager to read the page into the frame and update the

FrameDescriptor for that frame with the appropriate PageID and PinCount.

If no unoccupied frame exists, use the page replacement policy to select a victim

frame to evict from the Buffer Pool. If the page has been modified (its dirty bit is

set to true), use the Disk Manager to write the page to disk. Then use the Disk

Manager to read in the new page into the victim frame and update the Frame

Descriptor accordingly.

• If no appropriate frame can be found (i.e. all pages in the Buffer Pool are pinned)

then throw a BufferPoolExceededException

• After reading the page into the frame, set the page argument to the frame the

requested page was stored in

void unpinPage(PageId pageno, boolean dirty)

The unpinPage() method attempts to unpin the requested page, and sets the dirty bit if

necessary. This procedure follows several steps:

• Determine which frame the page is stored in.

Use the Hash Table to look up which frame the requested page is stored in. If the

page is not found, throw a PageNotFoundException.

• Decrement the PinCount.

If the PinCount is already 0 before this method is called, you should instead throw

a PageUnpinnedException

• If the “dirty” parameter is true, set the dirty bit of the FrameDescriptor to

true.

The dirty bit records whether a page has been modified since it was brought into

memory – if a previously dirty page gets unpinned with another call to unpinPage

but with “false” for the dirty parameter, the dirty bit should not be changed.

PageId newPage(Page firstPage, int howMany)

The newPage() method attempts to allocate howMany pages following the next steps:

• Attempt to allocate the pages.

Attempt to allocate howMany pages in a consecutive run of pages on disk by

calling the appropriate DiskManager method.

• Pin the page.

The newPage() method will then attempt to pin the first page of the run into the

Page specified by the firstPage parameter.

• If the run of pages is successfully allocated but is unable to be pinned (due to the

buffer pool being full) then the pages should be deallocated using the

DiskManager before throwing an exception.

void freePage(PageId pageno)

The freePage() method attempts to remove a page completely from disk, as long as the

page is not pinned in the Buffer Pool. The following workflow will be helpful:

• Determine if the page qualifies to be released

If the pageno is in the Buffer Pool and pinned (i.e. pinCount greater than 0), it

cannot be removed. Hence, throw a PagePinnedException.

• Remove the page from the Hash Table

Opposite to the previous case, pageno is in the Buffer Pool but not pinned. Then,

it is safe to remove this page. Therefore, you can remove the page from the Buffer

Pool – remember to reset the frame descriptor.

• Deallocate page by calling the appropriate method from the DiskManager.

If the operation cannot be successfully completed, raise a DiskMgrException.

Replacement Policy

You are asked to implement a FIFO replacement policy in order to determine which pages

should be evicted when bringing new pages into memory if the Buffer Pool is full. A Queue

data-structure fifo is defined for you to use to implement this. Pages should be inserted into the

FIFO queue in the order that they become unpinned, and if pages currently in the queue become

pinned then they should be removed from the queue.

A simplification of the fifo policy is already provided in the skeleton code. The queue is basically

used to indicate which frames are available for use (not pinned). Then, in the constructor of the

class BufMgr all the frames are inserted in the queue, which means that all frames are available

for use. The fifo queue is implemented using the LinkedList class. Hence, methods to remove or

retrieve specific item (identified by the index) are available for your use. Feel free to follow this

approach or implement you own approach for the fifo queue overriding the code in the

constructor method.

Exception Handling

All exceptions mentioned in the project requirements should be thrown according to the

specifications.

Calls to the Disk Manager methods will also generate exceptions if errors occur. Some of these

exceptions may be generated as a result of failures from the calls the Disk Manager makes to the

Buffer Manager to manage its data pages and will result in a BufMgrException. Any such

BufMgrException generated by the Disk Manager should be caught and thrown as a

DiskMgrException. All other exceptions generated by the Disk Manager should be able to be

thrown directly.

Testing/Running the Program

Due to the nature of the Minibase implementation of the Buffer Manager and Disk Manager, all

required Buffer Manager methods must be implemented in order to properly test your

implementation.

A JUnit Test Suite has been provided to enable you to test the functionality of your program.

These tests will be used during grading. In order to compile your Minibase implementation, run

the following command from the terminal on the university machines in the top-level directory

of your program:

mvn clean compile assembly:single

If your implementation is successfully compiled, then run the following command to execute the

test cases provided using run the following command:

mvn test

We can only offer support for compiling and running this from the terminal on the university

machines. You may use your personal machine or an IDE to help with development for this

project, but please make sure your implementation can run on the university machines with the

provided configuration.

We cannot help with setting up an IDE to run the program properly – you will have to be

familiar with setting the paths to the necessary libraries from within your IDE. Further, this code

is not directly compatible with Windows systems – if you wish to run this on a Windows system,

you will have to edit some commands in the test cases that are used to clean up the database files

after running.

Debugging Tips

A large portion of the challenge of this project comes from debugging issues with the Buffer

Manager. Since the Disk Manager relies on a fully functional Buffer Manager in order to work

correctly, this can make debugging individual methods of the Buffer Manager a challenge.

Often, you will need to run through the code line-by-line to identify where problems occur. You

may use an IDE with debugging functionality or GDB through the command line. Including print

statements in your code is helpful as well. You may edit the test cases to include print statements

in them as well.

One thing not immediately obvious from the code that can be helpful to know with debugging is

that the Disk Manager itself will allocate some pages for its own use in order to track where

pages are allocated on disk. With the default parameters used in this project, it should allocate 3

pages for its own use, with PageIDs 0, 1 and 2. Therefore, whenever new pages are allocated or

pinned in the test cases, the first page that should be allocated for actual data pages is a page with

PageId 3. If your test cases are showing that you’re accessing one of these three Disk Manager

pages, then there is a problem with your implementation that is preventing the Disk Manager

from properly tracking the allocation of pages on-disk – you should make sure to go look in

detail into the Buffer Manager methods to ensure that pages are properly being stored in the

frames in the buffer pool.

What to Turn in

1. The BufMgr.java file. If you need to create helper classes or any additional class, create

those as inner classes inside this file. No additional file should be submitted.

This file should be submitted on Brightspace.

