

CS44800 Project 4

Concurrency Control & Recovery

Total Points:8 points

Learning Objectives

1. Understand how concurrent transactions are handle by a DBMS

2. Understand how to prevent deadlocks and ways to handle them in a DBMS.

Background

When multiple transactions are executing in a database environment simultaneously, it is important

to guarantee that each transaction executes correctly without interfering with the execution of any

other transaction. If two transactions are trying to simultaneously read and write on the same data

item, it is possible for race conditions to occur or other concurrency synchronization issues that will

result in an inconsistent database state.

One intuitive way to ensure consistency is through locking. An appropriate locking protocol such as

Two-Phase Locking (2PL) ensures that no transaction can access records in a way that would result

in an inconsistent state, while still allowing for a concurrent, non-serial execution of transactions.

Please refer to Chapter 21 (Concurrency Control Techniques) in the Textbook (Fundamentals of

Database Systems by Elmasri & Navathe, 7th Edition) for more information about 2PL protocol or

the readings in the Course Website.

In this Project, you will be asked to implement:

1. A locking protocol using a lock table.

2. A log of all uncommitted transactions, recording operations the transaction has performed.

3. Deadlock detection and handling.

You will implement all of this in the executeSchedule() method in the CC.java file. The

executeSchedule() method should return the state of the database after executing a schedule of

transactions (as an array of integers) and should print the generated log to the console. You may

implement whichever helper methods or additional code you need to satisfy these requirements, but

you must complete this method. The rest of this handout specifies in detail how to implement the

requested functionality.

Spring 2023

Due: April 12, 2023, 11:59PM

Part 1: Locking Protocol

You will be given a schedule of operations for multiple transactions that will be executed

concurrently. The syntax for this will be as follows:

<TransactionID>:<Operation>

The supported <Operation> are one of the following:

• W(<RecordID>,<Value>)

• R(<RecordID>)

• C

where:

W is the “Write” operation, which will write the given value to the given record, denoted by

RecordID.

R is the “Read” operation, which will read the value from the given record.

C will commit the transaction, making all operations of the transaction permanent. After a

commit operation finishes, you must ensure that all locks on a transaction are released.

You will be provided a List of Strings, where each String is a schedule for one transaction. All

entries for the schedule of operations will be separated by a single semicolon. All data values will

be integers, and the database will consist of 10 records, with record IDs ranging from 0 to 9 and

initial values for each record being the same as the record ID. No insertion or deletion operations

will be done, only updates.

Example:
W(1,5);R(2);W(2,3);R(1);C

R(1);W(1,2);C

Where, each line is one transaction: T1 and T2. The transaction ID (e.g. T1) will be given by the

position (or index) in the list .For example, the first transaction in the list will be T1, then T2, and

so on. Refer to the CC.java for further explanation.

You must implement the 2PL locking protocol using shared and exclusive locks. You will maintain

a lock table, recording the lock state of each record. The operations are as follows

• Read: When a read operation is encountered, attempt to acquire a Shared Lock on that

record. A Shared Lock can be acquired only if there is not already an Exclusive Lock on

that record from another transaction. If the current transaction already has either a

Shared or Exclusive lock on that record, no lock needs to be acquired.

Read the value of that record.

• Write: When a write operation is encountered, attempt to acquire an Exclusive Lock on

that record. An Exclusive Lock can be acquired only if there is no other lock on that

record from another transaction. If the current transaction already has an Exclusive Lock

on that record, no lock needs to be acquired. If the current transaction already has a

Shared Lock (and no other transaction has any other locks) you will upgrade the Shared

Lock to an Exclusive lock. Store the new value in that record.

• Commit: When a commit operation is encountered, release all locks owned by that

transaction.

To execute a schedule of transactions, execute operations one at a time in a round robin fashion. For

example, for a schedule of three transactions, execute the first operation from Transaction 1; then

the first from Transaction 2, then the first from Transaction 3, then the second from Transaction 1,

and so on. Attempt to acquire a lock before executing each operation – if a lock cannot be acquired,

then have that transaction wait and proceed with the next transaction. Check to see if the lock can

be acquired the next time you process that transaction during the round-robin.

Example:
T1:W(1,5);C

T2:R(9);R(7);C

T3:R(1);C

The final ordering of operations in the schedule will be:
T1:W(1,5);T2:R(9);T1:C;T2:R(7);T3:R(1);T2:C;T3:C

Part 2: System Log

You will maintain a log of uncommitted operations performed during the current run of the

database transactions. For the purposes of this assignment, this does not have to be persistent

across different executions of the database as we do not have to worry about transaction

recovery. You may simply store this in-memory as a List and print the system log after

processing the schedule. This log will allow transactions to be safely rolled back if they need to be

aborted.

When a Write operation occurs, store the following information:

• Timestamp (this can simply be a counter starting at 0, that can be incremented for each

log entry)

• The Transaction ID

• The Record ID

• The old value stored in that record

• The new value stored in that record

• The timestamp of the previous log entry for this transaction (this will be useful for

commit/rollback). For the first entry for a transaction, store -1 in this value in the log.

If you have implemented this log as a list, note that this timestamp is equivalent to the

index of the previous operation in the log in that list.

When a Read operation occurs, store the following information:

• Timestamp

• The Transaction ID

• The Record ID

• The value read from the database

• The timestamp of the previous log entry for this transaction

When a Commit operation occurs, store the following information:

• Timestamp (this can simply be a counter starting at 0, that can be incremented for each

log entry)

• The Transaction ID

• The timestamp of the previous log entry for this transaction

It is also recommended that for each transaction you maintain a pointer to the most recent log entry

for that transaction (again, this will be useful for commit/rollback).

Note that you should add entries to the log only as they are successfully completed, not when they

are encountered in the schedule. If an operation must wait for a lock, then do not add it to the log

until the operation actually executes.

An example log for the following schedule generated from the first example:

T1:W(1,5);T1:R(2);T1:W(2,3);T1:R(1);T1:C; T2:R(1);T2:W(1,2);T2:C;

W:0,T1,1,1,5,-1

R:1,T1,2,2,0

W:2,T1,2,2,3,1

R:3,T1,1,5,2

C:4,T1,3

R:5,T2,1,5,-1

W:6,T2,1,5,2,5

C:7,T2,6

At the end of the executeSchedule() method, you must print the contents of the log to the

console. The log must follow the format described in this handout.

Part 3: Deadlock Detection/Handling

You will handle deadlocks by constructing a wait-for graph and detecting cycles in the graph. If a

cycle is detected, you will resolve the deadlock by picking a transaction to abort, rolling back any

changes that transaction has made, and release all its locks.

To construct a wait-for graph, create one node for each transaction. Whenever a transaction X

must wait for a lock held by another transaction Y, draw a directed edge from X to Y.

In order to detect deadlocks, run a graph search algorithm such as DFS to detect if a cycle exists in

the graph. If a cycle does exist, then the nodes that form that cycle are in a deadlocked state.

There are several approaches that can be taken in order to resolve deadlocks. For this project, we

will always abort the transaction with the lowest priority. We can determine priority based on

the timestamp of when a transaction entered the system – the older a transaction is, the higher its

priority.

For this project, the Transaction ID can be thought of as equivalent to this transaction – a higher

transaction ID means the transaction has entered the system at a later time. Therefore, abort the

transaction in the deadlock with the highest transaction ID (T1 < T2 < T3 <…).

In order to perform this abort, first add an Abort entry to the transaction log. This should be similar

to the Commit entry, except that it should denote an Abort. Example:

A:7,T2,6

would denote that at time 7 we are initiating an abort of Transaction 2.

Before resolve any deadlock, find all the cycles in the wait-for graph. Then, choose the

conflicting transaction with the lowest priority and add the abort entry to the log (as described

above). Next, rollback all changes the transaction has made to the database state. This can be

done by tracing back through the log entries, starting from the most recent. For each Write entry

encountered, restore the state of the database before that operation (using the old value stored in the

log).

Note that since we only release locks once a transaction is completely finished, we will never have

to worry about cascading aborts from other transactions that might have read this updated value as

it is not possible for another transaction to read uncommitted data.

Finally, remove the aborted transaction from the wait-for graph and see if a deadlock still

exists. If it does, repeat the process until no deadlock remains.

You do not have to re-execute the transaction after it has been aborted. Simply proceed with the

round-robin execution as normal.

For example, assume that we have the following schedule of transactions:

T1: R(1);W(2,1);C

T2: R(2);R(3);W(1,2);C

T3: R(1);W(3,3);C

Ordering of the operations (round-robin):

T1:R(1);T2:R(2);T3:R(1);T1:W(2,1);T2:R(3);T3:W(3,3);T1:C;T2:W(1,2);

T3:C;T2:C

The wait-for graph after T2:W(1,2) will be:

At this point, we have two cycles. The transaction with the lowest priority is T3. Hence, T3 is

selected to be aborted. After rollback all operations of T3, we still have another cycle. Therefore,

T2 is selected to be aborted.

Testing/Running the Program

Although in practice concurrency control usually implies parallel execution of transactions, please

implement the entirety of this project (execution of transactions, deadlock detection, transaction

logging) in a single-threaded architecture. This ensures that the results will be deterministic and

makes it easier to code and debug.

You must be able to handle an arbitrary number of transactions in a schedule, not just two.

The main method of the project and all transactions are in Project.java. In order to compile your

Concurrency Control implementation, run the following command from the terminal on the

university machines in the top-level directory of your program:

mvn clean compile assembly:single

If your implementation is successfully compiled, to verify the correctness of your implementation,

then run the following command to execute the testcases provided using run the following

command:

mvn test

The testcases suite that is provided in the skeleton code and the output (system log) of your

implementation will be used for grading the Project.

As usual, remember to run this command from the parent project directory.

What to Turn in

1. The CC.java file. If you need to create helper classes or any additional class, create those as

inner classes inside this file. No additional file should be submitted

 This file should be submitted on Brightspace.

	Learning Objectives
	Background
	Part 1: Locking Protocol
	Part 2: System Log
	Part 3: Deadlock Detection/Handling
	Testing/Running the Program
	What to Turn in

