11.2 A SIMPLE TRANSACTION MODEL 379

Fig. 11.5. Graph of precedences among transactions.

LOCK A
UNLOCK A
LOCK A
time UNLOCK A
| "LOCK B
UNLOCK B
LOCK B
UNLOCK B
Ty T - T3

Fig. 11.6. A serializable schedule.

arc from Ty to T3. Steps (6) and (7) cause us to place an arc Ty —T5,. As there
is a cycle, the schedule of Fig. 11.4 is not serializable. []

Example 11.7: In Fig. 11.6 we see a schedule for three transactions, and Fig.
11.7 shows its precedence graph. As there are no cycles, the schedule of Fig.
11.6 is serializable, and Algorithm 11.1 tells us that the serial order is T3, T3,
T;. 1t is interesting to note that in the serial order, Ty precedes T3, even though
in Fig. 11.6, Ty did not commence until 75 had finished. (1

Theorem 11.1: Algorithm 11.1 correctly determines if a schedule is serializable.

Proof': Suppose the precedence graph G has no cycles. Consider the sequence
of transactions 75,, T;,, - . ., T}, that in the schedule S lock and unlock item A,
in that order. Then in G there are arcs Ty, —T;,— - -—T5,, so the transactions
must appear in this order in the constructed serial schedule. As no other
transaction locks A, it is easy to check that the value of A after executing S
is the same as in the serial schedule constructed by Algorithm 11.1. Since the
above holds for any item A, it follows that S is equivalent to the constructed
serial schedule, so S is serializable.

Conversely, suppose G has a cycle Ty, —Tj,— - -—T;,—Ty,. Let there be
a serial schedule R equivalent to S, and suppose that in R, T}, appears first



380 CONCURRENT OPERATIONS ON THE DATABAgy

Fig. 11.7. Precedence graph for Fig. 11.6.

among the transactions in the cycle. Let the arc T; _, —=T; (take 751 to be
g¢ if p = 1) be in G because of item A. Then in R, since T}, appears before
Tj,_., the final formula for A applies a function f associated with some LOCK
A—UNLOCK A pair in Tj, before applying some function g associated with 4
LOCK A—UNLOCK A pairin Tj,_,. In §, however, T;,_, precedes T , since
there is an arc Tj,_, —Tj,. Therefore, in S, g is applied before f. Thus the fing)
value of A differs in R and S, in the sense that the two formulas are not the
same, and we conclude that R and S are not equivalent. Thus S is equavalent
to no serial schedule. []

A Protocol that Guarantees Serializability

We shall give a simple protocol with the property that any collection of transac.
tions obeying the protocol cannot have a legal, nonserializable schedule. More-
over, this protocol is, in a sense to be discussed subsequently, the best that can
be formulated. The protocol is, simply, to require that in any transaction, all
locks precede all unlocks.t Transactions obeying this protocol are said to be
two-phase; the first phase is the locking phase and the second the unlocking
phase. For example, in Fig. 11.3, Ty and T3 are two-phase; T3 is not,.

iTheorem 11.2: If S is any schedule of two-phase transactions, then S is serializ-
able.

Proof': Suppose not. Then by Theorem 11.1, the precedence graph G for S has
a cycle, Ty, —T;,—- - -—T;,—T;,. Then some lock by T;, follows an unlock by
T;,; some lock by T, follows an unlock by T},, and so on. Finally, some lock
by T;, follows an unlock by T;,. Therefore, a lock of T;, follows an unlock of
T;,, contradicting the assumptlon that Tj, is two-phase. [

Another way to see why two-phase transactions must be serializable is to
imagine that a two-phase transaction occurs instantaneously at the moment it
obtains the last of its locks. Then the order in which the transactions reach this
point must be a serial schedule equivalent to the given schedule. For if in the
given schedule, transaction T locks A before T% does, then Ty surely obtains
the last of its locks before T does.

We mentioned that the two-phase protocol in is a sense the best that can
be done. Precisely, what we can show is that if 7 is any transaction that is
not two phase, then there is some other transaction 73 with which 73 could be
+ To avoid deadlock, the locks could be made according to a fixed linear order of the items.

However, we do not deal with deadlock here, and some other method could also be used to
avoid deadlock.




11.2 A SIMPLE TRANSACTION MODEL 381

LOCK A

UNLOCK A
LOCK A
LOCK B
UNLOCK A
UNLOCK B

LOCK B

UNLOCK B

T3 T

Fig. 11.8. A nonserializable schedule.

run in a nonserializable schedule. Suppose T} is not two phase. Then there is
some step UNLOCK A of T; that precedes a step LOCK B. Let T3 be:

T: LOCK A: LOCK B; UNLOCK A; UNLOCK B

Then the schedule of Fig. 11.8 is easily seen to be nonserjalizable, since the
treatment of A requires that Ty precede T3, while the treatment of B requires
the opposite. .

Note that there are particular collections of transactions, not all two-phase,
that yield only serial schedules. We shall consider an important example of
such a collection in Section 11.5. However, since it is normal not to know the
set of all transactions that could ever be executed concurrently with a given
transaction, we are usually forced to require all transactions to be two-phase.

11.3 A MODEL WITH READ- AND WRITE-LOCKS

In Section 11.2 we assumed that every time a transaction locked an item it
changed that item. In practice, many times a transaction needs only to obtain
the value of the item and is guaranteed not to change that value. If we
distinguish between a read-only access and a read-write access, we can develop 2



