Building a User-Interface for the O-Raid Database System
using the Suite System*

Teresa L. Nixon

Kara Lubenow

Jagannathan Srinivasan

Prasun Dewan Bharat Bhargava

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Abstract

0-Ul, the graphical interface to the O-Raid dis-
tributed object-oriented database system, supporis ac-
cess and direct manipulation of relations and objects.
Since O-Raid supports a hybrid object-relation data
model, an evolutionary approach to design was re-
quired. The use of Suile user interface consiruction
tool led to rapid prototyping of the interface, which al-
lowed us o experiment with the interface ilself, leading
to modifications and refinements to the initial design.
In this paper, we describe how O-UI was engineered
using Suile, present our experiences, and discuss the
relaled software integration issues.

1 Introduction

The designers of software systems are often faced
with requirements that cannot be met by existing sys-
tems, which leads to development of new systems. To
some extent this process is natural as current systems
cannot be expected to meet the needs of all the future
applications. However, building a system from scratch
is a time consuming effort that involves manpower and
computing resources. An alternate approach is to get
the required functionality by integrating already built
systems. This approach has many benefits. Specifi-
cally,

e Rapid Prototyping: The resulting system can pos-
sibly be built much faster than starting from
scratch.

o High Reusability: The resources such as software
and technology can be reused.

*This research is supported in part by a grant from AIR-
MICS, a National Science Foundation grant, and by a grant
from General Electric.

0-8186-2697-6/92 $03.00 © 1992 IEEE

248

o Increased Functionality: The resulting system can
not only meet the desired requirements but in
addition can inherit additional features from the
systems being integrated.

The task of system integration is difficult for many
reasons. Systems may be heterogeneous and can differ
in the software, interfaces and data models that they
use. The systems may also run on different platforms
(varying in operating systems, hardware, etc.). The
system support documents generally do not contain
information such as low level system design to aid the
task of system integration.

Despite these drawbacks, system integration is a vi-
able approach for building systems with greater func-
tionality. Integration of heterogeneous database sys-
tems [SL90] is becoming a reality. To help the process
of integration many standards are being developed.

A process similar to system integration is engi-
neering a system by using an existing software tool.
We have engineered a graphical interface called O-
Ul for O-Raid database system [DVB89] using the
Suite [Dew90a] system, which allows near-automatic
construction of user interfaces. The O-UI graphical
interface supports display as well as direct manipula-
tion of database relations and objects. In this paper,
we discuss how O-UI was built and present our expe-
riences.

An interesting aspect of building O-UI is that
both O-Raid and Suite employ some form of integra-
tion. Specifically, O-Raid integrates object and re-
lational data models [BDMS90], allowing relational
and object-oriented applications to coexist. Suite inte-
grates active objects with conventional operating sys-
tems allowing Suite objects to coexist with the compo-
nents of the operating systems [Dew90a]. These com-
ponents can access and be accessed by Suite objects.
However, since O-Raid and Suite are independently
developed software, the implementation of O-UI intro-

duced some redundancies and incompatibilities. The
related software integration issues are discussed later
in the paper.

The O-UI graphical interface requirements were
more complex than those for traditional relational
database systems, since O-Raid supports a hybrid
object-relation data model. The interface was required
to support the display and manipulation of O-Raid
relations, where the relation attributes could be arbi-
trarily complex objects of user-defined types (classes).

Earlier, we had built a simple teletype interface for
O-Raid called S-UI, which accepted a query typed by
the user and displayed the query result (if any) in a
tabular form. The interface was simple and portable
but had several limitations. The display of relations
with a large number of tuples or attributes was diffi-
cult to view. The tabular display of data was awkward
for relations containing objects. A flexible mechanism
for display of objects was desired. We wanted to dis-
play objects through a special display method defined
for that class, which specifies how the objects of that
class should be displayed[AGS90]. Another limitation
was that the query result could not be reused for a
subsequent query. This increased the effort required
to obtain desired information through a series of steps
(query refinement). Also, the manipulation of rela-
tions could only be done by specifying update queries.

To overcome these limitations we embarked on
building the O-Ul graphical interface. We wanted to
build the graphical interface based on the direct ma-
nipulation paradigm [Shn83], with features such as
mouse based interactions, pop-up menus, windows,
icons, and graphical display of data. Another goal
was to minimize the amount of information the user
has to know (such as query language syntax, etc.) and
reduce the data that needs to be typed.

We considered using X windows and the associated
toolkits (such as [MA88]) for building the interface.
Toolkits implement a set of user interface features such
as menus or command buttons, commonly referred
to as toolkit widgets. The widgets can be manipu-
lated using object-oriented paradigm. X windows also
has an additional layer, Xt Intrinsics, which allows
the user to create new widgets. The implementation
that used X and the associated toolkits required a lot
of learning and involved major programming effort.
Also, the implementation was not easy to change.

Next, we looked into two tools that ease the task
of building user interfaces: Interviews [LVC89] and
Suite [Dew90a]. We chose Suite over Interviews as
Suite provides a dialogue manager to manage the user
interface aspects of the application. In contrast, us-

249

ing Interviews still required us to build and manage
the interface. The Suite dialogue manager supports
direct editing of arbitrarily complex data structures.
The direct editing capability was suitable for support-
ing direct manipulation of O-Raid relations. Also, the
dialogue manager allows flexible display of data where
the display can be customized at run-time by the user.
This feature allowed us to experiment with the inter-
face and choose a suitable scheme for displaying the
query results.

In addition, Suite is a good choice for the following
reasons:

o It automated the construction of most parts of the
user interface. The system itself is built on top of
X windows, and we did not have to understand
the details of the X layer.

o 1t allowed rapid prototyping of the user interface,
which was essential for the evolutionary approach
adopted in the design of O-UIL. For the uncon-
ventional object-relational data model we had no
prior experience or understanding of what would
be a good set of features. The best policy was to
build a prototype, experiment with it, and refine
the design.

o The software was developed on the same platform
(a network of workstations supporting UNIX,
TCP/IP and X) as O-Raid.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of O-Raid and Suite. Sec-
tion 3 presents a detailed design specification of the
graphical interface. Section 4 describes how O-UI was
implemented using Suite. Section 5 presents our expe-
riences and discusses the related software integration
issues. Finally, we outline the future research plan and
give conclusions.

2 Overview of O-Raid and Suite

In this section, we briefly describe the two systems.
We also discuss how Suite can be used to display and
edit data structures of an interactive application.

2.1 O-Raid Overview

O-Raid is an extension of RAID [BR89)] distributed
relational database system that provides support for
objects [DVB89, BDMS90]. The key features of O-
Raid are:

8-Ul Trans. ™
8SQL++ Query
| Processor | RC cc Ac M:I
Raid Result Raid
Communications communications
LEGEND

RC = Replication Controller
CcC = Concurrency Controller
AC = Atomicity Controller

AM = Access Manager

Figure 1: O-Raid S-UI and TM

o support of relations whose attributes can be of
user-defined types (classes)

o use of C++ programming language [Str86] for
defining classes

o use of SQL++ query language (an extension of
SQL), which includes constructs to allow subob-
ject and method referencing [MSDB90].

Figure 1 shows the interaction between the ex-
isting simple teletype interface S-UI and O-Raid
Transaction Manager (TM). The TM itself consists
of four servers namely Replication Controller (RC),
Concurrency Controller (CC), Atomicity Controller
(AC), and Access Manager(AM). The user submits
a SQL++ query by typing the complete query. The
S-UI parses the query and generates a transaction of
read and write operations on relations. The transac-
tion is submitted to TM, which processes the transac-
tion and returns the result (if any) to S-UL The S-Ul
displays the query result on the screen. The commu-
nication between TM and S-Ul is done through UDP
messages [MB91].

2.2 Suite Overview

Suite provides support for editing data structures
described by the data types of conventional program-
ming languages. The user interface management is
provided by a dialogue manager (DM). It displays se-
lected data structures of applications providing the
user with a generic editor-based user interface to mod-
ify these data structures in a syntactically and se-
mantically correct fashion. DM also allows the ap-
plications to trigger semantic actions (such as dis-
playing the results and communicating with other ap-
plications) in response to user changes to the data

250

structures. Applications specify the display proper-
ties of the data structures, and a multiple inheritance
scheme [Dew91] is provided for specifying default val-
ues of these properties.

Figure 2 shows how an interactive application is
supported in Suite. The interactive application is par-
titioned into a dialogue manager which manages the
user interface of the application and an editable (ac-
tive) object which defines the semantics. The com-
munication between the dialogue manager and the
editable object is done using remote procedure calls
(RPC). When a data structure is updated through the
dialogue manager, a corresponding update procedure
defined in editable object is invoked through the RPC
mechanism. The editable object in turn can invoke the
Update_DM procedure defined in dialogue manager to
update the display of some data structure.

Editable Update DM Dialogue
Object Manager
Suite Suite
Communications pdate Proc Communications

Figure 2: A Suite Application

3 O-UI User Interface Architecture

Based on the requirements of O-Raid, we did a de-
tailed design of O-UIL Here we present the design spec-
ification.

The user interface has a main window, called the
query-interface window, and one or more additional
windows, called relation-display windows (see Fig-
ure 3).

3.1 The query-interface window

The query-interface window is used to display
project information and to enter the SQL++ Queries.
Its features include:

o SQL++ Query Line: A standard SQL++ query
can be entered on this line, and it will be sent (as
is) for further processing.

e SQL++ Query Status Line: When a query has
been processed, a status message will be printed
as to whether or not the query was successful and
if results were returned.

[@ dm: Object window for relation_dispiay -0

S+ Query String = select ¥ fron students:

The 0-Raid Distributed Database System
Relation Info:
Project Info relation type: User Defined
query tupe: All
User Interface Info rumber of attributes: 5
atags_seq
Help mmber of tuples: 7

———t
1Up ! § Down | | Help 1 | Quit |
| SELECT RELATION HENU | | CLEAR QUERY 1) EXIT | 1 OLD DISPLAY | -t
Speed: 39
id uid last_name first_nome position
0 6 Y] Jiang m—m 1:‘
lus_plus._ : Succesded 1 23 1ubenow a
l #a1-plus_plus._query.status: Quory 2 1 sjo Srinivasan Jagannathan ¢
3 2 nixontl Nixon Teresa w6
4 4 kef Friesen Karl 3
5§ 1 ygz Zhang [
6 § tmc Chung Tat G
| Cancel | | Insert | | Updats | | Delete |

Figure 3: Query Interface and Relation Display Window

e Clear Query Button: This button is used to clear information about the system.
the SQL++ Query Line and the Status Line, so

the user does not have to back space through the 3.2 The relation-display windows
previous query.

¢ Display Button: With this button, the user de- The relation-display windows (shown in Figure 3)
cides which relation-display window the output are used to display the relations and information about
of the query must be sent. Whenever a query is their attributes and tuples such as number, type, and
done, a new relation-display window is created to length. The user is able to edit the manner in which
display the results. If the user wants the output the display is shown and also edit the actual relation
to go to an old relation-display window instead, within the system.

this button is selected and the user chooses one
of the old relation-display windows by specifying

the corresponding window-id. Editing the display: Initially the relation is dis-

played horizontally with headers on top of each at-

e Select Relation Menu Button: This menu displays tribute column. The system attributes are not shown.
all the system relations. When the user selects Some of the features available for editing are:
one of the relations, a select command (SQL++
query to display the entire relation) is generated, o Eliding columns: By clicking on the header of a
and the corresponding query is processed. The column, the user is able to elide the entire column.
menu also contains an other field which generates
part of the select query and lets the user specify e Up and Down Buttons: These buttons support
the desired relation. The other option is useful scrolling of relations, which do not fit in a normal
for viewing user defined relations. screen. For those relations, only a part of the

relation is displayed. By clicking on either the Up

Exit Button: i i .
¢ Exit Button: The Exit button exits from the or Down Button, the user can scroll the relation.

query-interface window and removes all the as-

iated relation-di i
sociated relation-display windows e Help Button: On clicking this button help in-

o Information Fields: The fields Project Info, User formation describing the options available to the
Interface Info, and Help can be selected to get user is presented.

251

e Quit Button: This button is used to remove a
relation-display window after the user has finished
viewing the result.

Editing the actual relation: To minimize the
amount of typing and information the user must know,
the user interface allows the relation to be edited by
changes made to the display. The options available
are:

o Delete Button: The delete option creates a query
to delete the highlighted tuple, sends the query
to the O-Raid transaction manager and displays
the modified relation.

e Insert Button: The insert option allows the user
to enter the new tuple values in an uninitialized
tuple displayed at the bottom of the window. Af-
ter the tuple values are entered, an insert query is
created and sent to the O-Raid transaction man-
ager to be processed. The modified relation is
then displayed in the window.

o Update Button: The update option copies the
highlighted tuple to the bottom of the window
(see Figure 4). After the tuple is edited, an up-
date query is created and processed by the O-
Raid transaction manager. The changes are then
reflected in the displayed relation.

When a select query is done in the query-interface
window with specifications as to which attributes will
be shown, a temporary relation-display window is cre-
ated. Temporary windows allow the user to edit the
display but they do not have the options to edit the
actual relation.

4 Implementing O-UI using Suite

O-UI was built in two phases. Initially, a feasibility
study was done to uncover any incompatibility prob-
lems in using Suite. Next, a detailed implementation
effort was undertaken to support all the features pre-
sented in the previous section.

4.1 Phase I: Feasibility Study

A Suite application called query_interface (QI)
was developed, which accepts an SQL+4- query, parses
it, and generates an equivalent transaction. This
transaction is submitted to O-Raid TM for further
processing. The result returned by TM is then dis-
played (see Figure 5). Suite mechanisms were used

252

o
[N 1 Down | | Help | | Quit |
et
Speed: 9
Tuples:
id uid last_name first_name position
0 6 vhy Jiang Yin-he G
1 3 lubenow Lubenow Kara UG
2 1 s!e Srinjvasan Jw G
4 4 Friesen Karl [
s 1 gz Thang Yongguang 6
§ 5 tnc Chung Tat [
et ———t At B e —
| Cancel | | Insert | |] { Delete |
Tuple To Update:
2 Zl’s"
uld: nixdntl

position: UG

Figure 4: Updating a tuple of a relation

for displaying as well as editing the following two data
structures of this application:

1. SQL++ Query String: This data structure
is used to read in an SQL++ query. The
Suite dialogue manager associated with the
query_interface application is used to edit this
data structure as a means of submitting an
SQL++ query. The application sets up a trigger
which is activated whenever this data structure
is edited. The trigger results in the parsing and
execution of the submitted SQL-++ query.

2. SQL++ Query Result: This data structure is
used to display the results whenever a query is
executed. The query result is a relation (table).
Again, the associated Suite dialogue is used to
view as well as to customize the display of results.

We were able to build the basic infrastructure of QI
in a month’s time. The task was made easier by the
existing simple teletype query interface (S-UI) to O-
Raid. S-UI, written in C using yacc [Joh] and lex [LS]
tools, was reorganized by packaging all SQL++ query
processing routines into a single library. This library
is now shared by both S-UI and QI. QI includes Suite
specific commands embedded in C comment state-
ments that specify the displayable and editable prop-
erties of the two data structures mentioned above. QI
is run through a Suite preprocessor to generate the

fecsssanccnsane

Local Disk
et ———

LEGEND
™ = Transaction Manager
QI - Query-Interface
RD = Relation-Display
DM = Dialogue Manager
S-UI = SQL++ User Interface
0-UI = 0-Raid Graphical Interface

Suite RPC

RAID Communications

Disk access

Figure 5: O-Raid Process Layout

corresponding C programs. The resulting programs
are then compiled using a standard C complier (for
more details about Suite applications see [Dew90b}).

4.2 Phase II: Implementation

The success of the feasability study led us to under-
take the implementation of entire O-UI using Suite.

O-UI Organization: Figure 5 shows the cur-
rent configuration of O-UL. The two Suite ap-
plications, namely, query_interface (QI) and
relation display (RD), correspond to the proposed
query-interface and relation-display windows. The
user interacts with each of these applications through
the associated dialogue manager (DM). The user sub-
mits a query to QI through the associated dialogue
manager. The query is sent to the O-Raid Transac-
tion Manager (TM). The TM processes the query and
returns the result to QI. QI uses the Suite RPC mech-
anism to send the result to RD. The dialogue manager
associated with RD displays the result. The query re-
sult displayed can be further customized. In addition,
when user defined relations are displayed, they can

253

e e e

tiessage: Set value

Pathi Vatuer (Relation_Info)

| Cancel | | Update | | Delete |

| Insert |

Figure 6: Eliding a field using the dialogue manager
attribute window

be directly manipulated through the dialogue manger.
Figure 5 also shows how the simple teletype interface
S-UI interacts with the O-Raid Transaction Manager.

Supporting flexible display of query results:
The dialogue manager provides options for customiz-
ing the display of data structures. The customization
can be done either at run time or it can be done in
the Suite application itself through calls to dialogue
manager routines. We provide a default customization
where the tuples of the relation are displayed horizon-
tally as in Figure 3. The run-time customization is
done by using the dialogue manager attribute window.
For example, to hide the attribute Relation_Info the
user can open the attribute window and set the elided
attribute to true as shown in Figure 6. For large rela-
tions, only portions of relation are shown and scrolling
of relation is accomplished by displaying subsequent
sets of tuples of the relation.

Supporting direct editing of relations: We
made use of dialogue manager mechanisms for edit-
ing the displayed relation. For example, to update a
tuple of the relation, the user selects the desired tu-
ple and makes changes (as shown in Figure 4). Suite
recognizes the part of the data structure selected (tu-
ple in our case). After the updates are performed, an

equivalent update query is generated. The generated
query is sent to QI through a remote procedure call.
QI sends the query to TM. A select query for the rela-
tion that was recently updated is sent and the result is
now displayed on the relation-display window. Also,
any other window that has data pertaining to the same
relation is automatically updated to reflect the latest
changes. In similar manner, insert and delete opera-
tions are implemented.

Simulating push buttons: The O-UI design re-
quired push buttons for both query-interface and
relation-display windows. Suite only allowed user de-
fined buttons on the dialogue manager menu window.
It did not allow adding buttons on object windows
(where the data is displayed). The buttons were simu-
lated in the following manner. Suite allows associating
a selection procedure with a variable. The selection
procedure is called whenever the variable is selected.
The push buttons were implemented as variable fields
with an associated selection procedure. When the
variable field is selected the associated selection pro-
cedure gets called, which in effect simulates a push
button.

Simulating pop-up menus: Suite did not support
user-defined menus. However, it creates a menu for
editing the variables of enumerated data type. This
mechanism is used for creating menus. The only re-
striction is that menu options had to be statically de-
termined. For example, the select relation menu is im-
plemented by defining a variable of enumerated data
type. When the variable is edited, the associated up-
date procedure gets called, which generates the appro-
priate query based on the menu option selected.

Using the mechanisms discussed above we were able
to build the complete O-UI interface. QI also contains
code to retrieve the metadata information about the
O-Raid database. The information is displayed to the
user on request.

5 Experiences

Overall, Suite was appropriate for building O-UL
Here we discuss the benefits as well as the difficul-
ties encountered in using Suite. Since O-Raid and
Suite are two independently developed systems, the
engineering of O-UI led to some incompatibilities and
redundancies. We also discuss the related software in-
tegration issues.

254

5.1 Suite as a user interface construction
tool

Using Suite we were able to build the O-UI in
about six months (see Table 1). The following fea-
tures helped us in rapid prototyping the system:

o Flezible display of data: Suite dialogue manager
provides flexible display of data (in our case rela-
tions). We were able to customize the relation dis-
play at run-time using the dialogue manager op-
tions. It helped us in experimenting and choosing
a suitable display for query results. In addition,
the user has the flexibility of further customiz-
ing display of results according to her taste and
needs.

o Direct manipulation of data: We were able to di-
rectly manipulate the displayed relations through
the Suite dialogue manager. For example, sup-
porting updates on relations was straight forward.
Suite provided some of the needed features such
as determining the parts of data structure se-
lected and triggering appropriate action routines.

o Ease of building the user inlerface as a collection
of Suite applications: Usually a user interface con-
sists of multiple windows. Suite allowed us to map
different windows to separate applications. Since
Suite provides a remote procedure call mechanism
(RPC), the task of collectively meeting user inter-
face requirements was easy to support through a
collection of Suite applications, where these ap-
plications communicate with each other through
RPC.

Although Suite greatly reduced the task of build-
ing the user interface, we did face some difficulties.
Specifically,

o Restricted support for push buttons and menus:
Push buttons and menus occur quite commonly
in a user interface. Suite only allowed user defined
push buttons to be added to dialogue manager
menu window. We required the buttons to be
placed in the window where the data is displayed.
We had to simulate the push buttons. Moreover,
the looks of the buttons where not satisfactory.
We faced a similar problem with menus. Suite
provided menus as a means of editing a variable
of an enumerated data type. We had to simulate
menus using this mechanism. This required us to
fix the menu items at compile time.

o Interaction through dialogue manger causes ez-
tra overheads: Since the user interface aspects of
the application is managed by the dialogue man-
ager, the interaction with the interface is always
through the dialogue manager. Thus we require
two processes per application, the suite applica-
tion and the associated dialogue manager, as op-
posed to a single process. Also, there is extra
communication overhead as every event (such as
editing the data structure) is first received by the
dialogue manager, which then performs a remote
procedure call to invoke the appropriate routine
of the corresponding application.

5.2 Software Integration Issues

The building of O-UI resulted in duplication of soft-
ware. The current O-UI uses two communication li-
braries: Suite RPC to communicate between Suite ap-
plications (including the dialogue manager) and the
Raid communication library to communicate between
QI and TM (see Figure 5). Similarly both Suite and O-
Raid have separate mechanism for maintaining persis-
tent data. These mechanisms are incompatible. That
is, persistent data stored using Suite can not be ac-
cessed directly using O-Raid and vice versa.

The problems of redundant software and incompat-
ibilities are bound to occur when independently de-
veloped software are integrated. The term post-facto
integration has been used to refer to such integration
of already existing software [Pow90). The integration
process benefits from the reuse of software leading to
quick prototyping.

An interesting alternative is to consider modify-
ing the software components (in our case O-Raid and
Suite) to avoid redundancies and incompatibilities.
Suite offers excellent display and direct manipulation
capabilities, whereas, O-Raid supports efficient stor-
age and manipulation of persistent data. One possi-
bility is to modify Suite to make use of O-Raid mech-
anism for supporting persistent data. On the other
hand the two communication mechanisms, Suite RPC
and Raid communications, should be retained as they
increases the reusability of the integrated software.

5.3 Engineering Efforts

Table 1 summarizes the engineering effort. We
(two of the authors working half-time) were able to
build the initial version of the graphical interface in
less than a month, where we tested the feasibility of
using Suite. We experimented with the O-UI proto-
type and did a detailed design. The proposed features

255

Task Time Persons
(in months) | involved

Learning Suite and One Two

the Feasibility Study (half-time)

Detailed Design One Two

of O-UI (half-time)

Implementing O-UI | Three One

using Suite (full-time)

Table 1: Engineering Efforts

were were then implemented by a student program-
mer working (full-time) during the summer in about
three months. The three month period includes the
time needed for getting familiar with the Suite sys-
tem. The current version supports all the features
discussed here. The O-UI consists of two Suite ap-
plications, query_interface and relation display,
each about 1000 lines long (None of the code deals
with X).

8 Conclusions and Future Work

Several factors contributed to the success of this
engineering effort. The rapid prototyping capability
offered by Suite was suitable for the evolutionary ap-
proach adopted in designing the graphical interface.
Our design is expected to evolve further (for example
to graphical display objects stored in relations, invoke
methods on objects, etc.).

The existence of a simple teletype interface (S-UI)
for O-Raid aided us in building the O-UI graphical
interface. Specifically, the interface between S-UI and
the O-Raid Transaction Manager was retained in O-
UL S-UI software was reorganized by packaging all
the the query processing routines into a single library.
This library is now shared by both the simple and the
graphical interface.

The engineering task becomes much easier if the
systems being used adhere to standards. This was
the case as both Suite and O-Raid run on a network
of workstations executing UNIX, TCP/IP, NFS and
X. Furthermore, the task of writing Suite applications
involved little learning as it used the popular C pro-
gramming language.

Using a system like Suite opens the potential for in-
teresting features and experimentation. For example,
Suite supports flexible coupling among shared win-
dows of a user interface [DC91]. Thus we can ex-

periment with mechanisms of sharing and updating
of windows of multiple users.

Suite, though built using X and associated toolk-
its, did not provided features such as as push buttons
and pop-up menus. We had to simulate these features.
One possibility is to use Suite till the design process
has stabilized and then to implement the entire inter-
face using standard tools such as X and its associated
toolkits.

Although the reuse of software is desirable, it can
be difficult as one has to learn and understand the
software being used. In our case, the designers and im-
plementers of the interface had no prior experience or
knowledge of Suite. The task of learning the Suite sys-
tem was done mainly through trying out existing Suite
applications. The learning was much easier as Suite
applications were fairly small (usually about 250-500
lines) and were written in C.! We interacted with the
designers of Suite and took advantage of, as well as
suggest new features. In general, the designers of a
software tool can not anticipate all the possible ways
the tool would be used. However, close interaction is
not always possible and in such cases good document
support with examples showing different possible uses
of the tool should be provided.

In the future we plan to provide support for view-
ing as well as manipulating objects stored in O-Raid
relations. Specifically, we plan to build support for:
creating and inserting tuples containing objects, in-
voking methods on O-Raid objects, displaying objects
graphically, and following the pointers to other ob-
jects.

A simple display scheme for objects is to show all
the public attributes of the object in a tabular form.
In addition, we plan to support a flexible display of
objects by defining display method(s) for each of the
classes and using them to construct the display. The
display method specifies how the object should be dis-
played as in [AGS90].

The objects displayed can be updated directly or
through the methods defined for the corresponding
class. The updates through methods will be supported
by providing user with a menu of possible methods.
Once the user selects a method, a template will be dis-
played requiring the user to fill in the argument values
for the method. After the arguments have been filled
in, an equivalent update query would be submitted for
performing the update on the database. The required
metadata information will be loaded into the Suite ap-

1Suite applications tend to be small as most of the user
interface related code is automatically generated by Suite
preprocessors.

256

plication by performing queries on O-Raid system re-
lations. The information about a class is added to the
O-Raid system relations when the class is registered
with the database [BCJS].

Several research questions need to be resolved when
we consider performing direct updates on the objects,
that is, through editing the display of object. Objects
are accessed and manipulated through the methods
defined for the corresponding class. Should we support
direct updates on objects? One possibility is to allow
direct updates on public attributes of the objects. How
about if these attributes have dependencies on other
attributes of the object? We are considering these
issues in designing support for direct manipulation of
O-Raid objects.

7 Acknowledgements

Rajiv Choudhary helped us in debugging our code
and explained some of the advanced features of Suite.
We thank the anonymous referees for their comments
on a previous draft which helped us in revising the

paper.

References

R. Agarwal, N. H. Gehani, and J. Srini-
vasan. Odeview: The Graphical Interface
to Ode. In Proc. ACM-SIGMOD Conf. on
Mangement of Data, Atlantic City, New
Jersey, May 1990.

[AGS90]

[BCIS] B. Bhargava, T. M. Chung, Y. Jiang, and
J. Srinivasan. Design and Implementa-
tion of the O-Raid Data Definition Facil-

ity. Submitted for publication.

[BDMS90] B. Bhargava, P. Dewan, J. G. Mullen, and
J. Srinivasan. Implementing Object Sup-
port in the RAID Distributed Database
System. In Proceedings Of The First In-
ternational Conference on Systems Inte-

gration, pages 368-377, April 1990.

B. Bhargava and J. Riedl. The RAID Dis-
tributed Database System. IEEE Transac-
tions on Software Engineering, 15(6), June
1989. (New version report in preparation).

[BRS9]

P. Dewan and R. Choudhary. Flexible User
Interface Coupling in Collaborative Sys-
tems. In Proceedings of the ACM CHI’91

[DCY1]

[Dew90a}

[Dew90b)

[Dew91}

[DVB89]

[Joh]

(LS]

[LVC89)

[MASS]

[MB91]

Conference, pages 41-49. ACM, New York,
1991.

P. Dewan. A Tour of the Suite User In-
terface Software. In Proceedings of the 3rd
ACM SIGGRAPH Symposium on User In-
terface Software and Technology, pages 57—
65, October 1990.

P. Dewan. A Guide to Suite. Technical Re-
port SERC-TR-60-P, Software Engineer-
ing Research Center, Purdue University,
West Lafayette, Indiana, February 1990.

P. Dewan. An Inheritance Model for Sup-
porting Flexible Displays of Data Struc-
tures. Software-Practice and Ezperience,
21:719-738, July 1991.

P. Dewan, A. Vikram, and B. Bhargava.
Engineering the Object-Relation Model in
O-Raid. In Proceedings Of the Interna-
tional Conference on Foundations of Data
Organization and Algorithms, pages 389-
403, June 1989.

S. C. Johnson. YACC - Yet Another Com-
piler Compiler.

M. E. Lesk and E. Schmidt. LEX - Lexical
Analyzer Generator.

M. A. Linton, J. M. Vlissides, and P. R.
Calder. Composing User Interfaces with
InterViews. IEEE Computer, pages 8-24,
February 1989.

J. McCormack and P. Asente. An
Overview of the X Toolkit. In ACM
SIGGRAPH Symposium on User Interface
Sofiware, October 1988.

E. Mafla and B. Bhargava. Communica-
tion Facilities for Distributed Transaction-
Processing Systems. IEEE Compuler,
24(8):61-66, 1991.

[MSDB90] J. G. Mullen, J. Srinivasan, P. Dewan, and

B. Bhargava. Supporting Queries in the O-
Raid Object-Oriented Database System.
In Proceedings of the International Com-
puler Software and Applications Confer-
ence, 1990.

257

[Pow90]

[Shn83]

[SL90]

[Str86]

L. R. Power. Post-Facto Integration Tech-
nology: New Discipline for an Old Prac-
tice. In Proceedings Of The First Interna-
tional Conference on Systems Integration,
pages 4-13, April 1990.

B. Shneiderman. Direct Manipulation:
A Step Beyond Programming Languages.
IEEE Computer, 16:57-69, 1983.

A. Sheth and J. L. Larson. Federated
Databases: Architectures and Integra-
tion. Computing surveys, 22(3), Septem-
ber 1990.

B. Stroustrup. The C++ Program-
ming Language. Addison-Wesley, Reading,
Mass., 1986.

