370 CONCURRENT OPERATIONS ON THE DATABASE

11.1 BASIC CONCEPTS

A transaction is a single execution of a program. This program may be a simple
query expressed in one of the query languages of Chapter 6 or an elaborate
host language program with embedded calls to a query language. Severa]
independent executions of the same program may be in progress simultaneously;
each is a transaction.

Items

We imagine that the database is partitioned into items, which are portions of
the database that can be locked. That is, by locking an item, a transaction
can prevent other transactions from accéssing the item, until the transaction
holding the lock unlocks the item. A part of a DBMS called the lock manager
assigns and records locks, as well as arbitrating among two or more requests
for a lock on the same item.

The nature and size of items are for the system designer to choose. In the
relational model of data, for example, we could choose large items, like relations,
or small items like individual tuples or even components of tuples. We could
pick an intermediate size for items; for example, items could be collections of
100 tuples from some relation. In the network model, an item could be the
collection of all records of a single type, or what the DBTG proposal terms a
set occurrence, for example.

Choosing large items cuts down on the system overhead due to maintaining
locks, since we need less space to store the locks, and we save time because fewer
actions regarding locks need to be taken. However, choosing small items allows
many transactions to operate in parallel, since transactions are then less likely
to. want locks on the same items. :

At the risk of oversimplifying the conclusions of a number of analyses
mentioned in the bibliographic notes, let us suggest that the proper choice for
the size of an item is such that the average transaction accesses a few items.
Thus if the typical transaction (in a relational system) reads or modifies one
tuple, which it finds via an index, it would be appropriate to treat tuples as
items. If the typical transaction takes a join of two or more relations, and
thereby requires access to all the tuples of these relations, then we would be
better off treating whole relations as items.

- In what follows, we shall assume that when part of an item is modified,
the whole item is modified and receives a value that is unique and unequal to
the value that could be obtained by any other modification. We make this
assumption not only to simplify the modeling of transactions. In practice, it
requires too much work on the part of the system to deduce facts such as that
the result of one modification of an item gives that item the same value as it had
after some previous modification. Furthermore, if the system is to remember

11.1 BASIC CONCEPTS 371

A in 5 5 5 5 6 6

database s

Ty: READ A A=A+1 . WRITE A
Ts: READ A A:=A+ 1| WRITE A

AinTy’s 5 5 6 6 6 6
workspace

Ain Ty's 5 5 6 6

workspace

> Fig. 11.1. Transactions exhibiting a need to lock item A.

whether part of an item remains unchanged after the item is modified, it may as
well divide the item into several smaller items. A consequence of our assumption
of the indivisibility of items is that we shall not, go wrong if we view items as
simple variables as used in common programming languages.

Locks

Example 11.1: To see the need for locking items, let us consider two transactions
Ty and T3. Each accesses an item A, which we assume has an integer value, and
adds one to A. The two transactions are executions of the program P defined
as

P:READ A; A:= A+1; WRITE A

The value of A exists in the database. P reads A into its workspace, adds one
to the value in the workspace, and writes the result into the database. In Fig.
11.1 we see the two transactions executing in an interleaved fashiont, and we
record the value of A as it appears in the database at each step.

We notice that although two transactions have each added I to A, the value
of A has only increased by 1. This is a serious problem if A represents seats
sold on an airplane flight, for example. [] : :

One solution to the problem represented by Example 11.1 is to provide
a lock on A. Before reading A, a transaction T must lock A, which prevents
another transaction from accessing A until T is finished with A. Furthermore,
the need for T to set a lock on A prevents 7' from accessing A if some other
transaction is already using A. T must wait until the other transaction unlocks
A, which it should do only after finishing with A.

Let us now consider programs that interact with the database not only
by reading and writing items but by locking and unlocking them. We assume
t Note that we do not assume necessarily that two similar steps take the same time, so it

is possible that T2 finishes before T3, even though both transactions execute the same steps.
However, the point of the example is not lost if Ty writes before T%.

372 CONCURRENT OPERATIONS ON THE DATABASE

that a lock must be placed on an item before reading or writing it, and that the
operation of locking acts as a synchronization primitive. That is, if a transaction
tries to lock an already locked item, it waits until the lock is released by ap
unlock command, which is executed by the transaction holding the lock. We
assume that ‘each program is written to unlock any item it locks, eventually,
A schedule of the elementary steps of: two or more transactions, such that the
above rules regarding locks are obeyed, is termed legal.

Example 11.2: The program P of Example 11.1 could be written with locks as
P : LOCK A; READ A; A:=A+1; WRITE A4; UNLOCK A

Suppose again that 77 and T3 are two executions of P. If Ty begins first, it
requests a lock on A. Assuming no other transaction has locked A, the system
grants this lock. Now 7T}, and only 77 can access A. If 75 begins before 7}
finishes, then when T tries to execute LOCK A, the system causes T3 to wait,
Only when 7} executes UNLOCK A will the system allow T3 to proceed. As
a result, the anomaly indicated in Example 11.1 cannot occur; either Ty or T
executes completely before the other starts, and their combined effect is to add
2to A.]

Livelock and Deadlock

We have postulated a part of a DBMS that grants and enforces locks on items.
Such a system cannot behave capriciously, or certain undesirable phenomena
occur. As an mstance, we assumed in Example 11.2 that when T released
its lock on A, the lock was granted to To. What if while 7, was waiting, a
transaction 73 also requested a lock on A, and 73 was granted the lock before
T,. Then while T35 had the lock on A, T4 requested a lock on A, which was
granted after T3 unlocked A, and so on. Evidently, it is possible that T could
wait forever, while some other transaction always had a lock on A, even though
there are an unlimited number of times at which Tz rmght have been given a
chance to lock A.

Such a condition is called livelock. It is a problem that occurs potentially in
any environment where processes execute concurrently. A variety of solutions
have been proposed by designers of operating systems, and we shall not discuss
the subject here, as it does not pertain solely to database systems. A simple
way to avoid livelock is for the system granting locks to record all requests that
are not granted immediately, and when an item A is unlocked, grant a lock on
A to the transaction that requested it first, among all those waiting to lock A.
This first-come-first-served strategy eliminates livelocks,t and we shall assume
from here on that livelock is not a problem.

There is a more serious problem of concurrent processing that can oceur if

t Although it may cause “deadlock,” to be discussed next.

11.1 BASIC CONCEPTS 373

we are not, careful. This problem, called “deadlock,” can best be illustrated by
an example.

Example 11.3: Suppose we have two transactions 77 and 7% whose significant
actions, as far as concurrent processing is concerned are:

Ty: LOCK A LOCK B UNLOCK A UNLOCK B
T>: LOCK B LOCK A UNLOCK B UNLOCK A

Presumably T3 and 7% do something with A and B, but this is not important
here. Suppose T3 and T, begin execution at about the same time. 73 requests
and is granted a lock on A, and T requests and is granted a lock on B. Then
Ty requests a lock on B, and is forced to wait because T5 has a lock on that
item. Similarly, T» requests a lock on A and must wait for 73 to unlock A.

Thus neither transaction can proceed; each is waiting for the other to unlock a

needed item, so both 7y and 7% wait forever. [

A situation in which each member of a set S of two or more transactions
is waiting to lock an itém currently locked by some other transaction in the set
S is called a deadlock. Since each transaction in S is waiting, it cannot unlock
the item some other transaction in S needs to proceed, so all wait forever. Like
livelock, the prevention of deadlock is a subject much studied in the literature of
operating systems and concurrent processing in general. Among the approaches
to a solution are the following.

l. Require each transaction to request all its locks at once, and let the system
grant them all, if possible, or grant none and make the process wait, if one
or more are held by another transaction. Notice how this rule would have
prevented the deadlock in Example 11.3. The system would: grant locks on
both A and B to T if it requested first; 77 would complete, and then 7%
could have both locks.

2. Assign an arbitrary linear ordering to the items, and require all transactions
to request locks in this order.

The second approach also prevents deadlock. In Example 11.3, suppose
A precedes B in the ordering (there could be other items between A and B in
the ordering). Then T3 would request a lock for A before B and would find A
already locked by Ty. T3 would not yet get to lock B, so a lock on B would
be available to 77 when requested. T; would complete, whereupon the locks on

‘Aand B would be released. T3 could then proceed. To see that no deadlocks
can occur in general, suppose we have a set S of deadlocked transactions, and
each transaction R; in S is waiting for some other transaction in S to unlock

an item A;. We may assume that each R; in S holds at least one of the A;’s,

else we could remove R; from S and still have a deadlocked set. Let Ay be the

first item among the A;’s in the assumed linear order. Then Ry, waiting for

Ak, cannot hold any of the A;’s, which is a contradiction.

Another approach to handling deadlocks is to do nothing to prevent them.

374 CONCURRENT OPERATIONS ON THE DATABASE

Rather, periodically examine the lock requests and see if there is a deadlocl
The algorithm of drawing a waits-for graph, whose nodes are transactions angd
whose arcs 77 —T, signify that transaction 7 is waiting to lock an item on
which 75 holds the lock, makes this test easy; every cycle indicates a deadlock’
and if there are no cycles, neither are there any deadlocks. If a deadlock is
discovered, at least one of the deadlocked transactions must be restarted, apg
its effects on the database must be cancelled. This process of restart can b
complicated if we are not careful about the way transactions write into the
database before they complete. The subject is taken up in Section 11.6.

In the future, we shall assume that neither livelocks nor deadlocks wij
occur when executing transactions.

Serializability

Now we come to a concurrency issue of concern primarily to database systen
designers, rather than designers of general concurrent systems. By way of
introduction, let us review Example 11.1, where two transactions executing 3
program P each added 1 to A, yet A only increased by 1. Intuitively, we feg|
this situation is wrong, yet perhaps these transactions did exactly what the
writer of P wanted. However, it is doubtful that the programmer had this
behavior in mind, because if we run first 7y and then T, we get a different
result; 2 is added to A. Since it is always possible that transactions will execute
one at a time (serially), it is reasonable to assume that the normal, or intended,
rgsult of a transaction is the result we obtain when we execute it with no other
transactions executing concurrently. Thus, we shall assume from here on that
-the concurrent execution of several transactions is correct if and only if its effect
is the same as that obtained by running the same transactions serially in some
order.

Let us define a schedule for a set of transactions to be an order in which the
elementary steps of the transactions (lock, read, and so on) are done. The steps
of any given transaction must, naturally, appear in the schedule in the same
order that they occur in the program of which the transaction is an execution.
A schedule is serial if all the steps of each transaction occur consecutively. A
schedule is serializable if its effect is equivalent to that of some serial schedule.

Example 11.4: Let us consider the following two transactions, which might
be part of a bookkeeping operation that transfers funds from one account to
another. '
T1: READ A; A:= A— 10; WRITE A; READ B; B:= B+ 10; WRITE B
T2: READ B; B := B — 20; WRITE B; READ C; C := C + 20; WRITE.C

Clearly, any serial schedule has the property that the sum A+B+C is preserved.
In Fig. 11.2(a) we see a serial schedule, and in Fig. 11.2(b) is a serializable, but
not serial, schedule. Figure 11.2(c) shows a nonserializable schedule. Note that

