11.5 CONCURRENCY FOR HIERARCHICALLY STRUCTURED ITEMS 395

Fig. 11.17. A hierarchy.

Example 11.12: Figure 11.17 shows a hierarchy, and Fig. 11.18 is a schedule of
three transactions obeying the warning protocol. Notice, for example that at
step (4) Ty places a warning on B. Therefore T3 was not able to lock B until
Ty unlocked its warning on B at step (10). However, at steps (1)-(3) all three
transactions place warnings on A, which is legal.

The lock of C by T at step (5) implicitly locks C, F', and G. We assume
that any or all of these items are changed by 7% before the lock is removed at
step (7). [J |
Theorem 11.6: Schedules of transactions obeying the warning protocol are
serializable.

Proof: Parts (1)-(3) of the warning protocol guarantee that no transaction
can place a lock on an item unless it holds warnings on all its ancestors. It
follows that at no time can two transactions hold locks on two ancestors of the
same item. We can now show that a schedule obeying the warning protocol is
equivalent to a schedule using the model of Section 11.2, in which all items are
locked explicitly (not implicitly, by locking an ancestor). Given a schedule S
satisfying the warning protocol, construct a schedule S’ in the model of Section
11.2 as follows. : '
1. Remove all warning steps, and their matching unlock steps.
2. Replace all locks by locks on the item and all its descendants. Do the same
for the corresponding unlocks.
The resulting schedule S’ is legal because of parts (1)—(3) of the warning protocol,
and its transactions are two-phase because those of S are two-phase, by part
(4) of the warning protocol. []

11.6 PROTECTING AGAINST CRASHES

Until now we have assumed that each transaction runs happily to completion. In
practice, several things might happen to prevent a transaction from completing.
1. The system could fail from a variety of hardware or software causes. In this
case, all active transactions are prevented from completing, and it is even
possible that some completed transactions must be “cancelled,” because
they read values written by transactions that have not yet completed.

396 CONCURRENT OPERATIONS ON THE DATABASR

(1) WARN A

(2) WARN A

(3) WARN A

(4) WARN B

(5) LOCK C

() LOCK D '

(7) UNLOCK C

(8) UNLOCK D

(9) UNLOCK A
(10) © UNLOCK B o
(11) N LOCK B
(12) WARN C
(13) LOCK F
(14 UNLOCK A
(15) UNLOCK B
(16) UNLOCK F
(17) UNLOCK C
(18) UNLOCK A

4] T2 13

Fig. 11.18. A schedule of transactions satisfying the warning protocol.

System crashes cause serious problems, since we must not only find a set
of transactions to “cancel” that will bring us back to a consistent state,
but we must make sure that some way of reconstructing that state exists.

2. A single transaction could be forced to stop before completion for a variety
of reasons. If deadlock detection is done by the system, the transaction
could be found to contribute to a deadlock and be selected for cancellation
by the system. A bug in the transaction, e.g., a division by zero, could cause
an interrupt and cancellation of the transaction. Similarly, the user could
cause an interrupt at his terminal for the express purpose of cancelling a
transaction.

3. In the next section, we shall discuss “optimistic” concurrency control,
where transactions are allowed to run without locking items, and violations
of the serializability condition are detected and the offending transaction
cancelled.

Backup Copies

It should be evident that we cannot rely on the indefinite preservation of the
data in a database. Data in the machine’s registers or solid state memory
cannot be presumed to survive a power outage, for example. Magnetic devices

11.6 PROTECTING AGAINST CRASHES 397

such as tapes, disks, or magnemc core memory will usually be preserved even if
the machine has to be shut down, but even this data is vulnerable to physical
problems such as disk “head crashes” or a small child with a large magnet
running amok in the computer room. Further, no data is completely safe from
being obliterated by system software errors.

For these reasons, it is essential that backup copies of the database be made
periodically, at least once a day if possible, although enormous databases, for
which the copying process could take hours, must be copied less frequently.
The copy, once made on tape on disk, should be removed from the vicinity of
the computer (in case of fire, for example), and stored in a safe place. For extra
security, several of the most recent copies could be stored in different places.

When making a copy, it is important that the copied data represent a con-
sistent state. Therefore, the copying utility routine must itself be a transaction
that read-locks all items in the database.

The Journal

We must also be prepared to restore the database to a consistent state that
reflects the situation after some number, perhaps a large number, of transactions
were completed following the creation of the last backup copy.t For this reason,
we need to preserve in a relatively safe place, e.g., on a tape or disk, a history,
called a journal or log, of all changes to the database since the last backup copy
was made. In the most general case, journal entries consist of
I. A unique identifier for the transaction causing the change,
2, The old value of the item, and
3. The new value of the item.
We also expect the journal to record key times in the progress of a transaction,
such as its beginning, end, and what we shall later call its “commit point.”
The need for old and new values will become evident ‘when we consider
that it may not only be necessary to redo transactions, but to undo them, that
is to erase completely the effect of certain transactions. If items are large, if
they are relations for example, then it is wise to represent the changes only,
rather than listing the complete old and new values. For example, we could list
the inserted and deleted tuples and give the old and new values for the modified
tuples.

Committed Transactions

When dealing with transactions that may have to be redone or undone, it helps
to think in terms of “committed” and “uncommitted” transactions. There

t This consistent state may never have existed during the history of the database, since other
uncompleted, or even completed, transactions may have been running concurrently with the
selected set of transactions on which the state is based.

398 CONCURRENT OPERATIONS ON THE DATABg;,

is a point during the execution of any transaction at which we regard it -
completed. All calculations done by the transaction in its workspace myg
have been finished, and a copy of the results of the transaction must have begy,
written in a secure place, presumably in the journal. At this time we may rega;q
the transaction as committed; if a system crash occurs subsequently, its effects
will survive the crash, even though the values produced by the transaction may
not yet have appeared in the database itself. The action of committing the
transaction must itself be written in the journal, so if we have to recover frop,
a crash by examining the journal, we know which transactions are committed.
We define the two-phase committ policy as follows.
1. .A transaction cannot write into the database until it has committed.
2. A transaction cannot commit until it has recorded all its changes to itemg
in the journal.
Note that phase one is the writing of data in the journal and phase two is
writing the same data in the database.

If in addition, transactions follow the two-phase locking protocol, and
unlocking occurs after commitment, then we know that no transaction can
read from the database a value written by an uncommitted transaction. In the
case of a system crash, it is then possible to examine the log and redo all the
committed transactions that did not have a chance to write their values in the
database. If the crash is of a nature that destroys data in the database, we
shall have to redo all committed transactions since the last backup copy was
smade, which is generally far more time consuming. It is not necessary to undo
any transactions that, 'did not reach their commit point before the system crash,
since these have no effect on the database. It would be a good idea to print a
message to the user warning him that his transaction did not complete. To be
able to do so after a crash, it is necessary routinely to enter into the journal the
fact that a particular transaction has begun. Also note that a crash may cause
locks to be left on items, either from committed or uncommitted transactions,
and these must be removed by the recovery routine.

Failure of Individual Transactions

Less serious than a system crash is the failure of a single transaction, when,
for example, it causes deadlock or is interrupted for some reason. If we follow
the two-phase commit policy, we know that there is no effect on the database,
provided that no interruption of a transaction can occur after commitment.
If we are following the two-phase protocol, then no locks or calculation can
occur after commitment, so it is not possible that a deadlock is created after
commitment, or that an arithmetic error causes an interrupt after commitment.
Thus, failed transactions leave no trace on the database. A notation indicating

t There is no connection between the “two-phase protocol” and “two-phase commitment,”
except that they are both sensible ideas.

11.6 PROTECTING AGAINST CRASHES 399

that a transaction was cancelled should be placed in the journal, so if restart
occurs after a system crash, we know to ignore any journal entries for that
transaction.

Transactions That do not Obey the Two-Phase Commit Policy

Let us briefly consider what happens if transactions are not required to reach
their commit point before writing into the database. By relaxing this require-
ment, we may allow transactions to unlock items earlier, and thereby allow
other transactions to execute concurrently instead of waiting. However, this
potential increase in concurrency is paid for by making recovery after a crash
more difficult, as we shall see.

We still assume that each item has its changes entered in the journal before
the database itself is actually changed, and we assume. transactions obey the
two-phase protocol with regard to locking. We also assume a transaction does
not commit until it has completed writing into the journal whatever items it
changes. Under our new assumptions it is not impossible to recover from system
crashes or failures of individual transactions, but it becomes more difficult for
two reasons.

1. A transaction that is uncommitted when the crash occurs must have the
changes that it made to the database undone.

2. A transagction that has read a value written by some transaction that must
be undone, must itself)be undone. This effect can propagate indefinitely.

Example 11.13: Consider the two transactions of Fig. 11.19. Fundamentally
these transactions follow the model of Section 11.2, although to make clear
certain details of timing, we have explicitly shown commitment, reads, writes,
and the arithmetic done in the workspace of each transaction. The WRITE
steps are presumed to write the old and new values in the journal and then in
the database. Suppose that after step (14) there is a crash. Since 7} is the only
active transaction, it doesn’t matter whether it was a system crash or a failure
of Ty, say becausé division by 0 occurred at step (14).

We must undo 77 because it is uncommitted. Since it holds a lock on B,
that lock must be removed. Then we must restore to A its value prior to step
(1). We must also undo 7%, even though it is committed, and in fact completed.
If some other transaction 73 had read A between steps (13) and (14), then T3
would have to be redone as well, even if 73 were completed, and so on.

To undo transactions that must be undone, we consider each item C written
by one or more of the transactions that must be undone. Examine the journal
for the earliest write of C by one of the undone transactions. This journal entry
will have the old value of C, which can be placed in the database. Note that
since we assume all transactions are two-phase, and we are using the model of
Section 11.2, where all items locked are assumed to be read as well as written,

400 CONCURRENT OPERATIONS ON THE DATABASE

() LOCK A
(2) READ A
(3) A=A-1
(4) WRITE A

(5 LOCK B

(6) UNLOCK A

(7) LOCK A

(8) READ A

9) Ai=Ax%2
(10) READ B
(11) WRITE A
(12) COMMIT
(13) UNLOCK A

(14 B:=BJ/A
Ty /i

Fig. 11.19. A schedule.

it is not possible that some transaction 7', which does not have to be redone,
wrote a value for C' later than the earliest undone transaction wrote C. We
leave as an exercise the correct algorithm for modifying the database to reflect
the undoing of transactions when the model of Section 11.4, which permits
writing without reading, is used.

In the case of our example in Fig. 11.19, only A was written by the
transactions 77 and 75 prior to the crash. We find that the earliest write of
A by either of these transactions was by T} at step (4). The journal entry for
step (4) will include the old value of A, the value read at step (2). Replacing A
by that value cancels all effects of 77 and 75 on the database. []]

One might assume that having undone 77 and 7% in Example 11.13, it
is now possible to redo T3, since it was committed, simply by eyamining the
journal, rather than by running it again. Such is not the case, since 7% read the
value of A written into the database by T3, and that value is no longer there.
To retrieve that value of A from the journal, without rerunning 7}, might lead
to an inconsistency in the database. '

- 11.7 OPTIMISTIC CONCURRENCY CONTROL

Let us briefly consider a method of synchronizing transactions that is radically
different from the locking methods discussed in the previous sections. Suppose
that we were “optimistic,” and executed transactions with no locking at all,
reading and writing into the database as we wished. Naturally, if we were
executing two transactions such as those of Fig. 11.1, with steps executed in the

11.7 OPTIMISTIC CONCURRENCY CONTROL 401

order shown in that figure, we would have a nonserializable behavior. However,
suppose that when we read or wrote into the database, we at least had some
way of realizing that we were doing something that might violate serial order,
for example, reading a value that had been written by another transaction that
belonged after our transaction in the serial order. Then we could abort our
transaction and start it over.

This approach is quite efficient, provided that the probability of two trans-
actions conflicting in this way is small. The chance of interaction between two
transactions executing at about the same time will be small provided each ac-
cesses only a tiny fraction of the database, i.e., the lock granularity is small.
If this situation holds, there is substantial benefit in using the “optimistic” ap-
proach, as no time will be wasted requesting or waiting for locks. The time
wasted redoing transactions that have to be aborted may well be much less
_ than the time spent waiting for locks or undoing deadlocks.

Yet in order to adopt this method, a number of questions must be answered.
How do we tell that we are violating serial order? How do we avoid leaving in the
database values written by transactions that later abort? When we must abort
a transaction, how do we avoid livelock, the situation where the transaction is
restarted over and over, but aborts each time? We shall answer these questions
in turn.

Timestamps

The key to establishing a serial order and detecting its violations is to have the
system generate timestamps, which are numbers generated at each clock “tick,”
where ticks of the computer’s internal clock occur with sufficient frequency, say
once every microsecond, that two events such as the start of transactions cannot
occur at the same “tick.” At a special time in the life of every transaction, say
when it initiates, or when it issues its first read or write on the database, the
transaction is issued its timestamp, which is the current time on the clock.
No two transactions can have the same timestamp, and we'shall take as our
criterion of correctness that transactions should behave as 11 the order of their
timestamps were their serial order as well.

As an aside, one might think that adding one to the clock every microsecond
would produce enormous numbers as timestamps. However, the fact is that
the number of ticks in a century fits in a 32-bit word, and even 24 bits holds
numbers large enough that they would have to repeat only every half year. If
Wwe make the reasonable assumption that half a year is long enough for any
transaction to complete, no confusion will result if we let timestamps recycle
after that amount of time. Even a sixteen bit timestamp is adequate for most
Purposes.

Now, we must consider how timestamps are used to force those transactions
that do not abort to behave as if they were run behave serially. We store

402 CONCURRENT OPERATIONS ON THE DATABAg

with each item in the database two times, the read time, which is the highe‘st

timestamp possessed by any transaction to have read the item, and the Write

time, which is the highest timestamp possessed by any transaction to have
written the item. By so doing, we can maintain the fiction that each transactioy
executes instantaneously, at the time indicated by its timestamp.

We use the timestamps associated with the transactions, and the read and
write times stored with the items, to check that nothing physically impossibe
happens. What, we may ask, is not possible?

1. It is not possible that a transaction can read the value of an item if that
value was not written until after the transaction executed. That is, a
transaction with a timestamp ¢; cannot read an item with a write time of
tg if t3 > t1. If such an attempt is made, the transaction must abort and
be restarted.

2. It is not possible that a transaction can write an item if that item has its
old value read at a later time. That is, a transaction with timestamp ¢,
cannot write an item with a read time tg, if t2 > t;. That transaction
must abort.

Notice that the other two possible conflicts do not present any problems,
Not surprisingly, two transactions can read the same item at different times,
without any conflict. That is, a transaction with timestamp of #; can read ap
item with a read time of 5, even if ¢ > t;. Less obviously, the transaction
with timestamp 1 need not abort if it tries to write an item with write time t,,
even if 3 > t;. We simply do not write the item. The justification is that in

sthe serial order based on timestamps, the transaction with timestamp ¢; wrote
the item, then the transaction with timestamp ¢, wrote it. However, between

t; and t3, apparently no transaction read the item, or else the read time of

the item would éxceed t; when the first transaction came to write, and that

transaction would abort by rule (2).

To summarize, the rule for preserving serial order using timestamps, but
no locking, is the following. Suppose we have a transaction with timestamp ¢
that attempts to perform an operation X on an item with read time ¢, and
write time ¢,,. . : ,

a) Perform the operation if X=READ and ¢ > t,, or if X=WRITE, ¢t > t,,
and ¢t > t,. In the former case, set the read time to t if ¢ > ¢,, and in the
latter case, set the write time to ¢ if t > ¢,,.

b) Do nothing if X=WRITE and ¢, < t < t,.

¢) Abort the transaction if X==READ and ¢t < t,, or X=WRITE and t < t,.

Example 11.14: Let us review the transactions of Fig. 11.1. Suppose that T
is given timestamp 150 and 75 has timestamp 160. Also, assume the initial
read and write times of A are both 0. Then A would be given read time 150
when T reads it and 160 at the next step, when it is read by Ty. At the fifth
step, when T, writes A, the timestamp, 160, is not less than the read time of

11.7 OPTIMISTIC CONCURRENCY CONTROL 403

T1 Ts T3 A B C
200 150 175 RT=0 RT=0 RT=0
WT=0 WT=0 WT=0
(1) READ B RT=200
(2) READ A RT==150 A
(3) READ C RT=175
(4) WRITE B WT=200
(5) WRITE A WT=200
(6) WRITE C
(7) WRITE A

Fig. 11.20. Optimistically executing transactions.

A, which is also 160, nor is it less than the write time, which is 0. Thus the
write is permitted, and the write time of A is set to 160. When T} attempts to
write at the last step, its timestamp, 150, is less than the read time of A, so T}
is aborted, preventing the anomaly illustrated in Fig. 11.1. A similar sequence
of events occurs if the timestamp of 77 is larger than that. of T5. [

Example 11.15: Figure 11.20 illustrates three transactions, with timestamps
200, 150, and 175, operating on three items, A, B, and C, each of which are
assumed to have read and write times of 0 initially. The last three columns
indicate changes to the read time (RT) and write time (WT) of the items.

At step (6), an attempt to write C' is made. However, the transaction doing
the writing, 75, has a timestamp of 150, and the read time of C is then 175.
Thus, T3 cannot perform the write and must be aborted. Then, at step (7), T3
tries to write A. As T3 has a timestamp, 175, that is bigger than the read time
of A, which is 150, T3 need not abort. However, the write time of A is 200,
so the value of A written by T3 is not entered into the database, but rather is
discarded, no write taking place. [

v

Commitment of Transactions

The above algorithm will sometimes fail to keep the database in a state that
could be reached by the serial execution of transactions, because we have so
far failed to account for the possibility that a transaction that aborts may have
written something successfully into the database before doing so. To prevent
such values written from fouling the database, we must regard the actual write
operation as being only phase one of a two-phase commit.

That is, the WRITE action by a transaction does not permanently alter
the database. Rather, the value is entered into the log, and the write time of
the item tentatively updated, with the old value and write time stored in the
log. After performing all its writes, the transaction executes a COMMIT action,
whereupon all the values written by the transaction are made permanent.

404 CONCURRENT OPERATIONS ON THE DATABASER

Between the time the item is written and the time it is committed, p,
transaction may read the new value, since it is tentative, and a transactioy
that read it would have to be rolled back if the writer aborts, as discussed
the previous section. We must make any such reading transaction wait for tje
commitment of the new value or its removal.t If transactions do their Writing
at the end, just before the commitment, this waiting time will be short. Write
with a higher timestamp may be made, and supercede the tentative write; they
are themselves tentative, however. If we keep the old value and write time
available in the database, then we may let READ requests with timestamps
between the old and new write times read the old value, independent of whethe;
the new value gets committed.

Even with the commitment phase, the optimistic strategy calls for only
one step for the READ operation and two for the WRITE operation (write and
commit). In comparison, locking with two-phase commitment requires three
or four steps per operation: LOCK, READ or WRITE, UNLOCK, COMMIT
(if write). Thus, in situations where conflicts and their resulting rollback of
transactions was expected not to be common, we might well prefer the optimistic
approach. ;

Restart of Transactions

As we mentioned, the strategy with which we have been dealing does not prevent
livelock, a situation where a transaction is aborted repeatedly. While we expect
transactions to be aborted rarely, or the whole approach should be abandoned
in favor of the locking methods described earlier, we should be aware that the
potential for cyclic behavior involving only two transactions exists.

Example 11.16: Suppose we have transaction T that writes B and then reads
A, while Ty writes A and then reads B.} If T executes, say with timestamp
100, and T executes with timestamp 110, we might find that 7% wrote A before
T read it. In that case, T} would abort, because it cannot read a value with a
write time greater than its own timestamp. If we immediately restart T4, say
with timestamp 120, it might write B before T3 reads it, causing 75 to abort
and restart, say with timestamp 130. Then the second try at Ty might write
A before the second try of 77 reads A, causing that to abort, and so on. The
pattern is illustrated in Fig. 11.21. [

The solution to the problem indicated by Example 11.16 is not easy to
find. Probably the simplest approach is to use a random number generator to
select a random amount of time that an aborted transaction must wait before

t An alternative is to let the reading transaction proceed, but be prepared to roll it back,
along with any transactions that read values it writes, as discussed in Section 11.6.

i These transactions may read and write other items, so writing before reading need not
mean that the transactions are unrealistic.

