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Abstract13

Differences in canopy architecture play a role in determining both the light and water use14

efficiency. Canopy architecture is determined by several component traits, including leaf length,15

width, number, angle, and phyllotaxy. Phyllotaxy may be among the most difficult of the leaf16

canopy traits to measure accurately across large numbers of individual plants. As a result, in17

simulations of the leaf canopies of grain crops such as maize and sorghum, this trait is frequently18

approximated as alternating 180◦ angles between sequential leaves. We explore the feasibility of19

extracting direct measurements of the phyllotaxy of sequential leaves from 3D reconstructions20

of individual sorghum plants generated from 2D calibrated images and test the assumption21

of consistently alternating phyllotaxy across a diverse set of sorghum genotypes. Using a22

voxel-carving-based approach, we generate 3D reconstructions from multiple calibrated 2D23

images of 366 sorghum plants representing 236 sorghum genotypes from the sorghum association24

panel. The correlation between automated and manual measurements of phyllotaxy is only25

modestly lower than the correlation between manual measurements of phyllotaxy generated26

by two different individuals. Automated phyllotaxy measurements exhibited a repeatability of27

R2 = 0.41 across imaging timepoints separated by a period of two days. A resampling based28

genome wide association study (GWAS) identified several putative genetic associations with29

lower-canopy phyllotaxy in sorghum. This study demonstrates the potential of 3D reconstruction30

to enable both quantitative genetic investigation and breeding for phyllotaxy in sorghum and31

other grain crops with similar plant architectures.32
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1 Introduction33

Increases in crop productivity and water use efficiency are required due to increases in the world34

population and decreasing access to fresh water for agriculture [1]. In the past, increasing the35

tolerance of crops to high planting densities has improved crop productivity [2].36

The increased tolerance of high planting densities in modern maize hybrids is explained at least37

in part by a shift in the distribution of light throughout the canopy [2], a distribution determined by38

plant canopy architecture. Photoinhibition in the upper canopy is decreased, and the photosynthetic39

capabilities of the leaves in the lower canopy are more effectively utilized when light is distributed40

more evenly throughout the canopy, increasing the overall radiation use efficiency of the crop [3].41

Furthermore, shifting a larger proportion of photosynthesis into the lower canopy reduces the water42

loss via transpiration. Stomata lower in the canopy are less exposed to wind and thus have a stronger43

boundary layer; the water concentration gradient driving transpiration is additionally decreased as a44

consequence [4].45

Interest in optimizing crop canopy architecture has motivated the study of genes and genomic loci46

determining variation in many of the individual components of canopy architecture, including the47

vertical leaf angle [5–8], internode length [9–12], and plant height [13–16]. , and it also contributes to48

light distribution throughout plant canopies. Extreme phyllotaxic deviations and their inheritance49

have long fascinated geneticists [17]. However, relative to other canopy architecture traits, phyllotaxy50

has been subject to comparatively fewer quantitative genetic investigations . This absence may be51

explained, at least in part, by the difficulty of collecting large numbers of accurate measurements52

of phyllotaxy manually. As a result of the limited investigation of this trait, it has been unclear53

how much, if any, quantitative genetic variation in phyllotaxy exists in grain crops relative to the54

expectation of perfectly alternating – 180◦ degree angles between sequential leaves – phyllotaxy for55

these species.56

On a developmental level, phyllotaxy (Figure 1) is initially determined by the spacing of the57

newest leaf primordium, P0, in the shoot apical meristem (SAM), relative to the previous leaf58

primordium. The first molecular markers of the development of a new leaf primordium are an59

auxin maximum around the point of the new leaf primordium formed by PIN1 convergence and a60

subsequent down-regulation of KNOTTED-LIKE HOMEOBOX (KNOX) genes [19]. However, the61

final orientation of mature leaves appears to also be under a degree of environmental control. A range62

of environmental factors influence the orientation of leaves in maize, including wind, planting density,63

seed orientation, and water stress [20–25]. Some, but not all, maize genotypes have also exhibited64

the ability to reorient the axis of their leaves to avoid overlaps between neighboring plants [21, 25,65

26]. Specific genes and genomic loci governing variation in this capacity have been mapped via66

GWAS [25]. However, this reorientation typically shifts the orientation of leaves on both sides of67

the plant reciprocally rather than modifying the alternating pattern of phyllotaxy that is typically68

exhibited by maize and other related plant species. Genetic variation and control of mean phyllotaxy69

has not been evaluated in depth via quantitative genetic methods, although several large effect single70

gene mutations that alter phyllotaxy have been characterized in maize [27, 28].71

Perhaps the best-known of these phyllotaxy mutants is the recessive abphyl1 mutant in maize,72
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Figure 1: Phyllotaxy is the arrangement of the leaves around the stem in the plane.
Created in Biorender.com [18]. A) The top view of a sorghum plant exhibiting the expected
alternating phyllotaxy with 180◦ angles between each pair of sequential leaves. B) The top view
of a sorghum plant exhibits deviations from the expected phyllotaxic angles. Note that the angle
captured will vary depending on the side of the plant measured. The two possible angles measured
for a given pair of sequential leaves are conjugate to each other, e.g., their sum is equal to 360◦. C)
The side view of a sorghum plant and two examples of the phyllotaxic angle φ in the plane.

described by Jackson and Hake in 1999 [27]. This mutant typically exhibits an opposite phyllotaxy73

wherein one node produces two leaf blades with the midribs separated by approximately 180◦, with74

occasional switches to the wild-type pattern of alternate phyllotaxy occurring partway through75

growth following an intermediate transition node wherein two leaf blades adjacent to one another76

are partially fused [27]. The authors also describe alternate phenotypes of the mutant wherein the77

shoot splits into two shoots with alternate phyllotaxy or a dwarfed plant with what appeared to78

resemble spiral phyllotaxy. Giulini et al. [29] cloned the gene underlying this mutant and found79

it a cytokinin-inducible response regulator controlling SAM size. The described opposite or spiral80

phenotypes of the abphyl1 mutant in comparison to the wild-type alternate phyllotaxy may predispose81

us to conclude that phyllotaxy only varies qualitatively, but not quantitatively.82

Previous methods of quantitatively measuring phyllotaxy can largely be divided into purely83

manual methods, top down imaging based methods, and approaches based on 3D reconstruction84

(Figure 1A). Protocols for manual measurements include the use of a circular protractor to measure85
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the change in angle between sequential leaves [30], using a compass aligned with leaf midribs to86

measure the angle of each leaf with respect to magnetic north [22], a wooden panel marked with87

angles [21, 26, 31], or simple visual assessment of the angle of individual leaves relative to the axis88

of planting [24, 32]. These approaches tend to be relatively low throughput, with measurements89

collected from dozens to hundreds of plants representing less than ten genotypes per experiment.90

Top down imaging, whether from a UAV or from an elevated ground based camera, can increase the91

throughput of phyllotaxy measurements [23, 25, 32, 33]. Estimates of phyllotaxy can be obtained92

from these top-down images through a range of approaches including manual scoring [23, 25], fitting93

bounding boxes to individual leaves [33] or detecting the positions of midribs [32]. These methods94

are limited to measurements of the azimuth angle in the upper canopy, which is the deviation of95

the leaves from the row line (direction of planting). Other studies utilize electromagnetic 3D plant96

digitizers to reconstruct the plant in silico [30, 34]. While these methods offer precise measurements97

throughout the canopy, they are relatively low-throughput, as each plant required approximately 2098

minutes of labor [32]. Daviet et al. [35] utilize skeletonized 3D reconstructions of maize to measure99

the azimuth angle, in a method similar to the one presented here, but do not evaluate the efficacy of100

the method for the measurement of phyllotaxy.101

We use 3D reconstructions of sorghum plants from a diversity panel [36] to enable high-throughput102

phenotyping of phyllotaxy in the lower canopy and identify genetic markers associated with this trait.103

We identify heritable variation in sorghum phyllotaxy as well as three genetic markers associated with104

the median phyllotaxic angle in the lower 5 leaves. Application of this method to larger populations105

with additional replication will likely increase the number of marker trait associations for phyllotaxy106

in sorghum, providing a basis for both functional characterization of candidate genes and marker107

assisted selection.108

2 Materials and Methods109

Figure 2 shows an overview of the workflow employed in this study. We describe each step in more110

detail below, but briefly: photos were taken from six different views (five side views and one top111

view) of 366 plants at three timepoints. The images were used as input to a 3D voxel carving112

algorithm described in [37]. The 3D voxels were skeletonized and segmented into the stem and leaves.113

Leaf angles are extracted by measuring the principal directions of the stem and leaves. We then114

normalized the angles, transforming them into the same coordinate system, and determined the115

angle difference in the xy-plane between successive leaves to estimate phyllotaxy. These values were116

then used to estimate the heritability of automated phyllotaxy measurements and conduct a GWAS117

analysis. Below, we describe each step in detail.118

2.1 Plant growth conditions, image acquisition, and manual measurements119

A total of 366 sorghum plants, representing 236 genotypes from the sorghum association panel [36]120

with partial replication (40 replicated genotypes), were grown at the automated phenotyping facility121

of the University of Nebraska-Lincoln and imaged on April 11th, April 13th, and April 16th, 2018122
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2D RGB Imaging

• 5 side views + 1 top view

• 366 plants

• 236 genotypes from SAP

• 3 timepoints

3D Reconstruction

• Image segmentation

• Voxel carving

Skeletonization

• Thin voxels classified 
as leaves or stem

• Extract leaf position

Data Processing

• Calculate difference of the 
angle between leaves from 
180°

• Remove extreme values 

• Summarize across timepoints

Quantitative Genetic Analysis

• Estimate heritability

• Resampling FarmCPU GWAS

Figure 2: An overview of the workflow used in this paper and examples of output from
each stage.

(47, 49, and 52 days after planting, respectively). The growth and imaging protocols were followed as123

described in Tross et al. [5]. In 2023, an additional set of 10 sorghum plants were grown at the same124

facility and imaged on February 1, 2023, 76 days after planting. In 2024, a third set of 10 sorghum125

plants was grown at the same facility and manually measured and imaged on March 5, 2024, 47 days126

after planting. Between 2018 and 2023, the RGB camera used at the facility was upgraded from127

a Basler pia2400-17gc camera equipped with a c6z1218m3-5 Pentax TV zoom lens to a Prosilica128

GT6600 camera to improve resolution (from 2,454×2,056 pixels to 4,384×6,576 pixels) and image129

quality.130

Manual phyllotaxy measurements were conducted by using the Compass application on either an131

iPhone 13 Pro Max or iPhone 14 [38] to measure the direction of each measured leaf. Differences132

between sequential leaves were calculated as was done for the automated phyllotaxy measurements.133

The left edge of the long side of the iPhone was aligned with the midrib of each leaf of interest and134

the phone was rotated along the z-axis (Figure 1C) until the short side of the screen was flush to the135

stem. This process was performed for each collared leaf on each plant of interest. Measurements of136

individual plants were repeated independently by two members of the research team to quantify the137

repeatability of manual phyllotaxy measurements.138

2.2 Phyllotaxy measurement from 3D skeletons139

3D reconstructions of sorghum plants from 2D calibrated images were derived using methods described140

in Gaillard et al. [37, 39], and Tross et al. [5]. The images collected in 2018 were taken from five141

side views collected at equidistant angles (0◦, 72◦, 144◦, 216◦, 288◦) around the plant. In 2023 and142

2024, side view images were collected at 10 equidistant side views (0◦, 36◦, 72◦, 90◦, 108◦, 144◦, 216◦,143

252◦, 288◦, 324◦). The images were calibrated to correct for potential misalignment between the144

pots and the turntable’s axis of rotation, as well as the camera’s optical center with the rotation145

axis. The calibrated images were then processed using a voxel carving algorithm producing a 5123146

voxel resolution representation of the sorghum plant [37]. A skeletonization algorithm was applied147

to this voxel representation of the sorghum plant, iteratively removing voxels from the plant until148

only the skeleton structure remained. To eliminate any gaps in the skeleton caused by disconnected149
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components, a joining process was implemented as part of the skeletonization process [39].150

A Support Vector Machine (SVM) classifier [40] was employed to identify and discard portions of151

the skeleton that did not correspond to actual plant organs, for instance, spurious branches present152

from noise in the data. Post-processing techniques were used to classify voxels as either leaf or stem153

by computing paths from the ground to the leaves and labeling a voxel as part of the stem if it154

belonged to more than two paths. The separated leaves were then assigned numerical labels based155

on the attachment height to the stem within the skeleton structure. Using Principal Component156

Analysis (PCA), the stem voxels’ first and second principal axes were computed. Additionally, PCA157

was used to extract the principal axes for the first 20 voxels (about 6 cm) of each leaf, starting from158

the junction of the leaf with the stem. By using these two coordinate frames, the angles 0◦ ≤ θ < 180◦159

and 0◦ ≤ ϕ ≤ 360◦ of each leaf were calculated in the stem coordinate frame, given by the PCA160

principal directions 3.161

(a) Frame = 0 (b) Frame = 80 (c) Frame = 120 (d) Frame = 165

Figure 3: Rendering of a 3D reconstructed plant from the validation dataset, with the
principal directions of the stem and leaves marked. The green wireframe shows the hull of the
3D reconstructed plant, and the solid blue lines show the principal directions of the stem and leaves
of the plant. The supplemental material associated with this manuscript contains video animations
showing the 3D reconstructions and leaves’ principal directions for each of the ten plants grown in
2023. We highly recommend the reader to watch the video animations to get a better sense of the
angles in 3D.

Accuracy and topology correctness were assessed as described in detail in Gaillard et al. [37, 39].162

In brief, the accuracy scores were determined using the Dice coefficient based on the proportion163

of plant pixels in the 2D images represented by re-projected voxels in the 3D reconstruction. A164

topology was considered to be incorrect if the final plant skeleton did not exhibit a tree topology.165

Reconstructions with an accuracy score below 0.70 or an incorrect topology were removed from the166

dataset. Reconstructions containing only one ϕ value (i.e., only one leaf was identified in the skeleton)167

were also removed from downstream analyses as phyllotaxy relies on the angle between two leaves.168

This filtering criteria resulted in the exclusion of 115 reconstructions. Next, the differences between169

sequential leaves’ ϕ values were represented as φi = ϕi+1 − ϕi. Each φ value was then normalized to170

a range of φ ∈ [0◦, 360◦) by applying the modulo of 360.171
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2.3 Method reliability measures and validation172

2.3.1 Reliability of 3D-reconstruction and manual measurements173

The lower five φ values generated for a plant from the 3D reconstructions were compared pair-wise174

between the three days of imaging (April 11th, April 13th, and April 16th, 2018) to estimate the175

reliability of 3D-reconstruction measurements of phyllotaxy. As it is rare for a healthy sorghum plant176

to have an angle less than a right angle and angles less than 90◦ could result from a leaf being missed177

during reconstruction or skeletonization, φ values less than 90◦ degrees or greater than 270◦ were178

removed.179

There is no inherent structural difference between a phyllotaxy leaf angle of 160◦ or 200◦ with180

which of these two angles is reported by our method depending solely on the side of the plant181

measurement begins upon. To remove the arbitrary effect of side of the plant in comparisons between182

different measurements, we first determined if measurement began on the same side of the plant183

for both sets of measurements being compared. If the Pearson correlation coefficient on a per-plant184

basis was greater than or equal to zero, measurement began on the same side of the plant in both185

sets of measurements, and no transformation was applied to either set of measurements for that186

plant. In the cases where measurement began on different sides of the plant between the two sets of187

measurements for a given plant, we transformed the angles for this plant in one set of measurements188

(shown on the y-axes of plots in Figures 4 and S1) using:189

φi,Conjugate = 360− φi. (1)

On a per-plant basis, this produces the same absolute value for the correlation between the two sets190

of measurements.191

2.3.2 Comparison of 3D-reconstructions with manual measurements192

The inital step of our voxel-carving and 3D reconstruction pipeline was segmentation of 2D input193

images into plant and non-plant pixels. For the 2018 images this step was performed using a194

convolutional neural network [37] trained specifically on manual annotations of the 2018 image195

dataset. For the 2023 and 2024 images taken with a different and higher resolution camera, we196

retrained a neural network with the same published architecture using 18 images collected from three197

plants imaged in 2023 and manually segmented using Paintbrush 2.6 [41] as well as an additional198

67 images which were initially segmented using the older model trained on images from 2018 and199

then manually corrected and updated by human annotators. The segmented images output by the200

re-trained neural network were then used to reconstruct the sorghum plants. As the neural network201

was re-trained with images from the new camera, the reconstructions were visually checked. All202

360◦-normalized φi were obtained for the manual and 3D reconstruction measurements.203
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2.4 Quantitative genetic analyses204

For the purposes of quantitative genetic analysis, phyllotaxy values were transformed into the205

absolute difference between observed angle between two leaves and the expected angle for perfectly206

alternating phyllotaxy (180◦): Φ, denoted as Φi = |φi − 180◦|. Due to previous evidence [5] that207

heritability of measurements from the 3D reconstructions decreased at higher leaves due to movement208

of the upper canopy during rotation in the imaging process, we limited our analysis to the lower209

four phyllotaxic angles from five leaves. The 2D images of plants with a median Φi value greater210

than 1.5 times the interquartile range (136.1− 167.0◦) for one of the first 4 phyllotaxic angles were211

visually examined to determine if these images supported the extreme phyllotaxic values. In 55% of212

cases, the images could not definitively support the extreme phyllotaxic angles. Because it is rare213

for a healthy sorghum plant to have an angle less than a right angle and we could not verify the214

majority of extreme phyllotaxic angles visually examined, Φi > 90 were removed from downstream215

analyses. As lower-canopy phyllotaxy had not been extensively studied in previous literature, we216

evaluated 25 quantitative summaries of lower-canopy phyllotaxy to summarize across the three217

timepoints and/or multiple phyllotaxic angles, detailed in Supplementary Table 1. In aggregate, the218

criteria for reconstruction accuracy, skeleton topology, and Φi value resulted in the exclusion of 52219

sorghum plants, leaving a total of 314 plants representing 223 unique genotypes for downstream220

quantitative genetic analyses. Data analysis and data visualization was conducted using R 4.2.2 [42]221

using the libraries lme4 [43], tidyverse [44], readxl [45], cowplot [46], MoMAColors [47], BiocIO [48],222

GenomicRanges [49], Gviz [50], ggrepel [51], scales [52], viridis [53], stringi [54], and car [55].223

2.4.1 Heritability224

The linear model225

Y = µ+ δi + εi,j , (2)

was fit using the R package lme4 [43], where Y is the response variable, µ is the overall mean, δi226

is the random effect of the ith genotype, and εi,j is the residual error for the jth plant of the ith227

genotype. Variance components were then extracted, and broad sense heritability was calculated as228

H =
σ2
G

σ2
G + 1

nσ
2
R

, (3)

where σ2
G is the genotypic variance and σ2

R is the residual variance and n = 2, the minimum number of229

replications per genotype. When there were more than 2 replications per genotype, all replicates were230

used in the estimation except in the case of the reference genotype PI656058, which was replicated231

8 times, 2 more than any other genotype. 2 random replications of PI656058 were used in the232

estimation.233

2.4.2 GWAS234

Genome-wide association studies reported here were conducted for the 13 quantitative summaries of235

phyllotaxy with a broad-sense heritability ≥ 0.20 from 218 sorghum varieties which were phenotyped236
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as part of this study, passed the quality control steps described above, and were present in a set of237

4,693,810 genetic markers scored for the same population via whole genome resequencing. Five of the238

223 genotypes that passed the quality control steps described above were not present in the larger239

set of genetic markers called for the sorghum association panel [56] aligned to the Sorghum bicolor240

v3.1.1 reference genome [57] which was filtered to generate the genetic marker set used in this study.241

These five genotypes were excluded from the GWAS. The marker set from Boatwright et al. [56] was242

filtered to exclude those markers which were not biallelic, indels, or missing in ≥ 30%, heterozygous243

in ≥ 10%, or with a minor allele frequency <5% of the 218 genotypes present in both the phenotype244

and genotype data using VCFtools v0.1.16 [58] and BCFtools 1.17 [59]. The number of effective245

markers was estimated to be 1,088,251.19 using GEC v0.2 [60]. The dataset was analyzed one246

hundred times using the FarmCPU algorithm as implemented in rMVP v1.0.6 [61], with a threshold247

of 0.21 for iteration in the FarmCPU algorithm, corresponding to approximately 0.05 divided by the248

ratio of estimated effective markers to total markers. In each interation, 10% of phenotypic records249

were randomly masked and genetic markers with a p-value of less than 4.59× 10-8, corresponding250

to a Bonferroni corrected p-value of 0.05 applied to the estimated effective independent genetic251

markers, were considered to be significantly associated with the phenotype. For each marker which252

exceeded this threshold in at least one of the one hundred iterations, a resampling model inclusion253

probability (RMIP) was calculated based on the number of interations in which the marker exceeded254

the significance threshold divided by the total number of interations. Markers that exceeded an255

RMIP of 0.1 were considered of greatest interest for downstream analysis. Linkage disequilibrium256

estimates within a chromosome were estimated using plink v1.90 [62].257

3 Results258

3.1 Reliability of automated 3D phyllotaxy measurements259

Measuring each leaf angle for a single plant took one person between ten and twenty minutes to260

complete. After removing extreme values and transforming conjugate angles as described in , the261

correlation of ground truth measurements of phyllotaxy between different individuals measuring the262

same pairs of leaves on the same plants was R2 = 0.55 (n = 46 angles), based on data from five263

pairs of leaves per plant measured on ten plants by two individuals (Figure 4A). This was modestly264

higher than the correlation between measurements of the first five pairs of leaves generated from 3D265

reconstructed plants imaged at two time points separated by two days (R2 = 0.41, n = 961 angles,266

Figure 4B) after applying the same filtering criteria and transformations to the data. When the267

same comparison was made between automated measurements of phyllotaxy generated using images268

collected either three days apart or five days apart, the correlation between measurements declined269

to R2 = 0.33 and R2 = 0.24, respectively (Figure 4B, Supplementary Figure 1). We also found a270

moderate correlation (R2 = 0.48, n = 75 angles, Figure 4C) between 3D reconstruction measurements271

and manual measurements when comparing across the combined set of manual measurements taken272

by Individual 1 and Individual 2 and the corresponding conjugate angles from the reconstructions.273
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Figure 4: Both manual and reconstruction-based methods generate moderately repeatable
measurements of phyllotaxic angles in the lower canopy. A) Correlation between manual
measurements of lower five phyllotaxic angles (φ) for ten plants by two different people after removing
φ values less than 90◦ or greater than 270◦, with R2 = 0.55. B) Correlation of lower five φ values
measured by 3D reconstructions of the sorghum plants when imaged on April 11, 2018 (Timepoint 1)
and April 13, 2018 (Timepoint 2) after removing φ values less than 90◦ or greater than 270◦, with
R2 = 0.41. In cases when the measurements for a single plant were negatively correlated between
the two days, the values from the Timepoint 2 reconstruction were transformed to their conjugate
angles. C) Correlation between manual and 3D reconstruction measurements of lower five φ values
after removing φ values less than 90◦ or greater than 270◦, with R2 = 0.48. In cases where the
3D reconstruction and manual measurements were negatively correlated for a single plant, the 3D
reconstruction measurements were transformed to their conjugate angles.

3.2 Variation in sorghum phyllotaxy274

An initial assessment of phyllotaxy in 336 plants (236 genotypes) of the sorghum association panel275

using the 3D reconstruction method described above identified plants with deviations from the276

expectation of perfectly alternating phyllotaxy between the second and third extant leaves in sorghum277

plants ranging from Φ2 = 1.05◦ (nearly perfectly alternating phyllotaxy between leaves 2 and 3,278

Figure 5A, D) to Φ2 = 170.4◦ (leaves 2 and 3 emerging one on top of the other, Figure 5C, F).279

Absolute variations from the expected angle of 180◦ in the lower 4 phyllotaxic angles across all plants280

and all timepoints ranged from Φi = 0.01◦ to Φi = 179.97 (Figure 5G). In some cases, extreme281

phyllotaxy values could be validated by manual examination of the source images (Figure 5B, C, E,282

F). However, in 55% of cases visually examined, manual examination of source images for sorghum283

plants that deviated from the expected phyllotaxy by >90◦ could not definitively support these284

extreme values. In some cases, specific issues were identified to which the incorrect measurements285

could be attributed including the presence of one or more tillers, fallen plants, or leaves senescing in286

an unexpected order (Supplemental Figure 2), as well as errors in the ordering of leaves. Given the287

difficulty even trained subject matter experts experienced in accurately assessing phyllotaxy from 2D288

images and the high rate of errors among manually checked phyllotaxy angles in the >90◦ bin, the289

decision was made to exclude these values from downstream analysis.290
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Figure 5: Variation of phyllotaxic angles among sorghum plants of different genotypes.
A-F) Side (A-C) and top (D-F) views of three sorghum plants with minimal (A, D, PI533866),
moderate (B, E, PI533852), and extreme (C, F, PI533915) levels of deviation from the expected
value of 180◦ for Φ2.G) The distributions of median Φ1−4 values before (gold, 366 plants) and after
removing extreme values (blue, 308 plants).

3.3 Quantitative genetic analysis291

As we had measurements for multiple phyllotaxic angles in the lower canopy per plant across the292

three timepoints, we evaluated 25 quantitative metrics of lower canopy phyllotaxy to summarise293

across multiple timepoints and/or angles after removing extreme values, which are described in294

Supplemental Table 1. Thirteen of 25 quantitative metrics were estimated to have broad-sense295

heritabilities greater than or equal to 0.2 (Supplemental Table 1). We detected stable (RMIP ≥ 0.1)296

marker-trait associations for 7 of these 13 quantitative summaries of lower canopy phyllotaxy via297

GWAS (Figure 6, Supplementary Table 1, Supplementary Figure 3). Six of the seven markers which298

exceeded an RMIP of 0.1 for at least one trait were also identified across four or more total traits299

when the RMIP threshold was reduced to 0.02. These six genetic markers and their associated traits300

are detailed in Supplementary Table 2. The repeated signals associated with the same markers301

indicate that multiple phyllotaxy summary metrics capture similar information content about the302

properties of the lower canopy in sorghum.303
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The marker-trait association with the highest stability was identified for the median Φ1−4 value304

with the genetic marker Chr05:12,109,370 (RMIP= 0.26, Figure 6). This trait captures the median305

phyllotaxic angle measured in the lower four phyllotaxic angles across all three timepoints for a306

plant, and had a relatively normal phenotypic distribution (Figure 6A). Two additional markers,307

Chr05:65,733,791 and Chr06:41,390,777, were also identified to have stable associations with this308

trait (RMIP= 0.19, 0.11, respectively; Figure 6B). Genotypes carrying the minor allele at each of309

these sites have significantly higher (p < 0.05) median deviations from the expected phyllotaxic310

angle of 180◦ than genotypes carrying the major allele at the same site (Figure 6C–E). Figure 6F–311

G shows the annotated gene models within 100 kb of the identified genetic markers in order of312

descending RMIP, and all annotated gene models within this region and their functional annotations313

are described in Supplementary Table 3. The nearest gene model to the first genetic marker on314

chromosome 5, Sobic.005G086700, which encodes a zinc finger transcription factor, is located 24.5 kb315

from the trait associated marker. Linkage disequilibrium (LD) decays quickly in this region, with316

the maximum LD between the identified genetic marker and genetic markers within the nearest317

gene model being R2 = 0.18. Within 100kb of this trait associated marker, there is also a gene318

encoding an O-methyltransferase (Sobic.005G086600) and three gene models with no functional319

annotation. The second trait associated marker on chromosome 5 is located in the tyrosine kinase320

related to salt stress and antifungal responses. The trait associated marker on chromosome 6 is in321

LD (R2 > 0.6) with genetic markers in two gene models, Sobic.006G061000 and Sobic.006G061100322

(Figure 6G). The closer of these two, Sobic.006G061100 located 18.8 kb from the GWAS hit, encodes323

an AMP-activated protein kinase. The second encodes a protein belonging to the pentatricopeptide324

repeat (PPR) family.325

4 Discussion326

We present a high-throughput method of measuring phyllotaxy in the lower canopy that achieves327

near-human repeatability. The imaging process for each plant requires little human intervention328

and can be completed in approximately 2 minutes, and the reconstruction and skeletonization steps329

each run in less than one minute, making it far more high-throughput than the manual method we330

employed which requires 10 – 20 minutes per plant to produce data with comparable repeatability.331

The more rapid methodology enables application to a large panel of plants. Daviet et al. [35] used332

a similar technique as presented here of reconstruction and skeletonization and show its ability to333

measure the azimuth positions of maize leaves. However, this method requires additional data for334

camera calibration [63], and they do not extend their study to characterize the position of subsequent335

leaves relative to each other, a key factor in the process of leaf initiation, nor do they perform336

quantitative genetic studies to illuminate potential genetic mechanisms of this under-studied trait.337

We evaluate the reliability of the method we present here and find it moderately stable (R2 =0.41338

for the same plants imaged on different days) after removing extreme values. This is modestly less339

repeatable than manual measurements (R2=0.55 for the same plants measured by different people).340

It is possible that a portion of the residual value in correlations of phyllotaxy measurements collected341

at different time points is associated with subtle changes in plant growth or the senescence of leaves, as342
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the repeatability of automated phyllotaxy measurements decreases when comparing images collected343

with larger time intervals (see Supplementary Figure 1). We detect genetically repeatable variation344

in the lower 4 phyllotaxic angles of the canopy that is to some degree, robust to the specific summary345

metric used to summarise across timepoints and/or multiple angles. Thirteen of the 25 summary346

metrics were estimated to have broad-sense heritabilities greater than 0.20 (Supplementary Table 1).347

Several of these measures of lower-canopy phyllotaxy utilize information from multiple angles, while348

others include information only from a single angle across timepoints.349

While the method we present here represents a large step forward in the ability to illuminate350

the genetic basis for phyllotaxy in sorghum, it is not without its limitations. First, Secondly, the351

method has the highest accuracy in the lower canopy due to occlusion of the point of attachment by352

other leaves in the middle and upper canopy or significant movement of the upper plant during the353

imaging process, which makes accurate reconstruction difficult. While phyllotaxy in the upper canopy354

can be estimated using methods similar to He et al. [33], the middle canopy remains a challenge to355

measure, and evidence exists that different levels of the canopy have different genetic determinants356

of architecture [5, 6]. Third, the method discussed here , and may generate extreme values when357

tillers are present (Supplementary Figure 2) Fourth, the method is highly dependent on camera358

calibrations and high-quality image segmentations to train and improve the convolutional neural359

network to segment the RGB images that serve as input to the pipeline for this method. Fourth,360

this initial study was done using a relatively small population (218 genotypes) for association studies,361

limiting the statistical power available to detect genes controlling the trait of interest while sufficiently362

controlling for false positives.363

Despite the limited statistical power provided by the small population employed, we identified364

marker-trait associations a total of 14 significant GWAS signals representing 7 unique markers linked365

to variation in one or more phyllotaxy summary metrics at RMIP≥ 0.1(Figure 6, Supplementary366

Figure 3, Supplementary Table 1). Further examination of the marker-trait associations detected for367

the median Φ1−4 value, which had the most strongly supported marker trait association (RMIP= 0.26)368

showed that the genotypes with the minor allele at any of these sites have significantly higher median369

Φ1−4 values than genotypes with the major allele, indicating greater deviations from the expected370

alternating phyllotaxy of sorghum (Figure 6C–E). As rare alleles tend to be deleterious [64], this may371

indicate that deviations from alternating phyllotaxy are detrimental to overall fitness. The genomic372

regions surrounding the genetic markers associated with the median Φ1−4 value include several373

transcription factors, osmotic stress response genes, protein kinases, and calcium binding proteins, as374

well as several gene models with no functional annotations (Supplementary Figure 3). In the future,375

the method we present here could be employed to score phyllotaxy in larger association panels, such376

as the Sorghum Diversity Panel (SbDiv) [65] and/or to score more replicated plants per genotype,377

both of which should improve our statistical power to identify specific genomic intervals associated378

with variation in phyllotaxy. As maize and sorghum share highly similar plant architectures prior to379

the reproductive stage, we anticipate our method should also be applicable to this crop without the380

need for extensive modification or fine tuning. We demonstrate the feasibility of high-throughput381

measurements of lower-canopy phyllotaxy, enabling quantitative genetic analysis to improve our382

understanding of its genetic control.383
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Supplementary Table 1: Multiple quantitative summaries of phyllotaxy captured heritable
variation.

Summary of

phyllotaxy

Description Broad-

sense

heritabil-

ity

Number

genetic

markers

with

RMIP

≥ 0.1

Median of Φ1−4 Median of lower 4 phyllotaxic angles 0.25 3

Mean of Φ1−4 Mean of lower 4 phyllotaxic angles 0.30 5

Mean of Median

Φ1−4

Mean of the medians of each of the lower 4

phyllotaxic angles

0.27 2

Median of Φ1−3 Median of lower 4 phyllotaxic angles 0.27 1

Median of Φ2 Median of the second phyllotaxic angle 0.34 1

Mean of Φ2 Mean of the second phyllotaxic angle 0.34 1

Median of Φ3 Median of the third phyllotaxic angle 0.32 1

Mean of Φ1−3 Mean of the lower 3 phyllotaxic angles 0.30 0

Mean of Φ3 Mean of the third phyllotaxic angle 0.24 0

Mean of Median

Φ1−3

Mean of the medians of each of the lower 3

phyllotaxic angles

0.28 0

Mean of Mean Φ1−3 Mean of the means of each of the lower 3

phyllotaxic angles

0.28 0

Mean of Mean Φ1−4 Mean of the means of each of the lower 4

phyllotaxic angles

0.33 0

Mean GLM BLUE

Fitted Φ1−4

Mean of fitted values for lower 4 phyllotaxic

angles from GLM BLUE model

0.28 0

Mean of Means

Φ1−2

Mean of the means of each of the lower 2

phyllotaxic angles

0.16

Mean of Φ1−2 Mean of first 2 phyllotaxic angles 0.15

Mean of Medians

Φ1−2

Mean of the medians of each of the lower 2

phyllotaxic angles

0.14

Median of Means

Φ1−4

Median of the means of each of the lower 4

phyllotaxic angles

0.05

Median of Φ1 Median of first phyllotaxic angle 0.03
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Continuation of Table 1

Summary of

phyllotaxy

Description Broad-

sense

heritabil-

ity

Number

genetic

markers

with

RMIP

≥ 0.10

Median of Means

Φ1−3

Median of the means of each of the lower 3

phyllotaxic angles

0.02

Median of Φ4 Median of fourth phyllotaxic angle 0.00

Mean of Φ1 Mean of first phyllotaxic angle 0.00

Mean of Φ4 Mean of fourth phyllotaxic angle 0.00

Median of Medians

Φ1−3

Median of the medians of each of the lower 3

phyllotaxic angles

0.00

Median of Medians

Φ1−4

Median of the medians of each of the lower 4

phyllotaxic angles

0.00

Median of Means

Φ1−2

Median of the means of each of the lower 2

phyllotaxic angles

0.00
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Supplementary Table 2: Six genetic markers identified to have a stable association with
one trait were sometimes identified to have associations with other traits.

Chromosome Position Traits with RMIP
≥ 0.10

Traits with RMIP
≥ 0.02

Maximum
RMIP

Chr05 12109370 Median of Φ1−4,
Mean of Φ1−4,
Mean of Medians
Φ1−4

Mean of Means
Φ1−4, Mean of
GLM BLUE Fitted
Φ1−4

0.26

Chr05 65733791 Median of Φ1−4,
Mean of Φ1−4,
Mean of Medians
Φ1−4

Mean of Means
Φ1−4, Mean of
GLM BLUE Fitted
Φ1−4

0.19

Chr03 56520108 Median of Φ2,
Mean of Φ2

0.12

Chr06 41390777 Median of Φ1−4,
Median of Φ1−3,
Median of Φ3

Mean of Φ1−4,
Mean of Φ1−3,
Mean of Φ3, Mean
of Medians Φ1−3,
Mean of GLM
BLUE Fitted Φ1−4

0.11

Chr05 5060741 Mean of Φ1−4 Median of Φ1−4,
Median of Φ1−3,
Mean of Φ1−3,
Mean of Φ3, Median
of Φ3, Mean of
Means Φ1−4, Mean
of GLM BLUE
Fitted Φ1−4

0.10

Chr02 38310584 Mean of Φ1−4 Median of Φ1−3,
Median of Φ3,
Mean of Φ2, Mean
of GLM BLUE
Fitted Φ1−4

0.10

Chr02 53403506 Mean of Φ1−4 Median of Φ1−3,
Mean of Means
Φ1−4, Mean of
GLM BLUE Fitted
Φ1−4

0.10
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Supplementary Table 3: Identified genetic markers for Median Φ1−4 are within 100kb of
multiple gene models.

Gene model Genetic marker Distance
from
genetic
marker
(kb)

LD (R2) Functional annotation

Sobic.005G086600 Chr05:12,109,370 76.6 0.01 –
0.06

O-methyltransferase

Sobic.005G086650 Chr05:12,109,370 55.6 0.00 –
0.11

None available

Sobic.005G086700 Chr05:12,109,370 24.5 0.01 –
0.18

Zinc finger transcription factor

Sobic.005G086801 Chr05:12,109,370 51.1 0.00 –
0.11

None available

Sobic.005G086900 Chr05:12,109,370 64.9 0.07 –
0.09

None available

Sobic.005G175200 Chr05:65,733,791 46.5 0.01 –
0.01

Serine/threonine protein kinase

Sobic.005G175300 Chr05:65,733,791 33.6 0.00 –
0.38

None available

Sobic.005G175400 Chr05:65,733,791 16.4 0.00 –
0.69

None available

Sobic.005G175500 Chr05:65,733,791 0.0 0.00 –
1.00

Protein tyrosine kinase related to
salt stress/antifungal response

Sobic.005G175600 Chr05:65,733,791 4.3 0.00 –
0.00

Protein tyrosine kinase related to
salt stress/antifungal response

Sobic.005G175700 Chr05:65,733,791 18.1 0.01 –
0.45

Ubiquitin-activating enzyme E1

Sobic.005G175800 Chr05:65,733,791 22.6 0.02 –
0.18

Calcium binding protein
CML30-related

Sobic.005G175900 Chr05:65,733,791 26.9 0.01 –
0.45

None available

Sobic.005G176000 Chr05:65,733,791 37.8 0.00 –
0.43

Membrane-associated zinc finger
protein

Sobic.005G176100 Chr05:65,733,791 47.2 0.01 –
0.11

Mannose-6-phosphate isomerase

Sobic.005G176300 Chr05:65,733,791 82.3 0.01 –
0.22

Leucine-rich repeat-containing
protein

Sobic.006G061000 Chr06:41,390,777 32.4 0.68 –
0.76

PPR repeat family

Sobic.006G061100 Chr06:41,390,777 18.8 0.61 –
0.71

AMP-activated protein kinase

Sobic.006G061201 Chr06:41,390,777 57.8 0.12 –
0.12

None available

Sobic.006G061300 Chr06:41,390,777 65.7 0.18 –
0.20

Osmotic stress potassium
transporter

22



0

10

20

30

0° 15° 30° 45° 60° 75°
Median of Φ1−4

F
re
qu
en
cy

A

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10
Chromosome

R
M
IP

B

15°

30°

45°

60°

75°

Major
n=201

Minor
n=8

M
ed
ia
n
of
Φ
1−
4

C

15°

30°

45°

60°

75°

Major
n=193

Minor
n=13

M
ed
ia
n
of
Φ
1−
4

D

15°

30°

45°

60°

75°

Major
n=188

Minor
n=14

M
ed
ia
n
of
Φ
1−
4

E

F

Sobic.005G175600
Sobic.005G175500

Sobic.005G176000
Sobic.005G175700

Sobic.005G175800

G

Sobic.006G061000

Sobic.006G061100

Sobic.006G061300

H

LD

0.00 0.25 0.50 0.75 1.00

Sobic.005G086600

Sobic.005G086700

Figure 6: GWAS identifies genomic regions associated with variation in the median of
the lower four phyllotaxic angles. A) Distribution of the median of the Φ1−4 values for each
plant. The broad sense heritability of this trait was estimated to be 0.25. B) Results of a resampling
FarmCPU GWAS conducted for median of the Φ1−4 value. Dashed line indicates an RMIP value of
0.10, the cutoff employed in this study. C) Median Φ1−4 values for each plant by allele (major or
minor) at Chr05:12,109,370 (RMIP= 0.26). The n below each box indicates the number of genotypes
homozygous for the allele. Genotypes with heterozygous calls at the marker were excluded. D)
Median Φ1−4 values for each plant by allele (major or minor) at Chr05:65,733,791 (RMIP= 0.19). E)
Median Φ1−4 values for each plant by allele (major or minor) at Chr06:41,390,777 (RMIP= 0.11). F)
Genomic interval surrounding the trait associated marker Chr05:12,109,370 (black dot). The total
region shown is 200 kilobases, 100 kilobases on either side of the trait associated marker. Colored
boxes above the black line indicate the position of annotated genes. Color bar below the black
line indicates linkage disequilibrium between the trait associated marker and other genetic markers
within the 200 kilobase interval. G) Genomic interval surrounding the trait associated marker
Chr05:65,733,791. H) Genomic interval surrounding the trait associated marker Chr06:41,390,777.
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Supplementary Figure 1: Correlation between phyllotaxic angles from reconstructions of
the same plant decreases as time between imaging dates increases. A) Correlation of
lower five φ values measured by 3D reconstructions of the sorghum plants when imaged on April
13, 2018 (Timepoint 2) and April 16, 2018 (Timepoint 3) after removing φ values less than 90◦ or
greater than 270◦, with an R2 value of 0.3304 (n = 820 angles). In cases when the measurements
for a single plant were negatively correlated between the two days, the values from the Timepoint
3 reconstruction were transformed to their conjugate angles. B) Correlation of lower five φ values
measured by 3D reconstructions of the sorghum plants when imaged on April 11, 2018 (Timepoint 1)
and April 16, 2018 (Timepoint 3) after removing φ values less than 90◦ or greater than 270◦, with
an R2 value of 0.2351 (n = 820 angles). In cases when the measurements for a single plant were
negatively correlated between the two days, the values from the Timepoint 3 reconstruction were
transformed to their conjugate angles.
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Supplementary Figure 2: Tillers, lodging, or early leaf senescence in sorghum plants can
cause extreme phyllotaxic values in reconstruction measurements. A) A sorghum plant
with large tillers. This can cause extreme phyllotaxy values when measured via 3D reconstruction.
B) A lodged sorghum plant. Lodged plants may also present as having extreme phyllotaxy values.
C) A plant where the third true leaf has senesced before the first and second true leaves, resulting in
an extreme phyllotaxic angle being measured as φ2 between the second true leaf and the fourth true
leaf.
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Supplementary Figure 3: Resampling FarmCPU GWAS detects stable marker-trait associa-
tions for multiple quantitative summaries of lower-canopy phyllotaxy. A – L) Manhattan
plot of marker-trait associations for each quantitative summary of lower canopy phyllotaxy with a
broad-sense heritability ≥ 0.20. 26




