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ABSTRACT
This study examines the use of extended reality (XR) in helping students with conceptual comprehension of artificial intelli-

gence (AI) concepts, specifically neural networks (NNs) and handwritten digit recognition. Using a multi‐methods approach,

this study assesses student performance and understanding of such concepts. Student participants (N= 29) engaged in an XR

environment designed to teach NNs and completed in‐lesson assessments consisting of multiple‐choice questions and open‐
ended questions. Quantitative data were analyzed using the k‐means clustering method to classify performance levels based on

the accuracy of the answers. The elbow approach determined the number of clusters, and the average silhouette score showed

the cluster quality after clustering. Qualitative data underwent thematic analysis to identify challenges in handwritten digit

recognition. Results showed that the accuracy of the students' responses ranged from 17% to 100% and could be classified into

three groups, and that factors like handwriting clarity, digit placement, and writing style significantly impacted the accuracy of

handwritten digit recognition. The findings suggest the potential of using XR for supporting learning and engagement in

studying AI concepts. Future research is encouraged to apply XR across various education levels and explore broader AI

concepts. This study contributes to the literature on applying XR in computer science education by providing insights into how

XR can enhance conceptual comprehension of complex AI concepts like NNs.

1 | Introduction

Immersive learning is a pedagogical approach that leverages
advanced technologies, particularly virtual reality (VR) and
augmented reality (AR), to create engaging and interactive
learning environments. This method is characterized by its

ability to immerse learners in simulated or artificial environ-
ments that enhance their understanding and retention of
complex concepts. The immersive experience is achieved
through high representational fidelity, which fosters a sense of
presence and engagement among learners, thereby motivating
them to actively participate in the learning process [1, 2].
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Specifically, immersive learning refers to learning experiences
that are accessed through a head‐mounted display in environ-
ments with simulated components [3, 4]. Immersive learning
initiates with a student‐centered design to motivate learners and
help them develop the intended skills or learning outcomes [5].

Extended reality (XR) is a technology that enables immersive
learning [5, 6]. XR can be considered to encompass mixed
reality (MR), AR, and VR technologies [7], mainly combining
virtual and real worlds [8]. XR has been advancing at an
unprecedented rate [9] as further evidenced by the rapidly
increasing number of XR‐related publications [10]. Immersive
learning with XR has recently become popular and spans dif-
ferent domains, such as medicine and computer science [11]. In
a similar manner, XR can positively affect science, technology,
engineering, and mathematics (STEM) education [12].

Immersive learning through VR and XR technologies has many
educational advantages as it makes learning accessible [13],
increases engagement [14], and improves learning outcomes in
terms of performance [15] and overall achievement [16].
Moreover, VR and XR can create highly realistic simulations,
offering a safe space for learners to practice skills or solve
problems at an affordable cost [17]. Therefore, STEM topics can
often be taught at different education levels, such as middle
school, high school, and undergraduate, using immersive
learning [14]. However, VR and XR learning experiences have
similar and different advantages for supporting learning. For
instance, while VR experiences have the ability to provide
learners with a total immersion that promotes creativity and
problem‐solving by allowing learners to experience scenarios
that could not be possible in traditional settings [15], XR
overcomes some limitations VR has, such as isolating users
from their physical environment and the potential for cyber-
sickness [18], by combining real and virtual elements to create a
more balanced and comfortable learning environment.

Unlike VR, XR allows learners to see key parts of their physical
surroundings, such as their desk, laptop, peers, or instructor,
which reduces feelings of isolation and supports collaboration
[14]. By blending real and virtual environments, XR also min-
imizes the risk of cybersickness [19]. Overall, these features
make XR particularly useful for teaching and learning, given its
affordability and adaptability for hybrid or group learning,
where interaction with both real and virtual spaces is important
[17, 19]. XR can create highly realistic simulations, offering a
safe space for learners to practice skills or solve problems at an
affordable value [17], thus increasing learner motivation and
engagement as the novelty of the technology captures their
attention throughout the learning process [16].

Educational researchers have documented the learning benefits of
using XR technology in STEM education [12] as many STEM
concepts are abstract, counterintuitive, and difficult to under-
stand. Researchers have recommended using XR technologies for
these topics in STEM, where three‐dimensional (3D) visualiza-
tions could benefit students by making such concepts more
accessible [20]. Artificial intelligence (AI) is one of the abstract
concepts in STEM. Learning the underlying AI algorithms and
concepts, such as neural networks (NNs), gradient descent, or
back propagation, is necessary but presents significant challenges.

These topics are difficult to grasp using traditional teaching
methods, and there is a gap in finding effective pedagogical
approaches to make these complex AI concepts more under-
standable and engaging. Given the affordances of immersive
technologies, we hypothesize that XR can support learners in
their understanding of topics related to AI.

This descriptive study investigates how learning of AI concepts,
specifically related to NNs, is supported within an XR‐based
environment. This involves understanding the interplay
between the XR technology and the learning activity, such as
the sequencing of the content and embedded scaffolding, to
help students grasp the AI concepts. For instance, scaffolding
may include interactive prompts that guide student interaction
with the NN model, feedback (e.g., neuron activation patterns),
and integrated conceptual checks that require students to apply
their emerging or enhanced knowledge (e.g., in‐lesson ques-
tions). Particularly, this study evaluates the XR condition for
learning NNs and handwritten digit recognition to approach the
following research questions:

• What are learners' conceptual understanding of neural net-
works while interacting with an XR environment?

• How do the learners' conceptual explanations relate to their
performance enacted during the immersive learning experience?

This study used a multi‐methods approach to answer these
questions, analyzing quantitative data from in‐lesson multiple‐
choice questions (using the k‐means clustering method) and
qualitative data from open‐ended voice‐to‐text responses (using
thematic analysis). An important implication of this study is that it
informs computer science educators about using XR and its
effectiveness for teaching and learning AI‐related concepts,
addressing important questions in XR studies: (a) for whom, (b)
the purposes and conditions, and (c) the potential effectiveness [7].

2 | Related Work

2.1 | Immersive Learning and Frameworks

Immersive technologies offer compelling interactive experiences
and have been applied in education [21] to enhance learning
participation and outcomes [6]. They transform traditional
learning methods by creating environments where learners can
interact with realistic simulations or scenarios, leading to deeper
engagement [14]. Immersive learning has been defined from
educational (e.g., supporting engagement) and technological (e.g.,
involving simulation aspects) perspectives [21]. Immersive
learning frameworks have been developed through technological,
pedagogical, and psychological features, such as platform, con-
text, and motivation, respectively [21]. Presence, immersion,
cognition, emotion, and motivation can affect immersive learning
results [22]. Integrating pedagogical, psychological, and techno-
logical aspects in immersive learning emphasizes the need for
well‐rounded strategies that not only leverage technology but also
consider human cognitive and emotional responses [21].

Immersive learning is not only about integrating new technol-
ogies into education but also about creating meaningful and
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engaging experiences for learners [23]. These experiences
should allow students to practice, explore, or solve problems in
scenarios impossible in traditional learning environments [24].
However, achieving this balance requires careful design of the
immersive learning experiences and the system's implementa-
tion to avoid making them overly complex, leading to techno-
logical distractions or cognitive overload [18]. Instructors can
create learner‐friendly environments that address learners'
emotional engagement, the cognitive load on learning out-
comes, embodiment, and social interaction and reflect on how
learners feel and think while interacting with technology, en-
suring that immersive technologies enhance rather than hinder
the educational experience [25, 26].

About two decades ago, a four‐dimensional framework was
introduced to explore games, simulations, and immersive
environments in education, encompassing pedagogical (e.g.,
learning theories), learner‐related (e.g., profile), contextual (e.g.,
outdoors), and representational (e.g., interactivity) aspects [27].
Its later applications suggested that designing immersive learning
experiences that are holistic and interactive is important, making
them learner‐centric and adaptable to diverse educational needs
and technological advancements [28].

Later, the CAMIL framework was developed to understand im-
mersive learning, using immersive VR as a demonstration [4].
This model bridges cognitive science and immersive technology,
offering insights into how mental processes interact with tech-
nological affordances in learning environments. The emphasis
was placed on the interaction between media and methods,
highlighting instructional methods that value student presence
and agency because they can lead to better learning [4]. The
authors discussed how presence and agency impact six cognitive
and affective factors: interest, intrinsic motivation, embodiment,
cognitive load, self‐efficacy, and self‐regulation. CAMIL provides
a roadmap for educators and developers to optimize immersive
learning systems by breaking these factors into actionable com-
ponents. The connection between these factors and different
learning outcomes, including factual, conceptual, and procedural
knowledge, along with knowledge transfer, suggests that lower
cognitive loads and higher levels of the remaining five factors
could improve learning outcomes. Reducing the cognitive load
while maintaining other factors ensures that learners can focus
on content rather than the mechanics of technology [4].

Another immersive learning evaluation framework was deve-
loped specifically in the context of higher education, comprising
a game‐based approach with five characteristics: goal, results,
tasks, scoring criteria, and rating methodology, offering a
structured way to measure the effectiveness of immersive
learning [29]. This framework was implemented in an educa-
tional mobile AR game using interviews to elicit responses,
where participants acknowledged the potential and barriers to
using immersive technologies in education and generally agreed
with the usefulness of the proposed framework in evaluating
learning in immersive settings [29]. These findings emphasize
the importance of addressing barriers such as accessibility and
usability to realize the full potential of immersive technologies.
Recommendations for effective practices in game‐based learn-
ing evaluation in immersive settings include choosing an en-
gaging immersive learning environment [29].

2.2 | Extended Reality

XR has been useful in promoting quality and sustainability in
education [11]. XR offers diverse opportunities to enhance
learning experiences. XR uses software and hardware to give
the audience a comprehensive interactive experience and
facilitates interactions [11]. The literature indicates that overall
interest in XR in education has grown worldwide [11, 12], and
this growth reflects the increasing recognition of XR's potential
to revolutionize traditional educational methods by providing
innovative tools for instruction and practice. In practice, XR
helps with personalized learning and effective interactions and
engagement in the learning process [30]. For example, XR
scenarios can support learners in learning complex concepts or
enhancing hands‐on skills in a risk‐free environment [30, 31].
XR is also promising in spatial reasoning skill development [32].

Both the educational and technological sides are crucial for XR
in education: for instance, XR classrooms can bring more
innovation to education [11]. However, the success of XR
implementation also depends on addressing challenges like
accessibility, cost, and instructor training [33].

A part of XR, AR provides interaction through an enhanced real‐
world environment [34]. Literature has shown that AR has been
used in distinct subjects and grade levels within education [34].
AR applications in education can be categorized into three themes
[34]: (1) hardware‐based [years 1995–2009], (2) application‐based
(years 2010–2019), and (3) device‐based (years 2020 and beyond).
Although many advantages (e.g., enhanced learner motivation)
have been realized over time, there are pending problems like
cognitive overload [18]. Additionally, more qualitative AR‐in‐
education studies are needed [35].

The integration of AR in education goes beyond individual
learning outcomes to broader pedagogical innovations [36, 37].
The literature indicates that using AR can lead to higher levels
of interest and participation in learning activities by allowing
students to interact with content at their own pace and revisit
challenging concepts [38]. However, educators must ensure AR
experiences align with curricular goals and provide meaningful
contexts to avoid novelty‐driven distractions [36].

VR, on the other hand, digitally represents 3D objects and al-
lows seamless immersion and interaction via head tracking
[39]. According to the literature, VR can be used in many fields
of education, such as computer science and engineering, and
the interest in its usage in education continues to increase [40].
The applications of VR have been studied as a tool, design,
and context in education [23]. Common advantages of using VR
in education include increased engagement and improved
motivation, but issues such as user privacy need to be addressed
in research design [23]. VR technology supports deeper
understanding through experiential learning, enabling users to
interact with digital objects and scenarios dynamically [41]. The
increasing interest in VR across various educational fields
reflects its ability to engage students more effectively and
motivate them to learn [23, 42].

A part of XR, MR combines physical and digital elements [43].
Users can see objects and interact with or manipulate them
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[44]. Compared to AR and VR, MR benefits learners in similar
ways, but it may be harder to access due to high computational
requirements [44]. However, the use of MR in education and
training has become popular and is still growing [43]. The lit-
erature indicates that MR in higher education, especially in
STEM, helps students learn by combining the real world with
digital elements, allowing students to interact with complex
systems in an easier way to understand through real‐time
interaction [45].

2.3 | Teaching Deep Neural Networks

Deep NNs are inspired by human brain functioning. They have
become the fundamental element of modern AI and have
helped solve long‐standing computing problems [46], such as
data processing and pattern recognition [47]. An NN model is
an algorithm that, mathematically, is a directed graph with
distinct properties, including a state variable and weights [48].
The modified National Institute of Standards and Technology
(MNIST) data set is popularly used for machine learning or
deep learning tasks [49, 50]. MNIST contains 60,000 normalized
handwritten digit images for training and 10,000 normalized
handwritten digit images for testing [51]. Researchers have used
MNIST to learn NNs [52]. Although comprehending the con-
cept of NNs and how they operate is difficult for learners [46],
XR provides advanced visualization for learners to explore NNs
and understand them better [53]. Hence, the core learning need
addressed by this study is based on the challenges students may
face in grasping complex and abstract AI concepts.

In education, immersive technologies such as VR and AR can
help students comprehend abstract and complex topics [54]. As
NNs are important in fields such as AI and data science,
learning about them provides students with valuable skills [6].
Immersive technologies make learning more engaging by
allowing students to interact with and see NN structures in 3D,
helping to connect theory to real‐world applications [55]. Lit-
erature also suggests immersive technologies improve learning
outcomes, increase retention, and develop critical thinking
skills [56, 57]. Such technologies allow students to learn at their
own pace, making education more inclusive [58, 59]. While
immersive technologies have been increasingly explored in
various educational domains, the literature has overlooked
the conceptual understanding that the students acquire when
interacting with complex visualizations aimed at teaching
AI‐related concepts through XR.

Previous research has investigated the use of XR for supporting
the learning of AI [9], and it established the core functionalities,
including the video pass‐through interface, interactive visual-
ization of NN layers, and controller‐based manipulation [9].
The XR system allowed learners to interact with the system to
investigate the NN, input images, and subsequently respond to
learning questions [9]. While seated, the learner could see the
virtual components and physical surroundings, avoiding colli-
sion or isolation [9]. Later, a comparative study was conducted
against a traditional desktop interface, investigating differences
in user experience metrics, such as usability and overall satis-
faction [31]. That study emphasized that students were satisfied
with the XR system and found it easy to use and learn AI [31].

This manuscript focuses on evaluating how effectively the XR
environment [9] (see Figure 1 for system design) helps students
gain a conceptual understanding of NNs, which is assessed
by looking at their performance and rationales (voice‐to‐text
responses). Recognizing the need for research highlighting
learning outcomes, this study addresses the identified gap. The
novelty of this study lies primarily in “how” this conceptual
understanding is acquired as students interact with an XR en-
vironment. Specifically, by applying a multi‐methods analysis
approach, which combines quantitative performance data
with qualitative explanations, we explore how this XR approach
impacts conceptual understanding as learners articulate com-
plex AI concepts like NNs and handwritten digit recognition.

3 | Methods

This descriptive study investigates students' conceptual under-
standing of NN architecture and function in the context of
handwritten digit recognition, as students interact with an XR
environment designed to teach such concepts.

3.1 | Context and Participants

Conducted in early 2024, this study included 29 participants
(N= 29) who first provided demographic information and re-
ported their familiarity with NNs and handwritten digital
recognition as general background information [31]. Then, the
students (i.e., participants) used the educational XR system to
learn how NNs work (see Table 1). There were (18, 62.1%) male
and (11, 37.9%) female participants (20, 68.9%), undergraduate
and (9, 31.1%) graduate students. Most participants were com-
puter science students (18, 62.1%). Moreover, although 17 par-
ticipants (58.6%) had a basic understanding of NNs, 18 (62.1%)

FIGURE 1 | Second person view of the XR system. The learner is

seated at a conference table and sees the NN visualization integrated

into their physical surroundings.
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did not have foundational knowledge of handwritten digit
recognition. Also, participant familiarity with immersive visu-
alization technology varied, with some students having used VR
headsets more than once (12, 41.4%), while a majority had
never used XR (15, 51.7%).

3.2 | The XR Learning Environment

The XR learning environment was developed in Unity 3D
(version 2022.3.5f1) using Meta's XR All‐in‐One SDK. The
implementation relied on the Barracuda framework [60] to load
and run pre‐trained NN models, like the MNIST convolutional
NN [9]. The system was deployed on Meta's Quest 3 headset
(Snapdragon XR2 Gen 2 processor, with 8GB of RAM) [61],
supporting a native frame rate of 72 Hz.

The system visualizes an NN trained on the MNIST data set by
rendering its input, hidden, and output layers as interactive
panels, in 3D, arranged in a cylindrical pattern, on the table, in

front of and surrounding the user (see Figure 1). The system
loads the weights of a pre‐trained NN model and runs it directly
on the XR device, on stored or user‐generated input. Partici-
pants interact with the system using the handheld controllers,
through a virtual laser pointer, which can be used to point at
and trigger 3D network layers to see details such as neuron
activation values (see Figure 2), and to write digits to feed the
network (see Figure 3). The user can provide existing or new
handwritten digit images as input to the NN, to observe how the
input activates nodes across layers and how the digit is ulti-
mately classified [9, 31] (Figure 3).

3.3 | Procedures and Data Collection

Figure 4 illustrates the conceptual design of the study, which
had three phases: (1) preparation, (2) learning, and (3) data
analysis. The sequence of activities, depicted in Figure 4
and described through steps S1–S7, contains the participant
procedural timeline as part of it. The entire session for each
participant, encompassing preparation, learning within the XR
environment, and initial feedback, was designed to last
30–40min, with staggered start times implemented to manage
the process effectively [31].

Questionnaires were administered using Qualtrics to collect
general demographic data and to assess the baseline prior
knowledge as part of background information. The training on
the headset operation was delivered via Google Slides presented
on a tablet, and the research team's guidance during the
intervention was provided as needed. Afterward, the core
learning experience involved interacting with the educational
content through an XR headset equipped with controllers,
which allowed manipulation and engagement with the content.

The structured instructional design began with the preparation
phase, where participants provided their consent and completed a
demographic questionnaire. This phase corresponds to S1
(Consent and Demographics), including sub‐activities S1.1 and
S1.2. After that, the basic knowledge questionnaire (not a pre‐test)
was provided to gather information about the participants' un-
derstanding of NN concepts using closed‐ended questions on to-
pics such as nodes, layers, and hardware components. This
corresponds to S2 (Baseline Questionnaire). The participants an-
swered five questions randomly selected from the following list:

• What is a neural network?

• What is a node in a neural network?

• What is a layer in a neural network?

• Arrange the following in the correct sequence of processing
in a neural network:
– Hidden Layer
– Output Layer
– Input Layer

• (True/False) Unsupervised learning involves training
models on labeled data with explicit guidance.

• (True/False) The architecture configuration of a neural
network can affect its energy consumption, with larger and
more complex networks generally consuming more energy.

TABLE 1 | Participant demographics and background character-

istics in the XR group.

Variable XR (N = 29)

Gender

Male 18 (62.1%)

Female 11 (37.9%)

Other 0 (0%)

VR headset usage

Never 6 (20.7%)

Once 11 (37.9%)

More than once 12 (41.4%)

XR usage

Never 15 (51.7%)

Once 8 (27.6%)

More than once 6 (20.7%)

Major

Computer Science 18 (62.1%)

Data Science 3 (10.3%)

Other 8 (27.6%)

Role

Undergraduate 20 (68.9%)

Graduate 9 (31.1%)

Familiarity with NNs

No 12 (41.4%)

Yes 17 (58.6%)

Familiarity with handwritten digit
recognition

No 18 (62.1%)

Yes 11 (37.9%)

Note: Any discrepancies in percentages are due to rounding. Values represent
frequencies with percentages in parentheses.
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• (True/False) In supervised learning, the model is trained on
labeled data with correct outputs provided during training.

• How are GPU, CPU and TPU important for neural net-
works or CNNs?

• What is a CPU?

• What is a GPU?

• What is a TPU?

• Which of the following best describes the MNIST database?

• (True/False) The architectural design of a neural network,
including the arrangement of layers, nodes, and connec-
tions, has no impact on its energy consumption.

• (True/False) A Convolutional Neural Network (CNN) is a
specialized type of neural network designed for processing
grid‐like data, such as images and videos, by using a series
of convolutional layers.

Additionally, participants were given slides to explain how to use
the VR headset before interacting with the XR environment (S3,
VR Headset Training, including S3.1, Slides‐Based Training).

In the learning phase with the XR educational environment
(S4–S6, Learning Phase), participants engaged with the lesson.
Within this phase, the participants interacted with the designed
XR immersive environment to learn about NNs and handwritten
digit recognition. The headset was set in video passthrough mode,

FIGURE 2 | Frames captured by the XR headset, showing the learner's view of the AI concept lesson delivered by the XR system.

FIGURE 3 | Additional XR headset frames, showing the learner's view of the AI concepts delivered by the XR system.

6 of 18 Computer Applications in Engineering Education, 2025
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allowing learners to see virtual 3D elements integrated into their
physical surroundings (e.g., the NN panels appear to stand on the
real‐world table). The participants actively engaged with the visual
representation of the NN, exploring its structure, observing how
input images (handwritten digits) were processed through layers,
and examining the influence of network components. The learning
was reinforced through integrated assessments, where participants
answered multiple‐choice questions about NN concepts and pro-
vided voice‐recorded explanations in response to prompts requiring
them to manipulate inputs and predict NN behavior, thereby
demonstrating their conceptual understanding in real‐time.

As mentioned, in the learning phase of the lesson, participants
answered six multiple‐choice questions to demonstrate their
understanding (S5, Multiple‐Choice Questions), which were the
following:

• How many input neurons are there in this network for
MNIST images?

• What do weights in a neural network represent?

• What does ReLU do if the input is negative?

• What is ReLU used to introduce?

• What is the main purpose of the softmax function in a
neural network?

• Determine which one among the predefined test cases 0, 1,
3, and 8 has the lowest confidence in prediction.

In addition, the learning phase included open‐ended voice
responses, recorded, and transcribed into text for further anal-
ysis (S6.1, Voice Recording, and S6.2, Voice‐to‐Text Transcrip-
tion). The prompts for the open‐ended questions were:

• Write a number that looks like a “3” and position it toward the
edge of the writing pad so that it might not be easily recognized
as a “3.” Explain how the placement of the digit near the side of
the panel could influence the prediction result.

• Write a number in such a way that it cannot be successfully
predicted (with no valid prediction provided). Describe the
circumstances in which a handwritten number prediction is
likely to result in failure.

The research team was available during this phase to answer
questions and provide support (S4–S6). This assistance ensured
an effective learning experience.

FIGURE 4 | Conceptual design of the intervention introducing AI concepts (NNs and handwritten digit recognition) delivered by the XR system,

along with the data analysis procedures.
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After the learning phase, participants completed a post‐
questionnaire to evaluate their likelihood of recommending the
system and provide feedback. Each session lasted approximately
30–40min in total (S4, Session Duration). Staggered start times
minimized distractions caused by vocal responses, and the
research team's presence helped participants stay focused and
address any issues that arose.

The final stage, data analysis (S7), combined quantitative and
qualitative methods to evaluate the responses. The quantitative
analysis involved calculating the overall accuracy and classify-
ing the performance levels using the k‐means clustering
method. The elbow method in k‐means was used to determine
the cluster number, and the mean silhouette score displayed the
quality after clustering. The qualitative analysis involved two
raters independently analyzing the transcribed voice responses.
They discussed their findings, agreed on codes and interpreta-
tions, and compared themes for different groups of performers
to extract meaningful insights. This systematic approach en-
sured reliable and thorough conclusions about participants'
learning.

This study used a multi‐methods approach to provide a com-
prehensive picture of participants' conceptual understanding
(S7). Quantitative analysis was about measurable metrics,
such as response accuracy and clustering results, to identify
performance categories. Qualitative analysis explored contex-
tual and subjective elements of participants' voice responses,
offering explanations and deeper interpretations. These meth-
ods jointly bridged numerical data with thematic under-
standing, ensuring a balanced evaluation and interpretation
of participants' overall learning through the intervention (S7).
This structured conceptual design created a consistent and
supportive learning environment for all participants.

3.4 | Data Analysis Methods

The data collected includes quantitative data, that is, the
responses to multiple‐choice questions, and qualitative data, that
is, the students' verbal explanations of their understanding of the
AI‐related concepts, as they were interacting with the scene.

On the quantitative side, we used descriptive methods and
calculated the overall learner performance for each student by
dividing the number of questions correctly answered by the
total number of questions. The results were accuracies, given as
proportions truncated to two decimal places, or described as
two‐digit percentages. The quantitative data points for this
study were from the same source as an earlier publication [31],
but here, we focused on students' conceptual understanding in
the XR group and used the k‐means clustering method [62, 63]
to classify students into different performance groups based on
overall accuracy. The overall accuracy of each participant in the
data was used as originally saved (i.e., proportion data),
meaning no normalization or sorting by the overall accuracy
was done for clustering. The elbow graph was produced in
RStudio (Version 2025.05.0+496), adapting available codes [64].
The quantitative data were analyzed using IBM SPSS Statistics
(Versions 29 and 30), with the final number of clusters deter-
mined from the elbow method [62]. After clustering, the cluster

quality was determined by the average silhouette score [65, 66],
adapting available codes [67], using the “cluster” package [68]
in RStudio (Version 2025.05.0+496).

On the qualitative side, we chose thematic analysis techniques
to perform a qualitative analysis based on the participants'
voice‐to‐text responses during the intervention. Thematic
analysis systematically organizes and interprets qualitative data,
revealing emerging categories to help draw meaningful con-
clusions and insights [69]. Two raters (graduate student re-
searchers) jointly participated in the qualitative thematic
analysis to examine the data. After independently analyzing the
available data, they met to discuss the emerging codes and their
interpretations. Through these meetings, the raters discussed
and worked toward reaching an agreement, using a consensus
approach to ensure alignment in their interpretations and
conclusions. This process allowed for a reliable and consistent
understanding of the data.

To increase the trustworthiness of the analysis, the researchers
performed inter‐rater reliability by examining the consistency
and agreement between the hand‐coding codification and cate-
gorization procedures. Both researchers maintained the same
coding protocol and utilized a consensus coding approach, where
they independently coded the data and later convened to review
the codes and determine the final implementation of the coding
scheme across the entire data set. The two researchers worked
together by holding weekly meetings to review the codification
process and initial findings, intending to ensure consistency and
reliability in the coding process. During these discussions, the
researchers sought clarity in understanding the coding process
and the overall criteria to ensure consistency in this step. Addi-
tionally, both researchers could recognize and rectify differences
in coding interpretations found in the initial coding method over
a limited data set of observations. Moreover, through engaging in
these regular conversations, the researchers carefully assessed
and reflected on their own biases and how they might have in-
fluenced the coding process and their self‐awareness in enhan-
cing the overall reliability of the study.

The inter‐rater reliability analysis revealed a Cohen's Kappa
value κ = 0.84, indicating a high agreement between the two
raters. This result showed consistency during the independent
codification process and judgments during the analysis. This
high reliability confirmed that the coding protocol followed by
both raters was stable, produced consistency in results, and was
based on clear and accurate criteria.

Finally, to jointly understand the relationships between the two
research questions, we related the accuracy of the students'
multiple‐choice responses to their voice‐to‐text responses in our
discussion. Recall that accuracy was operationalized into per-
formance outcomes. Learners were classified based on their
understanding of the multiple‐choice questions. For example,
the high‐performing group showed more understanding, while
the low‐performing group did not. In the discussion later, the
researchers will show the main points in qualitative themes
across the learner groups, focusing on the varying under-
standing or reasoning. By discussing these differences, we could
see what factors contribute to performance, providing insights
into how the intervention worked for different learners.
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3.5 | Ethical Considerations

The Institutional Review Board (IRB) of Purdue University re-
viewed this study, under the study number IRB‐2024‐57 [31].
Valuing participant consent, the research team developed
a multi‐page consent form to provide the participants with
insights regarding different aspects of this study, such as the
participants' rights and confidentiality. Since this study oc-
curred in person, each potential participant was given a hard
copy of the consent form when they arrived. Only individuals
who signed and dated the consent form participated in the
study. Withdrawals were allowed if participants decided to
leave during the study.

4 | Results

This section is organized into two major subsections, following
our research questions. Section 4.1 investigates students'
achieved knowledge during the XR lesson and Section 4.2
focuses on how students understood the concept of NNs while
they interacted with the XR environment.

4.1 | Accuracy as Levels of Performance

The 29 student participants (N= 29) who used XR to learn
completed five random questions out of a total of 14 to dem-
onstrate their basic understanding of NNs and handwritten
digit recognition. Those general background questions (not a
pre‐test) were asked before the lesson, together with the de-
mographics questionnaire. In general, the learners had some
understanding of the concepts, and the percentage of correctly
answered questions on basic knowledge ranged from 40% to
100%, with an average of 78.6%.

As mentioned earlier, we used in‐lesson multiple‐choice ques-
tions to test the students' understanding of the material pre-
sented. Table 2 shows that most students (n= 24, 82.8%)
correctly answered at least four multiple‐choice questions out of
six, suggesting an overall clear understanding of the concepts
taught regarding NNs and handwritten digit recognition.

Specifically, 10 students (34.5%) provided four correct answers,
12 students (41.4%) provided five correct answers, and two
students (6.9%) answered all questions correctly. Only a few
students (n= 5, 17.2%) answered fewer than than four questions
correctly. The correct answer to Question 4 was chosen by
83% of students (n= 24). Questions 2, 3, and 5 were answered
correctly by most students (n= 27, 93% for each). However,
many students struggled with Questions 1 and 6, with fewer
than half of the students (n= 12, 41%) answering Question 1
correctly, and even fewer students (n= 5, 17%) answering
Question 6 correctly.

Figure 5 illustrates a box plot of the distribution regarding the
overall accuracy of the in‐lesson multiple‐choice questions
among the students. The box plot provides a visual summary of
the data, displaying the distribution. Based on the empirical
rule, although three cases (below 50% accuracy, at the bottom of
the data) were not as close to the remaining data, they were not

considered outliers because their Z‐scores were within ±3.
Thus, all 29 cases were included in the clustering process.
Figure 6 shows that the elbow point was identified as three
clusters [62]. The cluster number informed the grouping of
learners by level of performance based on the overall accuracy
of the students' answers. Each cluster (described next) repre-
sented a subset of students with similar performance on the in‐
lesson multiple‐choice questions.

The first cluster contained students who had 83% overall
accuracy (n= 12) and 100% overall accuracy (n= 2), which was
considered the group of high performers (HP). The second
cluster included students who had 17% overall accuracy (n= 2)
and 33% overall accuracy (n= 1), which was considered the
group of low performers (LP). The third cluster involved stu-
dents who had 50% overall accuracy (n= 2) and 67% overall
accuracy (n= 10), which was considered the group of moderate
performers (MP). Among the three clusters, the first HP group
was the largest in size, indicating that about half of the students
performed well (see Table 3 for the final cluster information).

In Table 3, the cluster centers (rounded to two decimal places)
were based on the overall accuracy as proportion data (e.g.,
0.33). These categories were identified through the k‐means
clustering method. The number of cases displays how many

TABLE 2 | Overall performance of students on in‐lesson multiple‐
choice questions.

Category Number Percentage

Total students 29

At least 4 correct answers 24 82.8

Correct answers breakdown

4 correct answers 10 34.5

5 correct answers 12 41.4

6 correct answers 2 6.9

Fewer than 4 correct answers 5 17.2

Correct answer to Question 1 12 41.0

Correct answers to Questions
2, 3, and 5 (each)

27 93.0

Correct answer to Question 4 24 83.0

Correct answer to Question 6 5 17.0

FIGURE 5 | Boxplot for the overall accuracy of the in‐lesson
multiple‐choice questions.
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students fall into each of the three performance categories,
reflecting the distribution of all students. After clustering, the
metric to determine the cluster quality was the mean silhouette
score, which in this case was 0.79 (rounded to two decimal
places), showing good quality [66]. This result suggests that the
student clusters were well‐separated [66], indicating that
the three student clusters were different. In other words, the
three student clusters (i.e., the clusters of HP, LP, and MP)
could be considered to represent the three distinct groups of
levels of student performance (i.e., overall accuracy).

4.2 | Conceptual Explanations

The findings from the qualitative analysis were diverse chal-
lenges related to handwriting recognition in machine learning
systems, focusing mainly on factors involving the placement of
the digit, the clarity of handwriting, the style of handwriting, and
the probability that one number resembles another. There could
also be limitations in the training data or in the algorithm itself
that impact the prediction results, as suggested by a few students.
These elements could influence how well the system can predict
the correct number. The analysis revealed that multiple variables
can interfere with accurate number recognition or prediction,
pointing to the complex interplay between data inputs and
algorithmic interpretation. This complexity highlighted the need
for machine learning models to be more adaptable and robust in
handling diverse inputs and conditions to improve accuracy
and reliability.

Table 4 depicts the resulting codification of the rationales of the
respondents for their responses to the first prompt asking them
to write a number that looks like a “3“ and position it toward

the edge of the writing pad so that it might not be easily rec-
ognized as a “3,“ and explain how the placement of the digit
near the side of the panel could influence the prediction result.
Moreover, it also shows the resulting codification of the ratio-
nales of the respondents for their responses to the second
prompt, asking them to write a number in such a way that it
cannot be successfully predicted (with no valid prediction pro-
vided), and then describe the circumstances in which a hand-
written number prediction is likely to fail. Table 4 presents for
each emerging theme of the six, two columns for the codifica-
tion of the rationales of each prompt, representing the ratio-
nales of the first prompt (R1) with light gray and the rationales
of the second prompt (R2) with black.

One of the most prominent issues discussed was the placement
of the digit near the edge of the panel. Several responses sug-
gested that placing a number at the edge would make it harder
for the algorithm to recognize it. For example, a student
claimed:

[W]hen the number is at the center of the image, the

algorithm is able to recognize the pattern and match it

with ‘3‘. But when you place it on the side of the panel, it

kind of recognizes only the bottom half.

This means that if a number is drawn too close to the edge,
the system may not fully capture all the pixels necessary to
understand the shape of the digit. As a result, the number could
be misidentified or not recognized at all. In addition, another
student mentioned:

[I]f the model is not trained to recognize numbers on the

side, it may not be able to […] because the weights are

designed to recognize numbers in the center.

This suggests that the model would be more effective when the
numbers were placed in the center because of how it was
trained. Digit placement could disrupt the model's ability to use
its trained weights effectively, highlighting a limitation in the
system's adaptability to variable digit positions. This implied
that incorporating more diverse training data with digits in
various positions could enhance the robustness of the model. A
student elaborated, saying:

[W]hen I try to draw at the edge of the box instead of the

middle, it seems that the models could not successfully

predict what numbers I'm writing.

The NN has a higher prediction power when the digit is cen-
tered and scaled. Therefore, the NN can make a wrong pre-
diction if a user writes a digit off‐center and close to the edge.
This can be alleviated by data amplification during the training,
to familiarize the NN with a variety of digit placement, or by
normalizing the digit images, to center the digit.

The second emergent code referred to the resemblance or
ambiguous similarity between different numbers. Many
respondents mentioned that numbers can look very similar,
making it difficult for the algorithm to distinguish them. For
instance, a student said:

FIGURE 6 | Elbow method for k‐means clustering to determine the

number of learner groups.

TABLE 3 | Summary of final cluster information based on the

overall accuracy.

Cluster 1 Cluster 2 Cluster 3
Metric Value Value Value

Cluster centera 0.86 0.22 0.64

Number of casesb 14 3 12

aThis is based on the overall accuracy, which is measured as a proportion.
bNumber of cases represents the count of instances in each cluster.
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[I]f we write 3 like this […] it would be difficult for the

model to recognize it because it also seems to resemble 8.

In this case, the number “3“ might look like “8“ if drawn in a
certain way, causing confusion. This was a problem when the
system tried to match the handwritten number with one of the
examples in its database, especially if the number was written in
a non‐standard way that resembled another digit. This problem
relates to the expressivity of the training data set. If similar
examples were absent, the network could not generalize and
detect them correctly. Similar problems occurred when “the
number looks like multiple numbers in the test label,” as
another student pointed out, which could lead to a failure in the
prediction. This issue underscored the importance of training

data diversity and the need for algorithms capable of discerning
resemblance in digit appearance to reduce misclassification.
Furthermore, another student noted:

I wrote number ‘3‘ close to the edge. The lower part of

number ‘3‘ […] changed the format of the number […]
and I think this will become more difficult to recognize.

This quote illustrates how minor changes can lead to significant
confusion for the model, reinforcing the idea that even small
variations in how numbers are written, whether due to position
or the writer's style, can greatly impact algorithm performance.
Hence, machine learning systems should incorporate greater
flexibility to handle a wider range of written input, including

TABLE 4 | Codification process of the rationales for prediction accuracy and failure in handwritten digit recognition.

Resemblance or
ambiguity in number

representation

Position/Edge
placement
effects

Algorithm/NN
limitations

Database
content/

Training data
influence Clarity

Handwriting/
Variability in

handwriting styles

ID R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

2

5

6

8

15

17

18

20

21

22

23

24

26

29

32

33

34

36

37

39

40

42

43

44

47

54

57

Note: R1 refers to the codification of the rationales (indicated in light grey shading) for the question: How does placing a “3” near the edge affect prediction?
R2 refers to the codification of the rationales (indicated in black shading) for the question: When does handwritten number prediction fail?
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numbers that may resemble each other in writing. The ability to
correctly distinguish similar digits is directly related to the size
and completeness of the training set. The network cannot
generalize the input for which it has not seen similar examples
in training.

In addition, students frequently stated the importance of
handwriting styles. Different students had different ways of
writing numbers, and these variations might affect how well the
model recognizes the digits. For example, a student claimed
that “there are different ways that each person writes the
numbers,” and this variation could lead to misclassification if
the system were not trained to recognize all the possible ways a
number could be written. As one student said, “if someone's
handwriting is really bad, it is hard to recognize,” highlighting
how differences in handwriting can confuse the system. This
example emphasized how handwriting style variability poses a
challenge for machine learning models, which must be gener-
alized across different writing forms. In short, handwriting
quality could directly impact recognition.

Another important factor that emerged from the data was the
clarity of the number. Several students suggested that, in
addition to handwriting styles, it would be more difficult for the
model to predict accurately when the data is unclear. One
person said that “if it's too messy or written in an
unconventional way, it may result in failure.” This indicated
that slanted, distorted, or unclear handwriting could confuse
the model and cause it to make incorrect predictions. Similarly,
when participants wrote numbers near the edge of the panel, it
often made the digits unclear or incomplete, leading to mistakes
in prediction. In fact, one student described:

[T]he placement of the number near the panel side could

make it so that the program cannot determine the

number correctly and misses some of the pixels.

These findings highlighted that handwriting quality and
placement are crucial factors in successful digit recognition.
Hence, to improve accuracy, machine learning models must be
able to handle variability in handwriting styles, digit clarity, and
positioning. Just as humans cannot understand some hand-
written digits, the NN also has its limits. However, the NN
reports its confidence in the answer, which is visualized. Future
iterations of the lesson can clarify that the NN will not always
provide a correct answer.

Moreover, as discussed under the themes “Resemblance or
Ambiguity” and “Algorithm/NN Limitations” described in this
same subsection, the content and size of the training data set are
important. If the training data do not include enough examples
of various handwriting styles, edge placements, or ambiguous
digits that challenge specific aspects of the NN's feature extrac-
tion or classification layers, the network's ability to generalize
and classify new, unseen digits correctly will be limited.

Besides the themes, the responses revealed significant connec-
tions between the emerging themes, highlighting the key com-
ponents of the explanations. Table 5 illustrates the connection
between these emerging codes with the resemblance or ambi-
guity in the number representation. Also, Table 6 depicts the

connection between some main themes, such as digit placement
and variability in handwritten style, with algorithm/NN confu-
sion/limitations.

The data showed how digit placement, variability in handwritten
style, and ambiguity or resemblance between similar numbers
were closely linked in the digit recognition or prediction process
(see Table 5). Notably, Table 5 shows that out of the 17 instances
where “Resemblance or Ambiguity in Number Representation”
was identified, students also linked the confusion to where the
number was placed in eight cases (47.1%). About one‐third of the
time (29.4%), they thought handwriting style also played a role,
with five cases. These results show that ambiguity in numbers is
often influenced by multiple factors. Many students reported that
placing a digit near the edge often leads to a misinterpretation by
the model. For example, a student noted:

[T]he number 3 near the left side could cause it to look

like something else, like 8, because the left side of the digit

is cut off.

The ambiguity or resemblance between digits compounded this
issue. In other words, when poorly placed or written, the
number “3” can resemble an “8,” making it harder for the
model to differentiate between the two. This overlap in shape,
caused by digit placement and digit similarity, could create a
challenging scenario for the model, making accurate predic-
tions difficult.

TABLE 5 | Connection between emerging themes with “Resem-

blance or Ambiguity in the Number Representation.”

Resemblance or
ambiguity in
number
representation

Position/
Edge

placement
effects

Handwriting/
Variability in
handwriting

styles

X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

X

X

X

Note: The shaded cells show the themes that have the strongest connection with
the theme "Resemblance or Ambiguity in the Number Representation.” These cells
are shaded to highlight the most relevant connections found in the analysis.
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Furthermore, the relationship between variability in hand-
writing styles and the algorithmic limitations of the NN was
also evident. Table 6 shows that 10 out of the 22 students
(45.5%) who mentioned “Algorithm/NN Limitations” also
referred to “Resemblance or Ambiguity in Number Repre-
sentation.” Similarly, 13 students (59.1%) also mentioned
“Position/Edge Placement Effects,” and 8 students (36.4%)
brought up “Handwriting/Variability in Handwriting Styles.”
These results suggest that students might have attributed
the NN's limitations to issues related to digit placement,
followed by challenges involving ambiguous number forms
and handwriting variation. When students noted a number
being too close to the edge, resembling another number,
or written unclearly, they likely concluded that the NN
was not equipped or strong enough to handle such common
real‐world variations.

Unclear or messy handwriting was often likely to cause
incorrect predictions, as one student claimed that “if it's too
messy, the system can't determine what the number is.” This
denoted the limitations of the model in handling handwriting
variability. The algorithm may work best with clear and stan-
dard handwriting. Still, real‐world conditions could often
involve a broader range of writing styles and clarity, resulting in
discrepancies between reality and prediction.

As brought up earlier, in real‐world scenarios, when digits were
placed on the edge of the writing panel (i.e., position/edge
placement effects), the system struggled to recognize them. As
one student noted, “the left side of the digit is cut off, making it
look like something else.” This incomplete data confused the
algorithm, preventing it from analyzing the full shape of the
digit (i.e., hindering complete feature extraction). Variability in
handwriting style further increased confusion for the NN. For
instance, another student reflected on how the model failed to
identify numbers when handwriting deviated from its training
data, emphasizing the need for more variety in training cases to
achieve better adaptability. Specifically, this student noted that:

[D]ifferent people write numbers in different ways, and if

the model is not trained for those variations, it cannot

make an accurate prediction.

Moreover, as indicated before, the reliance of the model on
centered digits limits its ability to handle placement effects,
resulting in misidentifications. Hence, improving the ability of
the model to process unclear handwriting at different positions
would reduce these limitations and increase prediction accu-
racy in more diverse settings. Larger and more diverse training
datasets and NN architectures with a larger number of trainable
parameters may be needed to improve accuracy and robustness.

TABLE 6 | Connection between emerging themes with “Algorithm/NN Limitations.”

Resemblance or ambiguity in
number representation

Position/Edge
placement effects

Algorithm NN
limitations

Handwriting/Variability in
handwriting styles

X X

X X X

X X X

X X

X X

X X

X X X

X X

X X X

X

X X

X X X

X X

X X

X

X X X

X X X

X X X

X X

X X X X

X X

X X X

Note: The shaded cells show the themes that are most strongly connected with the category “Algorithm/NN Limitations.” These cells are shaded to highlight the most
relevant connections found in the analysis.
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However, larger NNs can memorize the training data set, which
leads to overfitting.

5 | Discussion and Implications

Recall that based on the clustering of the results from the in‐
lesson multiple‐choice questions, the group of HP included the
learners who had accuracy from 83% to 100%, the group of MP
had the learners who showed 50% to 67% accuracy, and the
group of LP had 17% to 33% accuracy.

The LP group demonstrated the lowest average level of basic
understanding in the baseline questions. This suggests that
students with less prior knowledge struggled more with com-
plex topics like digit recognition, which require understanding
algorithms and data representation [70, 71]. In other words,
students who lacked a strong foundation in the NN architecture
or its characteristics might have found it more challenging to
grasp how algorithms work in the particular task of hand-
written digit recognition.

The MP group generally showed a wider range of prior
knowledge compared to the high‐performing group, although
some MP had a similar level of prior understanding to some HP.
In the lesson, both groups recognized similar challenges in
handwritten digit recognition or prediction, such as clarity is-
sues and algorithmic limitations. This highlights the impor-
tance of clear and consistent support for all students. Since the
XR system provided the same guidance to everyone, students
with similar prior knowledge appeared to benefit equally
overall, although the support was not tailored to individual
needs.

The HP group demonstrated varying levels of prior under-
standing, despite a good average level of basic understanding:
some understood only a few concepts, such as GPU and CPU,
while others understood all of them. This observation sug-
gests that learning strategies that help grasp key ideas are
important and can assist learners in achieving a certain level
of success, even with varying knowledge of the topic.
Achieving accurate results may have depended on effective
learning strategies and engagement with the lesson based on
their prior understanding [71, 72]. Research suggests that
good instruction can help learners succeed, even with limited
background knowledge [72, 73], emphasizing the importance
of well‐designed teaching strategies.

The HP usually provided more detailed responses to the in‐
lesson open‐ended questions. They discussed multiple fac-
tors, such as the placement effect and ambiguity in digit
representation, which affected handwritten digit recognition.
Hence, they had a deeper cognitive engagement with the
material. Overall, these students demonstrated good con-
ceptual understanding in recognizing various challenges in
digit recognition systems, suggesting they could analyze
complex issues more effectively. Their explanations suggest a
stronger ability to think about the “why” and “how” behind
the system's behavior. For instance, one high‐performing
student attempted to explain the internal mechanism within
the NN regarding misclassification:

If a number is written in such a way that it's not some-

thing that's been taught in the database then it could

possibly find a different pattern that either results in a

different number or no possible match for what was

drawn.

In addition, another high‐performing student even designed a
test case and predicted the outcome based on specific details,
showing a deep understanding of how a specific visual change
could directly lead to a specific error, indicating an ability to
analyze feature‐level details and predict system vulnerabilities.
This student noted:

I have written a variant of 2 which might resemble a little

bit like 3 as the bottom line is like more inclined. So in

that circumstance, the recognition of 2 would be difficult

as it might confuse with 3 and it might actually predict

the other class.

In contrast to the HP, the MP and LP still grasped some key
aspects that impacted handwritten digit recognition, such as
digit placement and algorithmic limitations, but their answers
were usually less detailed. For instance, non‐high‐performing
students were able to identify algorithmic limitations, “I assume
test label 6 is harder to recognize because it's not standard; I
guess,” or “Since the number does not take the whole writing
pad it might cause to the wrong results.” However, those stu-
dents generally did not elaborate on how a particular challenge
might interact with other challenges. Cases like these suggest
that those students simply described what they saw or could
identify a relevant concept but did not apply it thoroughly to the
situation, with some MP briefly claiming: “It looks cut off,” “the
placement of 3 near the panel side makes it look like M instead
of 3,” or “it's unable to read it.” This suggests that their ability to
explain the material was limited by their incomplete under-
standing of how NNs can be used for handwritten digit
recognition and what might influence the outcome [74]. That is,
some MP and LP struggled to explain more complex founda-
tional details due to gaps in their knowledge, although they may
have understood the concepts based on the outcomes observed
during the interaction.

Overall, XR tools can be effective for supporting the learning of
NNs and handwritten digit recognition, even with learners at
different levels of understanding. Research emphasizes that XR
technologies can improve learning by engaging students with
different levels of knowledge, helping them interact with
complex concepts like NNs [53, 75, 76]. This suggests that XR
technology can make learning more engaging and interactive,
even when the topics are difficult. Nevertheless, it is important
to interpret the “effectiveness” with caution, as the outcomes
from the learning experience are a result not only of the XR
technology itself but also of how the intervention was designed,
how the content was sequenced, and how embedded supports
helped students engage with the material. The qualitative
findings also match this, as learners were able to engage with
the XR tool despite challenges like handwriting style and digit
placement. However, not all learners are familiar with XR tools,
which can affect their learning outcomes. Their success with
XR depends on how easily they adapt to the tool and overcome
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difficulties navigating it [76]. There is also a need for user‐
friendly designs and support systems to maximize the educa-
tional benefits of immersive technologies.

XR shows a promise in STEM education, especially for abstract
topics. The decreasing cost of an XR headset may facilitate more
educational implementations. For example, in 2023, Meta's
Quest 3 headset was released at around $500 with premium
passthrough performance [77]. Later in 2024, Meta released the
Quest 3S headset, at a cost of only around $300–400, which is
clearly on the lower end of price but still is a quite capable
version of the Quest 3 [77]. While Meta admits that it is cur-
rently selling the headsets at a loss, it is clear that, together with
Apple, these are two trillion‐dollar companies firmly invested
in XR technology, betting on its widespread adoption across
different fields.

6 | Conclusions, Limitations, and Future Work

This study used a multi‐methods approach to examine how
students learned NNs and handwritten digit recognition
(i.e., AI concepts) using XR. The results were based on
quantitative and qualitative data collected during an XR les-
son. Quantitatively, students achieved 17%–100% accuracy on
all multiple‐choice questions about AI concepts. Three dif-
ferent performance clusters (i.e., high, moderate, and low)
were formed based on the accuracy using the k‐means clus-
tering method with the elbow method; the cluster quality was
good, given an average silhouette score of 0.79. Many students
(n= 26) demonstrated moderate and high performance re-
garding answering questions about AI concepts while enga-
ging in the lesson, suggesting that XR is relatively effective in
learning AI concepts. Qualitatively, students identified chal-
lenges in handwritten digit recognition, such as unclear
handwriting and the placement of digits in recognition tasks.
The HP generally provided detailed explanations, reflecting a
deeper understanding of the material. In contrast, the MP and
LP usually offered less detailed responses.

The researchers of this study acknowledge several limitations.
First, the sample size may not be large enough to generalize the
findings to domains beyond AI education. The sample diversity
was limited by recruiting from only a few STEM departments in
higher education, which may also impact the generalizability of
the findings. Further, since this intervention was short without
repeated measures, learning gains over time were not reflected.
Last but not least, this study did not employ a pretest–posttest
design or a true experimental design. The prior knowledge
questionnaire, which was not a pre‐test, was used to elicit
general background information and was not designed for
quantitative analysis (e.g., categorizing learner groups for the
intervention). In addition, the within‐lesson assessment was not
considered a posttest.

There are several avenues for future work. One would be
studying the long‐term effect of attained knowledge. Re-
searchers can speculate that the impact of the visualization on
the students can have a long‐standing effect, as opposed to
learning from textual descriptions or traditional presentations.
A longitudinal design and analysis could also be deployed. For

example, one could investigate whether XR improves the
retention of NN concepts over 6 months. Similarly, more
measures could be taken beyond conceptual learning to also
include measures of engagement. Future studies may also
involve developing longer lessons about AI, incorporating other
AI concepts beyond NNs or handwritten digit recognition.

Also, this study may be replicated in other educational contexts
and with different populations. Other future studies may carry
out the intervention at different education levels, such as high
school, to further examine the overall effectiveness of XR in
learning AI concepts across different educational levels. In
general, XR could also be blended with traditional educational
methods to comprehensively support learning needs.

Another avenue for future work could involve practical impli-
cations related to added functionality to the system. First,
researchers could allow low‐level control over the different
parameters and settings of the experiments. The users could,
for example, modify the resolution of the individual layers,
the connectivity, the activation functions, and so forth. Second,
the users could work with the training data set and see how its
content affects the training and the network's accuracy. How-
ever, such experiments should be carefully designed as the
number of options could be overwhelming.

Despite its limitations, findings from this study suggest that XR
is a useful tool for learning AI concepts (i.e., NNs and hand-
written digit recognition). In particular, XR experiences can be
more effective when technology is thoughtfully integrated with
instructional strategies such as clear sequencing of content and
appropriate scaffolding to guide the learning process. While the
results of this study suggest that XR is a versatile tool for
learning AI and may be suitable for learners with varying levels
of basic knowledge, caution should be taken when developing
and implementing nontraditional learning methods, like XR, to
better engage students in learning: for example, designing user‐
friendly interfaces and providing training materials are essen-
tial. In this context, the effectiveness of XR should be seen and
interpreted considering the overall learning design, where the
positive outcomes likely result from the combination of XR
technology and the structured experience (i.e., the way the
content is organized and supported, including the pedagogical
sequencing and scaffolding provided).
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