
Barcode: Global Binary Patterns for Fast Visual Inference

Teng-Yok Lee1∗ Sonali Patil2∗ Srikumar Ramalingam3 Yuichi Taguchi1 Bedrich Benes2

1 Mitsubishi Electric Research Labs

{tlee,taguchi}@merl.com

2 Purdue University

{patil19,bbenes}@purdue.edu

3 The University of Utah

srikumar@cs.utah.edu

Abstract

We present Barcode, a global binary descriptor for im-

ages captured from a vehicle-mounted camera with two ap-

plications: localization and turn classification. Barcode

characterizes an image by encoding the distribution of ver-

tical lines into a binary descriptor: in each vertical stripe

of an image, if any vertical line exists the corresponding

bit is set to 1, otherwise 0. For localization, our approach

uses a database of geolocated images, each having its Bar-

code precomputed during a preprocessing stage. In the run

time, we first generate the binary descriptor for each im-

age and then use the descriptor to find the location in the

database via Hamming distance metric. For turn classifica-

tion, we train a deep neural network that uses a set of Bar-

codes from consecutive images to classify turns (left, right,

straight, and stationary). We show that Barcode extraction

can be done at 100-1000 Hz, localization at 10 kHz, and

turn classification at 1 kHz. We show compelling experi-

mental results on KITTI dataset and other sequences cap-

tured near Harvard and Purdue campuses.

1. Introduction

Reporting a position of a moving car (localization) has

been traditionally a task that is solved by Global Position-

ing Systems (GPS). However, many cars are also equipped

with car-mounted cameras (see Figure 1) that are used for

safety purposes or, as in the case of autonomous cars, for

proximity detection and driving. We introduce a novel, min-

imal, but highly informative global image descriptor that we

denote Barcode and we show how it can be used for image-

based localization and turn-classification with almost negli-

gible computational cost. We envision the use of Barcode

for providing quick and high-level feedback in the context

of autonomous driving applications, even with limited com-

putational resources.

Image-based localization has been identified as a com-

∗Denotes joint first authorship.

(a) (b)

(c)

Figure 1: We propose a global binary descriptor Barcode for the

tasks of localization and turn classification. (a) An image captured

from a vehicle-mounted camera. (b) The binary descriptor describ-

ing the image using 128 bits. (c) Schematics of the localization

and the turn-classification problems. For the localization, we find

the best match for the query binary descriptor from a database of

binary descriptors associated with 1000s of images. Based on the

matching, we can identify the location on a driving trajectory as

shown. We show the turn-classification results using color-coding:

cyan denotes straight motion with no turns, red denotes right turns,

and blue denotes left turns.

plementary method to GPS and used previously [7, 9, 29,

42]. By turn-classification, we refer to the problem of com-

puting whether an on-road vehicle makes a left or right turn.

This can be seen as a very special case of the problem of vi-

sual odometry where one computes six degree-of-freedom

(DOF) camera motion (three for rotation and three for trans-

lation) from an image pair [33]. Both problems of localiza-

tion and visual odometry have been studied in the context of

computer vision and robotics communities and several real-

time algorithms exist for solving such tasks. While the ma-

jor focus is on accuracy and several benchmark datasets 1

1http://www.cvlibs.net/datasets/kitti/index.php

630

2017 International Conference on 3D Vision (3DV)

2475-7888/17/31.00 ©2017 IEEE
DOI 10.1109/3DV.2017.00077

rank the existing methods, we would like to take a pause

and ask the following question: By relaxing the requirement

on high accuracy, can we develop algorithms that can reach

very high speed (i.e., several orders of magnitude faster than

existing methods)?

In this paper, we heavily rely on the prior that the im-

ages are captured from a vehicle-mounted camera, and ex-

ploit vertical lines that are typical in urban canyons with

buildings, where GPS is known to be error-prone. We use

histogram of vertical lines in adjacent locations to build a

binary vector that encodes the presence and absence of ver-

tical lines in different angular segments from a camera cen-

ter. We show that this descriptor can be extracted at very

high speed and it is highly informative to provide location

information. Note that our method relies only on line seg-

ments, which are less sensitive to lighting variations.

We show two applications using this binary descriptor:

localization and turn-classification. For localization, we

compare the Barcode of the query image with those of the

images in the database using Hamming distance. The lo-

cation of the query image can be seen as approximately

the location of the closest image in the database. For turn-

classification we use a neural network where the input is a

binary matrix obtained by stacking the Barcodes from con-

secutive image frames.

In summary, we claim the following contributions:

1. We propose Barcode, a novel binary image descriptor

that is compact, highly informative, and can be effi-

ciently extracted from an image at 100-1000 Hz.

2. We show that Barcode enables image-based localiza-

tion by using simple Hamming distance. The local-

ization approach can search a query image from a

database of 20k images at 10 kHz.

3. We show a novel turn-classification algorithm that can

use Barcodes from consecutive images using a neural

network algorithm. The algorithm runs at 1 kHz on a

CPU.

4. Compelling experimental results are shown for local-

ization and turn-classification on challenging datasets

like KITTI [8].

2. Related Work

In the last decades, the vision community has witnessed

a wide variety of methods for image-based localization that

share the common underlying idea that is to match a query

image to some entity that can act as a fingerprint for a

certain location. We can broadly classify the localization

methods to be based on three entities: (1) image databases,

(2) 3D models, and (3) other modalities such as satellite

weather imagery and road maps.

Image databases: One of the earlier methods used a

database of GPS-tagged images of building facade and lo-

calized mobile camera images using wide-baseline match-

ing [29]. Using SIFT descriptors, Zhang and Kosecha

showed impressive results in the ICCV 2005 computer vi-

sion contest (”Where am I?”) [42]. Hays and Efros [9]

took the problem of localization to global scale by using

millions of GPS-tagged images from the web and match-

ing the query image using a wide variety of image features

such as color and texton histograms, line features, gist de-

scriptor, and geometric context (labeling of the image pix-

els into sky, vertical and ground). The use of time-stamped

photographs has also proven beneficial for geo-localization

[13]. FABMAP is a large-scale localization method that

uses local descriptors like SURF and showed localization

over 1000 kilometers trajectory [6]. The bag-of-words rep-

resentation that aggregates local descriptors into a global

descriptor has also been a popular method for large-scale

image search [25, 34, 18], and its extensions including the

Fisher vector and Vector of Locally Aggregated Descriptors

(VLAD) showed state-of-the-art performance [11].

Conventional local descriptors such as SIFT and SURF

had large computational requirement, and the advent of bi-

nary descriptors such as ORB [30] has led to substantial

gains in matching speeds. In the case of binary feature

descriptors, multi-index hashing (MIH) techniques enable

efficient and exact K-nearest neighbor search in Hamming

space [26]. We present a global binary descriptor and use

MIH technique for finding the nearest neighbors in Ham-

ming space. BRIEF-GIST [36] is a global binary descriptor

that extracts a single BRIEF descriptor for an entire image

after subsampling the image. Such global descriptors are

extremely light-weight with a trade-off on the performance.

In this work, we also propose a global binary descriptor that

allows a better tuning of the parameter that controls perfor-

mance and speed. While increasing the resolution of the

binary descriptor, we allow better performance.

3D models: Several existing methods use 3D models and/or

omni-directional cameras for geolocalization [15, 35, 20,

37, 41, 31, 19, 38]. Koch and Teller proposed a localization

method using a known 3D model and a wide angle camera

for indoor scenes by matching lines from the 3D model with

the lines in images [15]. Moreover, skylines or horizon can

also provide strong localization cues [2, 20, 28, 32]. By di-

rectly aligning the lines from query images to the ones in a

line-based 3D model we can achieve localization [27, 21].

Satellite weather imagery and road maps: It was demon-

strated that by correlating the satellite weather imagery at

a specific time with time-stamped web camera images, we

can also detect the location [10]. By correlating the local

trajectories obtained from noisy visual odometry measure-

ments with roadmaps, we can compute the location of a

moving vehicle as shown by [1, 3]. These methods are sim-

631

(a) Input image (Cambridge). (b) Thresholded difference between gra-

dients in x and y.

(c) Window Search and Barcode (bot-

tom).

Figure 2: Overview of Barcode. First we resize the input image to the desired resolution based on the number of bits in the Barcode. Then

we compute I∆ = | ∂I
∂x

| − | ∂I
∂y

| and binarize the image by thresholding. Finally we run a window search over each set of columns to find

long vertical lines.

Figure 3: Localization method overview.

ple, but work at rather low speed of 15 Hz, and do not match

the speed achievable by binary descriptors.

Our method uses image databases for locating the posi-

tion and the idea of using vertical lines to build a descriptor

for localization is not new. Lamon et al. [17] used a non-

binary descriptor, based on vertical edges and associated

colors, for localization of mobile robots in indoor scenes.

They used string matching algorithms to exactly match the

descriptors. However, such methods do not scale well for

larger databases. Similarly Yuan et al. [40] used the same

binary descriptor in the context of event sensors that only

record changes in a scene.

Neural networks have been used for SLAM algorithms

before. RATSLAM [22] is a classical SLAM algorithm that

uses a neural network algorithm that uses local view cells

to denote locations and pose cells to denote heading direc-

tions. The algorithm produces “very coarse” trajectory in

comparison to existing SLAM techniques that employ fil-

tering methods or bundle-adjustment machinery. Kendall et

al. [14] presented PoseNet, a 23 layer deep convolutional

neural network (CNN) used to compute the pose in a large-

region at 200 Hz. While PoseNet employs CNN, we do

not use any learning and solve the pose just by using Ham-

ming distance. Recently, CNN has been used for solving the

problem of visual odometry from stereo [16] and monocu-

lar sequences [23]. While the visual odometry results for

the stereo case were promising, the monocular problem is

still unresolved. In [23], it was concluded that the problem

of visual odometry from monocular videos is very challeng-

ing for unknown scenes, and the work showed promising re-

sults for only known scenes. This makes us wonder whether

CNN can solve the true 6 DOF visual odometry problem

where the scene is typically unknown.

We show high-speed turn-classification using neural net-

works at 1 kHz. Note that PoseNet and turn-classification

are two different problems. PoseNet is trained using the im-

ages from the exact same region where we estimate the pose

of a query image. It takes one image as input and returns a

6 DOF pose. In the turn-classification, we use consecutive

images (typically 12-20) to classify the turns. The training

data for turn-classification need not come from the same re-

gion where we do the testing. The turn-classification can

be seen as a simplified version of visual odometry [33], but

several orders of magnitude faster than the existing meth-

ods.

3. Method overview

Barcode extraction (Section 4): Given an image, we use

an efficient algorithm to extract a binary descriptor to sum-

marize the contents of the image as shown in Figure 2. The

basic idea is to compute the gradients in the image and look

for peaks in every column of the image.

Localization (Section 5): The method works in two steps,

preprocessing and runtime, as shown in Figure 3. The in-

put to the preprocessing step is a sequence of images from a

camera captured during a driving session. Each image is as-

sociated with location information (GPS coordinates). The

image sequences are converted into the Barcodes and stored

in a hierarchical data structure for fast indexing. During the

runtime step, an image is converted into the Barcode and

queried from the hierarchical data structure.

Turn-Classification (Section 6): We propose a CNN-based

turn-classification algorithm that classifies the local vehi-

cle trajectory into four classes: stationary, straight, left-turn,

and right-turn. The input to the turn-classification algorithm

is a stack (e.g., 12) of Barcodes from consecutive images.

632

Figure 4: Spatio-temporal patterns for two driving sequences from

KITTI dataset [8]: We stack Barcodes from individual frames of

a driving sequence to form spatio-temporal images. Every row

corresponds to a Barcode from a single image and the columns

correspond to the temporal domain. The top row corresponds to

the Barcode from the first frame. The turn categories (left turn,

right turn, no turn) have specific visual signatures as shown.

4. Barcode extraction

Our binary descriptor is built using vertical lines in the

image. Our definition of feature vector is similar to [1], with

an exception that we use binary values instead of actual gra-

dient values. Figure 2 summarizes the steps for computing

the binary descriptor.

The Barcode is used either in a real-time session or dur-

ing the preprocessing step in creating the dictionary. In the

first step we compute two gradient images with respect to x
and y as ∂I/∂x and ∂I/∂y, and we subtract them to com-

pute a difference image (see Figure 2b) I∆ = | ∂I
∂x

| − | ∂I
∂y

|.
The difference image is then binarized by thresholding. For

robustness to noise, we group w consecutive columns and

generate W/w bit Barcode for the image having the width

W . For each group of columns, we shift a window of w×h
pixels along the vertical direction and count the number of

nonzero pixels in each column within the window. If any

of the columns within the window includes nonzero pix-

els more than a certain threshold, we set the corresponding

bit 1, otherwise 0. The detected vertical lines using this

window search, and the binary descriptor are shown in Fig-

ure 2c. This leads to a compressed image representation and

each image is represented by a small binary descriptor (e.g.,

128 bits). Our method is significantly faster (100-1000 Hz)

than generic line extraction methods such as LSD line de-

tection [39].

5. Feature vector matching for localization

Barcodes can be matched or compared using Hamming

distance. Let S and T denote the binary descriptors corre-

sponding to two images I1 and I2 respectively. The Ham-

ming distance between the two binary descriptors is given

by H(S, T) =
∑n

i=1
Si ⊗ Ti, where ⊗ is an XOR operator

that returns 1 when the bits are different and 0 otherwise.

To efficiently match a query image with a database of im-

ages, we use multi-index hashing (MIH) [26]. The key idea

of MIH is to find a superset of nearest neighbors to reduce

the search space. This can be achieved by partitioning the

input binary descriptor into p disjoint descriptors and build-

ing p hash-tables to search the nearest neighbors for each

sub-descriptor, such that the source and target descriptors S
and T should be within the hamming radius r to be called

as nearest neighbors.

6. Turn classification

6.1. Spatio­temporal patterns

In a driving sequence, we can extract Barcode from every

frame. In Figure 4, we visualize the Barcodes from a video

in spatio-temporal domain where the x-axis corresponds to

the dimension (say 128) of each Barcode, and the y-axis

corresponds to the time. As shown in Figure 4, we can eas-

ily spot the visual pattern or shape for different turn classes

(left turn, right turn, and no turn). In general, whenever the

car takes a left turn, the lines move to the right and vice

versa. When the vehicle moves in a straight line, then the

lines start to move away from the center. The different vi-

sual signatures can be explained using epipolar geometry.

6.2. Geometrical interpretation of spatio­temporal
patterns

Given a pair of images with known camera motion, the

point correspondences satisfy the classical epipolar geome-

try. In other words, every point on the first image lies on its

corresponding epipolar line on the second image. Epipole is

the point where all the epipolar lines meet. In other words,

the image points move along the line joining the point and

the epipole. In a general 6 DOF camera motion, the epipole

can be anywhere in the image or even at infinity. However,

the position of the epipole is well-constrained for image se-

quences obtained from a car-mounted camera.

As shown in Figure 5, the epipoles move only in the

same horizontal line in the images captured from a mov-

ing car on a plane. When the car moves in a straight line,

the epipole is in the middle. When the car turns left, the

epipole moves to the left. We show the displacement of

two line segments a and b in two consecutive frames. The

633

Figure 5: Let a and b denote two lines in one image in a video

sequence. Let a′ and b′ denote their corresponding locations in

the next image. We show the locations of lines in the first frame

as dotted lines, and those in the second frame as bold lines. Let

E denote the location of the epipole. We show the epipoles and

the directions in which the lines move in four different motions:

straight, left turn, right turn, and slight left turn. Note that the lines

do not move in the same direction for the categories left turn and

slight left turn.

line segments move to the right since the end points of the

line segments have to move along their associated epipolar

lines. Similarly we can observe the movement of the line

segments for different turn categories. The line segments

move in different directions for left and right turns. It is im-

portant to note that the velocity and direction of motions of

the line segments depend on their 3D geometry in the scene

and the turn directions of the car. For example, on a slight

left turn the lines may move in opposite direction compared

to regular left turn as shown in Figure 5.

6.3. Turn­classification using deep neural network

It is possible to track the line segments in two consec-

utive images to understand the nature of the turns. A tra-

ditional vision or robotics approach would be to detect and

match line segments and extract motion from the frames.

Most approaches that employ such techniques would work

at a few frames per second and involve heavy computational

components such as line detection and line matching. We

propose a novel turn-classification algorithm using a deep

neural network that provides fast feedback on the nature of

the turns. In particular, we show that it is possible to classify

the turns at more than 1 kHz.

Training data: The input to the network is a sequence of

Barcodes from a few consecutive frames. For example, we

can consider 10 Barcodes from 10 consecutive images to

form a binary image of size 128 × 10, where 128 denotes

the dimension of each Barcode. The output labels are the

turn classes. We assume that we are given the ground truth

camera poses for each image in the video. Using the actual

camera poses, we can compute the turn angles for the as-

Consective

Barcodes

Conv

Kernel=3

Max

Pooling

Stride=2

Conv

Kernel=3

Max

Pooling

Stride=2

Inner

Product

Inner

Product

Inner

Product
SoftMax

20 20

100

20

20

100 4
Left? Right?

Straight?

Stationary?

Figure 6: Network architecture for the turn-classification. The in-

put data consists of concatenation of a few Barcodes from con-

secutive image frames. The arrows after convolution and pooling

layers indicate the numbers of feature maps. The numbers after

the inner product layers indicate the number of output. The final

output is one of the four turn-classes (stationary, straight, left-turn,

and right-turn). Each convolution and inner product layer is fol-

lowed by a ReLU layer, which is hidden in this figure.

sociated frames. In the simplest case, we can consider four

turn classes: stationary, straight motion, left turn, and right

turn. The stationary class denotes the case where there is

no motion, especially when the car is at a traffic intersec-

tion. The straight motion class denotes the case where the

turn angle lies in between α and −α (e.g., α = 5) degrees.

Using the ground truth pose values, we can compute the

different output labels based on the turn-angles.

Network architecture: Figure 6 shows the network archi-

tecture for the turn-classification algorithm with four output

classes (stationary, straight, left-turn and right-turn). The

input data is passed to two convolution layers. The param-

eter settings for convolution and pooling layers are shown.

Following the two convolution layers, we use three fully

connected layers with different number of outputs. In the

final layer we use soft-max to obtain the classification for

turns.

7. Results

7.1. Localization

Datasets: We tested our localization algorithm on four ur-

ban datasets with man-made buildings, because our method

relies on vertical lines from such structures. One of the

datasets is the KAIST west campus sequence, which was

captured within the campus of Korea Advanced Institute of

Science and Technology (KAIST) and released by Choi et

al. [5]. Three other datasets were collected using Garmin

Dashcam sensors. The sequences Harvard, Purdue1, and

Purdue2 were captured near Harvard and Purdue universi-

ties as shown in Figure 7. We extract Barcodes from these

sequences and the Hamming distance is computed between

Barcodes from two different sequences following the same

trajectories. Our results were measured on a Windows 7

desktop with Intel(R) Core(TM) i7-4770 CPU, NVIDIA

GTX 1080 GPU, and 32GB of system memory.

634

(a) Harvard (b) Purdue1 (c) Purdue2

Figure 7: The driving trajectories of our three sequences.

Table 1: Sequences for localization, parameters, and average construction time (build) and query time (query) per image of testing feature

descriptors. All times are measured in milliseconds. The query time is for 50 nearest neighbors, the largest numbers tested in our

experiments. Next to the query times for Barcode and BRIEF-GIST are the numbers of hash tables.

Dataset SURF-VLAD Barcode BRIEF-GIST

#images Image size Build Query
Bit

Length

Window

height
Build Query Build Query

Harvard 1280× 720 518.93 0.51 256 15 6.65
8.41 (8)

0.09 (16)
0.55

0.95 (8)

0.04 (16)

DB: 19587 640× 360 147.99 1.17 128 15 1.81 0.06 (8) 0.53 0.01 (8)

Query: 21446 320× 180 31.97 0.31 64 8 1.02 0.02 (8) N/A N/A

Purdue1 1280× 720 485.31 0.18 256 13 5.81
15.70 (8)

0.05 (16)
0.53

0.10 (8)

0.02 (16)

DB: 6929 640× 360 116.98 0.24 128 11 1.77 0.02 (8) 0.52 0.01 (8)

Query: 6929 320× 180 28.826 0.16 64 8 0.99 0.01 (8) N/A N/A

Purdue2 1280× 720 247.98 0.35 256 13 6.14
11.46 (8)

0.12 (16)
0.55

0.43 (8)

0.06 (16)

DB: 27716 640× 360 106.68 0.52 128 11 1.98 0.03 (8) 0.56 0.02 (8)

Query: 16558 320× 180 27.01 0.17 64 8 1.04 0.03 (8) N/A N/A

KAIST 1280× 960 480.45 0.22 256 18 8.50
9.97 (8)

0.10 (16)
0.53

0.54 (8)

0.02 (16)

DB: 16269 640× 480 135.11 0.30 128 13 2.84 0.02 (8) 0.57 0.01 (8)

Query: 11035 320× 240 38.54 0.17 64 8 1.23 0.02 (8) N/A N/A

Parameters: The parameters to build Barcodes include the

window width and height to detect edges, and the number

of bits in the Barcode. In our experiments, we used the win-

dow width of 5 columns and the window height was set as a

fraction (1
8

to 1

18
) of the image height. Within each window,

we counted pixels with high response per column. If any

column had more than 80% of pixels with high response,

the corresponding bit in the Barcode was set to 1. Table 1

lists the detailed parameters of all sequences.

We used two parameters during the process of localiza-

tion. The first parameter denotes the number of nearest Bar-

codes that we look for, and the second parameter is a dis-

tance threshold (30 meters in our experiments). We see if

the distance between the query Barcode and any of these K
nearest Barcodes is less than the distance threshold. If we

find at least one such Barcode, we treat the retrieval process

a success.

Comparison: We compare Barcode with two algorithms.

One is SURF-VLAD, namely VLAD [11] with SURF as the

local descriptor. We used 32 clusters and aggregated the

64-dimensional SURF descriptors into a 2048 dimensional

VLAD descriptor for each image. To accelerate the query

of VLAD, we used Fast Library for Approximate Nearest

Neighbors (FLANN) [24]. The other is BRIEF-GIST [36],

which downsamples an image into a small icon and com-

putes a single BRIEF descriptor [4] from the icon. In our

experiments, we downsampled an image into 60×60 pixels.

Both SURF and BRIEF were based on the implementations

of OpenCV. Note that because the OpenCV implementation

of BRIEF can support 128, 256, and 512 bits, we only evalu-

ate the performance of BRIEF-GIST with 128 and 256 bits.

Similar to Barcode, we used MIH to accelerate the query

of BRIEF-GIST. Our MIH implementation is based on pub-

licly available source code [26].

635

Speed: Table 1 includes the time to build all feature de-

scriptors under different image resolutions. Here the time

to resize the images is excluded. In such a case, BRIEF-

GIST is the fastest one to construct. The speed of Barcode

is related to image size because the time to detect and count

the vertical edges is proportional to the number of columns.

In contrast, SURF-VLAD is the most time-consuming one

to construct. Even for the smallest image size, its frame

rate is only 30 Hz, while the Barcode construction can be

achieved at about 1000 Hz.

Table 1 also includes the query time for 50 nearest neigh-

bors, the largest number for our experiments. These provide

upper bounds of the query time of different feature descrip-

tors. While the query time is proportional to the image size,

when using 8 hash tables, the query performance of 256 bits

for both Barcode and BRIEF-GIST was much slower than

using 64 or 128 bits. A work around was using more hash

tables. By using 16 hash tables, the query performance of

both was apparently reduced to shorter than 1 millisecond.

It could be seen that the query time of SURF-VLAD can

be close to the Barcode and BRIEF-GIST, despite the use

of floating-point arithmetic. We believe that this could be

due to the fact that FLANN only provides approximate K-

nearest-neighbors, whereas MIH provides an exact solution

for the same problem with Hamming distance. Neverthe-

less, SURF-VLAD is much slower to compute, and thus the

overall query time is still 10 - 20 times slower than Barcode

and 100 times slower than BRIEF-GIST.

Accuracies: Figure 8 shows the localization accuracy of

Barcode, SURF-VLAD and BRIEF-GIST. In general, the

use of higher resolution or longer feature descriptors leads

to better performance. While SURF-VLAD achieves the

highest accuracy for all cases, when using 50 nearest neigh-

bors, the difference between Barcode and SURF-VLAD can

be small. For the Harvard sequence, the performance of

BRIEF-GIST is much lower than the others even with 50

nearest neighbors. With the Purdue2 sequence, Barcode

can outperform BRIEF-GIST while considering more near-

est neighbors.

Robustness: Our supplementary material lists the accura-

cies under different parameter values, including the number

of nearest neighbors and windows height. We also mea-

sured the accuracies under 10, 20, and 40 meters as the dis-

tance thresholds. The result shows that the distance thresh-

old can impact not only Barcodes but also SURF-VLAD

and BRIEF-GIST. Also, under all testing distance thresh-

olds, the relationship among the feature descriptors was

similar.

In summary, Barcode is slightly inferior in accuracy

to one of the state-of-the-art localization algorithms like

SURF-VLAD, but significantly faster (100 Hz for high res-

olutions and 800-1000 Hz for low resolutions).

1 5 10 20 50
0

20

40

60

80

100

K

A
c
c
u

ra
c
y
 (

%
)

Harvard

1 5 10 20 50
0

20

40

60

80

100

K

A
c
c
u

ra
c
y
 (

%
)

Purdue1

1 5 10 20 50
0

20

40

60

80

100

K

A
c
c
u

ra
c
y
 (

%
)

Purdue2

1 5 10 20 50
0

20

40

60

80

100

K

A
c
c
u

ra
c
y
 (

%
)

KAIST

Figure 8: Localization accuracy of Barcode (Red), SURF-VLAD

(Blue), and BRIEF-GIST (Black). For each feature descriptor, the

lengths are represented by the line markers. The line markers from

longest ones to shortest ones are represented by ©, △, and ∇, re-

spectively. The X axis is for K, the numbers of nearest neighbors.

7.2. Turn classification

Experiment settings: We used the deep learning platform

Caffe [12] to build our turn classifier. The parameters such

as learning rate, momentum, weight-decay, and the number

of iterations were set to 0.0001, 0.9, 0.0005, and 50000, re-

spectively. We used KITTI [8] visual odometry sequences

for evaluating the turn-classification results. The dataset

comes with ground truth poses that is essential for gener-

ating training data with turn class labels. We chose 4 of

the 10 sequences that predominantly have urban city scenes.

Two of these sequences (sequences 7 and 8) were used for

training, which have 5170 frames, and we tested on the re-

maining 2 sequences (sequences 5 and 6), which have 3860

frames. The Barcode of each image was extracted using a

single window from rows 80 to 120 of the KITTI images be-

cause these rows cover the buildings. The length of Barcode

was 128 for turn classification. For each bit, if any pixel in

the corresponding image window had high response to ver-

tical edges, its value was set to 1. Given the number of

consecutive Barcodes to evaluate, says n, we iterated each

training frame and used the Barcodes of this frame and the

following n − 1 ones to form a data item to train the net-

work. Similarly, our testing procedure iterated each testing

frame. The Barcodes of the iterated frame and the following

n− 1 ones were tested to measure the accuracies.

Accuracies: Figure 9 lists the class-wise classification ac-

curacy of KITTI odometry sequence 5 with different pa-

rameters, whereas the supplementary material includes the

predicted results of all training and testing sequences. The

columns from left to right represent the accuracies with 12,

16, and 20 consecutive Barcodes, respectively. By compar-

ing the bars charts from left to right for each row, we can

636

see that 12 Barcodes leads to best performance compared

to the others in the same row. When the angle threshold is

10 degrees, we achieve the best performance (higher than

80% for left, right, and no turn), as shown in the top row

of Figure 9. With too many Barcodes, the performance can

degrade. This could be due to the fact that while using too

many Barcodes, the underlying local motion cannot strictly

be one of the four classes (stationary, straight, left-turn, and

right-turn). The top three rows of Figure 9 present the accu-

racies with angle thresholds of 10.0, 5.0, and 2.5, from top

to bottom. It can be seen that the accuracy of the third row

(α is 2.5) is apparently smaller than rows 1 and 2.

Network architecture: Another factor is the design of

CNN networks. From the network in Figure 6, we removed

the convolution layers and re-trained the network. Here we

set the angle threshold as 10 degrees, the optimal one in the

previous experiments. The bottom row of Figure 9 shows

the accuracies without the convolution layers. For each sub-

figure in this bottom row, the performance is much lower

than the other ones in the same column. Thus the convolu-

tion layers are necessary to capture the turn-signatures.

Training and testing speed: Our turn classifiers were

tested on a Ubuntu 14 desktop with the same CPU and

GPU as those in Section 7.1 except smaller system mem-

ory (16GB). Our training was executed on the GPU, which

took less than 7 minutes with the convolution layers. In the

absence of convolution layers, the training time was around

2 minutes. The testing can be done at 700-1300 Hz on CPU

with the network with convolution layers. Without convo-

lution layers, the testing can be done faster than 2 kHz.

8. Discussion

We have shown a simple global binary descriptor that can

perform high speed localization and turn-classification. Al-

though the localization accuracy is not as high as the state-

of-the-art methods like VLAD [11], the method is several

orders of magnitude faster (100-1000 Hz). We did not use

any video or road map priors during localization, and such

techniques can further improve the accuracy. We observed

that the turn-classification achieves about 80% accuracies

in certain parameter settings and runs at 1 kHz. As shown

in Figure 5, the location of the epipoles is correlated with

the turn-classes. We believe that these light-weight turn-

classifiers can be used to improve the computation time of

other tasks like 6 DOF visual odometry, or provide motion

priors for enhanced pedestrian and vehicle detection algo-

rithms.

Our turn-classifier can be complementary to IMUs.

While images are prone to errors in bad-weather conditions,

IMUs suffer from drift issues. One interesting future direc-

tion would be a careful comparison of IMUs and images,

and possibly their fusion to build a robust and fast turn-

classifier. In some situations, the camera may have a large

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(a) α = 10, n = 12

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(b) α = 10, n = 16

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(c) α = 10, n = 20

Stop
-360.0

L
-5.0 No

Turn
5.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(d) α = 5.0, n = 12

Stop
-360.0

L
-5.0 No

Turn
5.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(e) α = 5.0, n = 16

Stop
-360.0

L
-5.0 No

Turn
5.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(f) α = 5.0, n = 20

Stop
-360.0

L
-2.5 No

Turn
2.5

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(g) α = 2.5, n = 12

Stop
-360.0

L
-2.5 No

Turn
2.5

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(h) α = 2.5, n = 16

Stop
-360.0

L
-2.5 No

Turn
2.5

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(i) α = 2.5, n = 20

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(j) α = 10, n = 12,

no convolution

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(k) α = 10, n = 16,

no convolution

Stop
-360.0

L
-10.0 No

Turn
10.0

R
360.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Turn Accuracies

(l) α = 10, n = 20,

no convolution

Figure 9: Class-wise accuracies for the turn-classification network

in Figure 6 of KITTI odometry sequence 5. α represents the angle

threshold in degrees that determines the different turn classes. n

denotes the number of Barcodes used in constructing the input data

for the network. Note that the bottom row shows the result of the

same network but without the convolution layers.

rotation with respect to the vertical direction and this may

degrade the Barcode features. However, we can easily ad-

dress this by pre-calibrating the camera with respect to the

ground plane or by just using an IMU for fixing the rotation

offset [40].

The proposed method relies on vertical lines and are only

suitable for urban scenes with man-made buildings. We be-

lieve that in the absence of such buildings, GPS might al-

ready provide reasonable location estimates. In the future,

we would like to explore the expressivity of our operator

when considering different line orientations, and extend the

use cases from urban scenes to other environments.

Acknowledgments

This work was supported by Mitsubishi Electric Re-
search Labs (MERL). We thank Hao Kang for the data
collection, Alan Sullivan and Chen Feng for useful dis-
cussions, and the anonymous reviewers for valuable feed-
back.

637

References

[1] H. Badino, D. Huber, Y. Park, and T. Kanade. Real-time

topometric localization. In ICRA 2012: Proceedings of

IEEE International Conference on Robotics and Automation,

2012. 2, 4

[2] M. Bansal and K. Daniilidis. Geometric urban geo-

localization. In CVPR 2014: Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2014. 2

[3] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging

the crowd for probabilistic visual self-localization. In CVPR

2013: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, pages 3057–3064, 2013. 2

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:

Binary robust independent elementary features. In ECCV

2010: Proceedings of European Conference on Computer

Vision, 2010. 6

[5] Y. Choi, N. Kim, K. Park, S. Hwang, J. Yoon, and I. Kweon.

All-day visual place recognition: Benchmark dataset and

baseline. In CVPR 2015 Workshop on Visual Place Recogni-

tion in Changing Environments, pages 8–10, 2015. 5

[6] M. Cummins and P. Newman. Appearance-only slam at large

scale with fab-map 2.0. International Journal of Robotics

Research, 30(9):1100–1123, 2011. 2

[7] E. Garcia-Fidalgo and A. Ortiz. Vision-based topological

mapping and localization methods: A survey. Robotics and

Autonomous Systems, 64:1–20, 2015. 1

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In CVPR

2012: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2012. 2, 4, 7

[9] J. Hays and A. Efros. Im2gps: estimating geographic im-

ages from single images. In CVPR 2008: Proceedings of

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2008. 1, 2

[10] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless.

Geolocating static cameras. In ICCV 2007: Proceedings of

International Conference on Computer Vision, 2007. 2

[11] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and

C. Schmid. Aggregating local image descriptors into com-

pact codes. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 34(9):1704–1716, Sept. 2012. 2, 6, 8

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 7

[13] E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, and

A. Hertzmann. Image sequence geolocation with human

travel priors. In ICCV 2009: Proceedings of International

Conference on Computer Vision, 2009. 2

[14] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convo-

lutional network for real-time 6-dof camera relocalization.

In ICCV 2015: Proceedings of International Conference on

Computer Vision, 2015. 3

[15] O. Koch and S. Teller. Wide-area egomotion estimation from

known 3d structure. In CVPR 2007: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,

2007. 2

[16] K. R. Konda and R. Memisevic. Learning visual odometry

with a convolutional network. In VISAPP 2015: Interna-

tional Conference on Computer Vision Theory and Applica-

tions, pages 486–490, 2015. 3

[17] P. Lamon, I. Nourbakhsh, B. Jensen, and R. Siegwart. De-

riving and matching image fingerprint sequences for mobile

robot localization. In ICRA 2001: Proceedings of IEEE In-

ternational Conference on Robotics and Automation, 2001.

3

[18] J. Lee, S. Lee, G. Zhang, J. Lim, and I. S. W.K. Chung. Out-

door place recognition in urban environments using straight

lines. In ICRA 2014: Proceedings of IEEE International

Conference on Robotics and Automation, 2014. 2

[19] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide

pose estimation using 3d point clouds. In ECCV 2012: Pro-

ceedings of European Conference on Computer Vision, 2012.

2

[20] J. Meguro, T. Murata, H. Nishimura, Y. Amano, T. Ha-

sizume, and J. Takiguchi. Development of positioning tech-

nique using omni-directional ir camera and aerial survey

data. In Advanced Intelligent Mechatronics, 2007. 2

[21] B. Micusik and H. Wildenauer. Descriptor free visual indoor

localization with line segments. In CVPR 2015: Proceedings

of IEEE Conference on Computer Vision and Pattern Recog-

nition, 2015. 2

[22] M. J. Milford, G. Wyeth, and D. Prasser. Ratslam: A hip-

pocampal model for simultaneous localization and mapping.

In ICRA 2004: Proceedings of IEEE International Confer-

ence on Robotics and Automation, 2004. 3

[23] V. Mohanty, S. Agrawal, S. Datta, A. Ghosh, V. D.

Sharma, and D. Chakravarty. Deepvo: A deep learning

approach for monocular visual odometry. arXiv preprint

arXiv:1611.06069, 2016. 3

[24] M. Muja and D. G. Lowe. Fast approximate nearest neigh-

bors with automatic algorithm configuration. In VISAPP

2009: International Conference on Computer Vision Theory

and Applications, 2009. 6

[25] D. Nister and H. Stewenius. Scalable recognition with a vo-

cabulary tree. In CVPR 2006: Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, 2006.

2

[26] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in ham-

ming space with multi-index hashing. In CVPR 2012: Pro-

ceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 3108–3115, 2012. 2, 4, 6

[27] S. Ramalingam, S. Bouaziz, and P. Sturm. Pose estimation

using both points and lines for geo-localization. In ICRA

2011: Proceedings of IEEE International Conference on

Robotics and Automation, 2011. 2

[28] S. Ramalingam, S. Bouaziz, P. Sturm, and M. Brand. Local-

ization in urban canyons using omni-skylines. In IROS 2010:

Proceedings of IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, 2010. 2

[29] D. Robertson and R. Cipolla. An image-based system for

urban navigation. In BMVC 2004: Proceedings of British

Machine Vision Conference, 2004. 1, 2

638

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

An efficient alternative to sift or surf. In ICCV 2011: Pro-

ceedings of International Conference on Computer Vision,

2011. 2

[31] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based

localization by active correspondence search. In ECCV

2012: Proceedings of European Conference on Computer

Vision, 2012. 2

[32] O. Saurer, G. Baatz, K. Koeser, L. Ladicky, and M. Polle-

feys. Image based geo-localization in the alps. International

Journal of Computer Vision, 2015. 2

[33] D. Scaramuzza, F. Fraundorfer, and R. Siegwart. Real-time

monocular visual odometry for on-road vehicles with 1-point

ransac. In ICRA 2009: Proceedings of IEEE International

Conference on Robotics and Automation, pages 4293–4299,

May 2009. 1, 3

[34] G. Schindler, M. Brown, and R. Szeliski. City-scale loca-

tion recognition. In CVPR 2007: Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1–7, 2007. 2

[35] F. Stein and G. Medioni. Map-based localization using the

panoramic horizon. In IEEE Transactions on Robotics and

Automation, 1995. 2

[36] N. Sunderhauf and P. Protzel. Brief-gist closing the loop

by simple means. In IROS 2011: Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems,

2011. 2, 6

[37] J. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual

odometry in urban environments using an omnidirectional

camera. In IROS 2008: Proceedings of IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2008.

2

[38] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place

recognition with repetitive structures. In CVPR 2013: Pro-

ceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition, 2013. 2

[39] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall.

Lsd: a line segment detector. Image Processing On Line,

2:35–55, 2012. 4

[40] W. Yuan and S. Ramalingam. Fast localization and tracking

using event sensors. In ICRA 2016: Proceedings of IEEE In-

ternational Conference on Robotics and Automation, 2016.

3, 8

[41] B. Zeisl, T. Sattler, and M. Pollefeys. Camera pose voting for

large-scale image-based localization. In ICCV 2015: Pro-

ceedings of International Conference on Computer Vision,

2015. 2

[42] W. Zhang and J. Kosecka. Image based localization in ur-

ban environments. In 3DPVT 2006: Proceedings of Inter-

national Symposium on 3D Data Processing, Visualization,

and Transmission, pages 33–40, 2006. 1, 2

639

