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Latent L-systems: Transformer-based Tree Generator

JAE JOONG LEE, BOSHENG LI, and BEDRICH BENES, Department of Computer Science, Purdue University,

USA

Fig. 1. We replace the tedious creation of L-systems with a deep neural model. A large set of 150k input 3D tree geometries is encoded as bracket-free L-

system rules used to train a transformer. A new tree similar to the input is generated by running the transformer that produces an L-string that is converted

to a 3D model.

We show how a Transformer can encode hierarchical tree-like string struc-
tures by introducing a new deep learning-based framework for generating
3D biological tree models represented as Lindenmayer system (L-system)
strings. L-systems are string-rewriting procedural systems that encode tree
topology and geometry. L-systems are efficient, but creating the production
rules is one of the most critical problems precluding their usage in prac-
tice. We substitute the procedural rules creation with a deep neural model.
Instead of writing the rules, we train a deep neural model that produces
the output strings. We train our model on 155k tree geometries that are en-
coded as L-strings, de-parameterized, and converted to a hierarchy of linear
sequences corresponding to branches. An end-to-end deep learning model
with an attention mechanism then learns the distributions of geometric
operations and branches from the input, effectively replacing the L-system
rewriting rule generation. The trained deep model generates new L-strings
representing 3D tree models in the same way L-systems do by providing
the starting string. Our model allows for the generation of a wide variety of
new trees, and the deep model agrees with the input by 93.7% in branching
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angles, 97.2% in branch lengths, and 92.3% in an extracted list of geomet-
ric features. We also validate the generated trees using perceptual metrics
showing 97% agreement with input geometric models.
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networks
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1 INTRODUCTION

Getting a 3D geometric vegetation model has been an open prob-
lem in computer graphics for decades. Existing methods include re-
construction, manual authoring, and procedural (generative) mod-
els. Procedural algorithms provide a fully automatic generation of
variations often needed in the industry. Still, procedural models are
difficult to control, have non-intuitive sets of parameters, and often
require an expert’s knowledge. Recent generative approaches are
getting close to simulators of biological behavior, and they suffer
from an overwhelming number of control parameters. Yet, simple
methods that would quickly provide many 3D tree models of real
trees are not readily available.

Deep learning has been successfully used in various disciplines
to generalize and compact input data. However, the application
of deep learning for tree generation has been hindered by missing
datasets and complex tree data representation. Deep neural models
work well with regular structures such as images. Trees are branch-
ing structures with complex topology and geometry that include
stochastic variations in branching angles, lengths of branches,
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curvature, the distance between branchings, and uneven data
length.

The key inspiration for our work is two-fold. The first comes
from recent advances in neural networks, particularly in Trans-
former [Vaswani et al. 2017] that has been shown to learn and
translate sets of linear sequences. Our second inspiration is Lin-

denmayer systems (L-systems) [Lindenmayer 1968; Prusinki-
ewicz 1986; Prusinkiewicz and Lindenmayer 1990] that are an ele-
gant and compact way of encoding trees as linear structures with
hierarchies into so-called L-strings. We hypothesize that Trans-
formers can be applied to encode hierarchies of strings represented
as L-strings to learn tree topology and geometry and provide a
compact and elegant representation that would generate large
amounts of trees without tedious user control and L-system rules
creation. The key problem to solve is that although L-systems are
strings, they encode complex branching topology that precludes
direct application of the Transformer to the problem.

We introduce a novel algorithm for procedural tree generation
that generates valid L-systems for a wide variety of trees. Our
method is an addition to the existing suite of procedural methods,
but the main differences are that (1) it provides the complete de-
scription of the tree as L-systems strings and rules and (2) it is a
data-driven method that generalizes the procedural models from
existing datasets. In particular, our method uses a large dataset
155 k tree geometries of six species of trees generated by a devel-
opmental model [Li et al. 2021; Palubicki et al. 2009; Stava et al.
2014]. We convert the trees into a series of parameterized letters
(L-strings) that encode the geometry as the terminal symbols and
the tree topology (branching) as non-terminals. The key novelty
of our approach is in converting each parameterized bracketed L-
string into a hierarchy of strings for different levels of branching
that are non-parametric and bracket-free. We then train six Trans-
formers, one per species, that encode the geometry of each level
by learning the distributions of terminal symbols and the topology
by learning the distributions of the non-terminals. The neural net-
works generate new trees by initiating the trunk generator that
outputs the first string that includes terminal and non-terminal
symbols (branchings). Each generated non-terminal symbol then
recursively executes the same Transformer to generate higher-
level branches. The generation ends when all non-terminals are
substituted. The output is a standard L-string that is then in-
terpreted geometrically to generate the 3D geometry. Figure 1
shows several Acacia trees from 30 k samples used to train the
Transformer.

Our work belongs to inverse procedural modeling. The key con-
tribution is in replacing the tedious work of the manual creation of
the L-system with a deep neural model that learns the procedural
representation of existing trees. The generator is “aware” that it is
generating, e.g., the trunk of a pine. It generates its structure by
directly producing geometric terminal symbols, but it also gener-
ates the tree hierarchy by correctly positioning the non-terminal
symbols indicating higher levels of hierarchy. An important prop-
erty of this process is that it is all happening as string operations.
Like L-systems, the strings are being rewritten, but instead of us-
ing the L-system rules, we use a deep neural network that has
learned the rules from large amounts of data. We learn the implicit
rules from the training data set and generalize them. Creating such

rules manually is intractable. The second contribution is providing
a lightweight algorithm with a small set of control parameters that
can quickly generate the vast majority of complex 3D models. Our
implementation takes, on average, 16 seconds to generate a tree
geometry using a non-optimized Python generator. We will make
the training dataset and the deep neural model publicly available
upon acceptance.

2 RELATED WORK

Our work belongs to methods for vegetation geometry genera-
tion. We refer the reader to reviews about procedural generation
of virtual worlds [Smelik et al. 2014], interactive vegetation mod-
eling [Okabe et al. 2007], and tree modeling [Pirk et al. 2016].

Early tree modeling methods captured their fractal proper-
ties [Oppenheimer 1986; Smith 1984] and the tree structural repet-
itiveness [Weber and Penn 1995]. Still, the simple repetitive pat-
terns cannot capture the environmental response that was the
topic of the ongoing research, such as early methods based on par-
ticle systems [Aono and Kunii 1984; Arvo and Kirk 1988; Greene
1989]. Later methods were taking more inspiration from biology,
such as the seminal article of de Reffye et al. [1988] and the
interplay of the environment and the plant competition for re-
sources [Palubicki et al. 2009]. The tree response to the environ-
ment was estimated from its geometry [Stava et al. 2014] and re-
cent tree modeling methods introduce complex environmental ef-
fects such as support for obstacles [Hädrich et al. 2017], wind [Ha-
bel et al. 2009; Pirk et al. 2014], fire [Hädrich et al. 2021], deep
neural models sensing the environment [Zhou et al. 2023], and
roots [Li et al. 2023].

L-systems: One of the fundamental methods for the math-
ematical vegetation representation in computer graphics is L-
systems (see Section 3 for detailed description). L-systems were in-
spired by linear cell subdivision [Lindenmayer 1968] and Prusinki-
ewicz [1986] introduced the geometrical interpretation that made
them a commonly used model for vegetation simulation [Prusin-
kiewicz and Lindenmayer 1990]. L-systems were expanded in nu-
merous ways, and among them, the most noteworthy is the ability
to send signals between plant parts [Prusinkiewicz et al. 1993] and
the modeling of the environmental response [Měch and Prusinki-
ewicz 1996]. One common problem of L-systems is their definition.
The L-systems resemble a complex programming language, and,
while advanced visualization APIs exist [Karwowski and Prusinki-
ewicz 2004], their creation requires advanced skills and a tedious
trial-and-error process.

Inverse procedural modeling attempts to find a procedural
description of an input object. Recent methods work of regular
structures such as CAD models [Du et al. 2018], floorplans [Chen
et al. 2019], urban models [Bokeloh et al. 2010; Vanegas et al. 2012],
or facades [Wu et al. 2014]. Finding the procedural model for sto-
chastic structures leads to approximate solutions. Inverse proce-
dural modeling of trees has been addressed only in a limited way
by Šťava et al. [2014] who estimate growth parameters of a devel-
opmental model and by a recently deep-learning approach that is
capable of finding an L-system for 2D tree models from pixels [Guo
et al. 2020]. Finding an L-system model for an existing 3D structure
is an important open problem in the theory of string rewriting sys-
tems. Several approaches exist to the automatic construction of
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L-systems, for example, by an alternative procedural modeling
[Marvie et al. 2005] or by using genetic algorithms [Bernard and
McQuillan 2021; Fitch et al. 2018; Ochoa 1998]. Close to our ap-
proach is the idea of generating programs to represent 3D models
[Jones et al. 2020]. A statistical tree geometry generation has been
used in [Wang et al. 2018], where a novel metric called Extended
Square-Root Velocity Function generates trees statistically similar
to the input dataset.

Contrary to previous work, we use a deep neural genera-

tive model that provides the output string. Deep learning has
proven successful in generating new models from large datasets
of examples (e.g., GAN [Goodfellow et al. 2014] for image genera-
tions, MaskGAN [Fedus et al. 2018] for text generations, MuseGAN
[Dong et al. 2018] for music, polygonal meshes [Nash et al. 2020],
variations of man-made objects such as chairs [Jones et al. 2020;
Li et al. 2017; Mo et al. 2019], and deformable meshes [Gao et al.
2019]). Our work is closest to the methods that work with Natu-

ral Language Processing (NLP), such as Recurrent Neural Net-

works (RNNs) [Li et al. 2018], GANs [Guo et al. 2018], and RNNs
with the attention mechanism [Sutskever et al. 2014; Vaswani et al.
2017]. One of the recent achievements in processing sequential
data using neural networks is Transformer based on the atten-
tion mechanism. The Transformer does not process the data in
order due to the use of positional embedding. Moreover, it cap-
tures extended context information independent of past hidden
states. Transformer shows a superb performance in language trans-
lations [Devlin et al. 2018] and is also the preferred method in our
work. Transformer models have also proven effective in graph en-
coding (e.g., [Ying et al. 2021; Yun et al. 2019]) and have also been
used to handle irregular structures in 3D space, such as proteins.
PointBert [Brandes et al. 2022] shows the state-of-the-art perfor-
mance in protein benchmarks as it encodes protein sequences into
integer tokens. AlphaFold2 [Jumper et al. 2021] solves a problem
to predict 3D protein structure by encoding the raw protein se-
quences, and the attention mechanism then prioritizes the influen-
tial information. Our representation is similar in that it encodes
geometric information into sequences. The main difference is that
we linearize the hierarchical tree structure and we encode them as
L-system rules.

3 LINDENMAYER SYSTEMS

L-system [Lindenmayer 1968; Prusinkiewicz and Lindenmayer
1990] are a parallel string rewriting system described as a tuple

L = 〈M,ω,R〉 , (1)

where M = {A,B, ...Z } is a set of letters forming the L-system
alphabet. Let M+ denote a set of all non-empty sequences on M
(reflective closure of the set) and let M∗ = M+ ∪ ∅ denote all
sequences (reflective-transitive closure). The symbol ω ∈ M+ de-
notes the L-system starting string (axiom). Finally, R is a set of pro-
duction rules that define how a letter from the alphabet is rewrit-
ten. The rules have the form:

idi : A(p) : cond → x ∈ M∗. (2)

Each letter of the alphabet A can have a set of parameters p
that can be modified during production. A parameterized letter is
called a module [Prusinkiewicz and Hanan 1990]. An example is

Table 1. Turtle Commands

Module Turtle Command

F(d) Move Forward by the distance d

+(α ) Turn Left by α

−(α ) Turn Right by α

\(α ) Roll Left by α

/(α ) Roll Right by α

&(α ) Pitch Down by α

^(α ) Pitch Up by α

A(p) → A(p/2), which halves the parameter’s value. The condi-
tion cond is a boolean expression derived from the parameters. For
example, the rule A(p) : (p ≥ 1) → A(p/2) would halve the value
of the parameter p only if it is greater or equal to one.

String rewriting (the derivation) is an application of production
rules in parallel on a string X , denoted by⇒, and it involves paral-
lel rewriting of all letters inX according to R. The derivation starts
with the axiom and creates a sequence ω ⇒ m1 ⇒ m2 ⇒ . . . . If
the letter can be rewritten, i.e., there is a corresponding rule, it is
called a non-terminal symbol. Letters that do not have rules are
called terminal symbols. Terminal symbols are copied in the pro-
duction. The derivation ends when there is no rule for the letters
in m (i.e., mi = mi−1). In other words, the derivation ends when
m includes only terminal symbols. If R includes recursive rules, it
could run to infinity. In this case, the fixed number of rule applica-
tions is set explicitly. The size of R is the number of the production
rules n and i = 1, . . . ,n. The key novelty of our approach is in
substituting this process with a deep learning model.

The above-described L-system is a deterministic zero context

L-system (D0L) because it always generates the same sequence. It
can be extended to a stochastic L-system:

idi : pi : A(p) : condi → xi ∈ M∗ (3)

idj : pj : A(p) : condj → x j ∈ M∗. (4)

Note that the same symbolA(p) appears multiple times on the left-
hand-side of the rules and each rule has additional probability pi

andpj (
∑
p = 1). A random choice is made determining if idi or idj

will be used depending on the probabilities pi and pj .
Prusinkiewicz [1986] extended L-system in three ways. First, L-

systems are interpreted geometrically by a LOGO-like turtle that
reads the strings sequentially and interprets each module geomet-
rically. Table 1 shows the symbols used in this article and their
geometric interpretation. The ± symbols rotate the turtle left and
right around the forward direction, the & and ^ rotate back and for-
ward, and the pair of symbols \ and / roll the turtle around its main
axis. The second extension is by defining the state of the turtle. The
state S =

〈
P ,ϕ
〉

is its position P and orientation ϕ (one angle in 2D,
two angles in 3D). The third extension adds special symbols rep-
resented by brackets (bracketed L-systems). When the turtle reads
the symbol [, it pushes its status onto the stack. When it reads the
closing bracket ], it pops the status from the stack and sets its posi-
tion to P and orientation to ϕ. The content of each bracket defines
(recursively) a branch and bracketed L-systems have been used to
mathematically describe trees, bushes, and other branching struc-
tures [Prusinkiewicz and Lindenmayer 1990].
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Fig. 2. Overview: The developmental model generates a large dataset of various tree species (a). The models are encoded as bracketed L-strings, de-

parameterized, and the hierarchies are flattened. The L-strings are then encoded as rules for each species and level of hierarchy (b). The rules are then

converted to sequences of contextual tokens that train the Transformer (c) that can quickly generate new and unseen 3D tree models (d).

4 OVERVIEW

Our method consists of four steps (see Figure 2): (1) training tree
geometry data generation, (2) encoding, (3) deep model training,
and (4) new geometry generation.

The tree data generation step (Section 5) provides a large
dataset of widely varying tree geometries by using a developmen-
tal (growth) model that models five tree species and environmental
factors (gravity, light, and space colonization). The developmen-
tal model is complex and requires insight into the parameters and
their meaning. The output of the first step is a large set of 3D ge-
ometries -we use 155,000 trees stored as 31.2 GB of data- repre-
sented as tree skeletons and 3D textured meshes.

We then encode the tree geometry for deep learning training,
which is the key step of our proposed approach (Section 6). In
the first step, the tree geometry is analyzed, branch order is de-
termined, and the entire tree is encoded as a large sequence of
letters (L-system string shown in Figure 2(b)). Some letters carry
information about the tree geometry, and the topology is encoded
by sequencing the letters using two special symbols: opening and
closing brackets that denote tree branches (see Section 3 for de-
tails). We attempted to learn the L-string directly and use a re-
current neural network with an attention mechanism to generate
new strings. However, the pairs of brackets that identify branch-
ing preclude such a naïve approach as it breaks the pairing of the
generated brackets. Also, two parts of the tree that are physically
close may be apart in the string representation because of the in-
serted branches. Instead, we convert the L-string into a sequence
of bracket-free hierarchical rules, each corresponding to a different
level of the tree hierarchy. This can be intuitively understood as
cutting the tree branches and putting them in different categories
depending on their hierarchy level. A branch of a higher hierarchy
level in the string is represented by a non-terminal symbol indicat-
ing that a sequence should be used instead. This also brings close
together the parts of the tree that are close in the tree geometry.

The deep model training (Section 7) uses the branches orga-
nized into hierarchies. While the branches are generated for each
tree individually, the generated data is shared for all trees thus pro-
viding a large dataset of tree trunks, branches from the trunk, and
so on. We designed our neural network with an attention mecha-
nism and trained one network per species that keeps the informa-
tion about pairing across the different levels. An important aspect
is the distribution of the non-terminal symbols (topology) in the
string that is efficiently learned by the network in the learning step.

Fig. 3. Examples of the synthetic trees generated by our growth model and

used as the training data with (top) and without leaves (from left: acacia,

birch, maple, oak, pine, and walnut).

The new tree geometry is generated (Section 8) by providing a
small starting sequence of letters (the axiom) to the network. In the
same way that L-systems generate the geometry from the letters,
we execute the model, generating a string of letters, including the
non-terminal symbols that indicate branches. Each non-terminal
carries information about the hierarchy level (small branchlets
growing out of the trunk differ from the main branches). Then
the same network is called for all non-terminal symbols, and the
process continues until all non-terminals have been rewritten.
The final string is then interpreted by the standard L-system
mechanism (the turtle [Prusinkiewicz 1986]) that produces the 3D
tree geometry.

5 TREE MODEL DATA GENERATION

We need a large dataset of 3D tree geometries to train our deep
model. While real trees would be ideal, the state-of-the-art 3D tree
reconstruction methods do not provide sufficient details, precision,
and quantity required for deep learning. We are unaware of any
dataset of real 3D trees that could be used. However, computer
graphics tree geometry generation techniques are sufficiently ma-
ture to provide detailed 3D models. Although they require skilled
users, they allow for a high level of control to generate large
databases of 3D geometric models quickly. We use our tree ge-
ometry generator that is based on space colonization by compe-
tition for resources [Palubicki et al. 2009] and developmental and
environmental response [Pirk et al. 2012; Stava et al. 2014]. We
will provide the tree dataset for public use upon acceptance of the
article.

Our tree generator supports the generation of Acacia, Birch,
Maple, Oak, Pine, and Walnut (see Figure 3). The trees are de-
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scribed by their botanical structure [De Reffye et al. 1988] such as
the branching angle, phyllotaxis, and type of branching. The tree
generator is a full developmental model based on De Reffye et al.
[1988], Palubicki et al. [2009], Stava et al. [2014], Li et al. [2021]
that models a plant bud behavior. The basic geometry is described
by the structural biological model [De Reffye et al. 1988] that de-
fines the direction in which each bud grows and how often they
branch. The environmental response modifies the basic behavior
by bending the growth direction against gravity (gravitropism) and
towards the light (phototropism) [Měch and Prusinkiewicz 1996].
Buds also compete for space by space colonization that optimizes
the branch 3D distribution to maximize light intake [Palubicki et al.
2009]. We also model internal signaling by simulation auxin (plant
growth hormone), e.g., a bud that has been in a shadow for a pro-
longed time will become dormant and sends signals to the neigh-
boring buds that will increase growth (light seeking).

We generated 155 k trees, 5 × 30 k per each species but 5 k for
Walnut trees. (see Table 2 and Section 9.2). Leaves are generated au-
tomatically on branch tips, and tree branch width is generated by
following the updated da Vinci rule [Minamino and Tateno 2014].

6 TREE ENCODING AND RULE GENERATION

The growth model provides 3D tree geometry where branches are
represented as a set of discretized (piece-wise linear) generalized
cylinders [Měch and Prusinkiewicz 1996]. We first convert the 3D
geometry to a single string of L-system modules. Then we remove
all the parameters from the modules by converting them to a string
of letters, and we also remove the brackets by encoding the L-
string to L-system rules. Eventually, we represent each string as
a set of rules that are encoded as tokens for the Transformer.

6.1 Tree Ordering

We represent the tree as a skeleton that is a topological graph that
also stores geometric information [Du et al. 2019]. In particular,
each node stores data about the width, orientation, and a list
of branches. The 3D mesh can be fully reconstructed from the
skeleton.

It is unclear what constitutes a new branch and what is the con-
tinuation of an existing one. For example, a Y-shaped branching
could be either a branch that splits into two (sympodial branch-
ing) that would lead to a string F [+F ][−F ], or it could be a single
branch (either left or right) with a new branch on the opposite
direction leading to either F [+F ] − F or F [−F ] + F (monopodial
branching). This cannot be disambiguated only by inspecting the
local neighborhood because the branching could be only a small
local branch. Holton [1994] introduced Gravelius ordering [Grav-
elius 1914] to geometric tree modeling, and we also adopted this
approach. Gravelius ordering is a topological ordering of rivers
that determines where the river starts and ends. It assigns order
one to the river mouth and orders to the higher-order branches
in a bottom-up fashion. The importance of each river at a conflu-
ence is determined and decides if the river is a continuation or a
branching. A continuation inherits the order, and a new branch
has a higher order (see Figure 4).

The tree skeleton is a directed graph T = [V ,E], with nodes
V = {vi }, i = 1, . . . ,n and edges E = [vi ,vj ] oriented from the root

Fig. 4. Gravelius ordering assigns an order to each vertex and edge by de-

termining if it is a continuation or a branching (left). The ordering defines

consecutive branches (right).

to the leaves. The root v0 is assigned its Gravelius order д(v0) = 0.
At each branching nodev with branchesvi , the order ofv is deter-
mined by weighting the depth of the subtrees and the branching
angle. We use the following two conditions. The node v is a con-
tinuation if the depth of the subtrees depth(vi ) does not vary by
more than 20%. The second condition states that the branching an-
gle should not exceed a certain value. The value is given by the av-
erage of the apical angle and the branching angle from the growth
parameters for each species (Acacia: 30o (average of 10o and 50o ),
Birch: 23o (1o and 45o ), Maple: 25o (2o and 48o ), Oak: 25o (average
of 20o and 30o ), Pine: 40.5o (1o and 80o ), and Walnut: 30o (25o and
35o )).

The order of an edge is set to the order of its end vertex д(e ) =
д([vi ,vk ]) = д(vk ). An example in Figure 4 shows the Gravelius
order of each node and edge as a yellow box. The depth differ-
ence of the two subtrees of v1 is only one, and the right tree
also has a small branching angle, so node v1 is determined to
be a continuation and has the Gravelius order of its predecessor
д(v1) = д(v0) = 0. While the depth difference at node v3 is also
small, the branching angle makes the order д(v3) to increase to
д(v3) = д(v1) + 1.

6.2 L-string Tree Encoding and De-Parameterization

The tree skeleton with the Gravelius ordering is parsed, and the
string of L-system modules (parameterized letters from Section 3)
is generated. We call this step L-string tree encoding.

L-string encoding: Each internode (a branch segment between
two possible branchings) is converted to the F (x ) module, where
x is the internode length (see Table 1), and each turning is rep-
resented as the corresponding command with the parameter stor-
ing the angle. There are various ways to encode branching as the
following four strings represent the same geometry of the Greek
letter Ψ:

(a)F [+F ][−F ][F ] (b)F [[+F ] − F ]F

(c )F [[[+F ] − F ]F ] (d )F [+F ][−F ]F ,

and we use the last option (d), which minimizes the recursion level.
At each branching point, the order of children is verified. Each

child of a higher order is processed in the following way: the push
terminal symbol [ is generated, the child node is recursively pro-
cessed, and at the end, the pop symbol ] is generated. If the branch-
ing has a child of the same order, the processing continues without
generating the push and pop symbols.

L-string de-parameterization: The generated L-string is pa-
rameterized, and the parameters are interpreted as the value that
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Fig. 5. Angle Quantization: The top two rows show the tree geometry of an Acacia Tree, and each step shows the change in the tree geometry with an

increasing quantization level. The graph indicates the angle distribution and the value shows the percentage and the number of unique angles. The tree

geometry does not visually change, even for extensive angle decimation.

Fig. 6. A biological tree geometry and topology are encoded into a mathematical tree (left) and processed into bracket-free rules. In each pass, the inner-most

parentheses are replaced by a non-terminal symbol R
д

i
, where д is the recursion level (the Gravelius number) and i is the non-terminal symbol number.

the command needs to follow; e.g., F (0.1) is interpreted as mov-
ing forward by one-tenth of the distance. The L-strings include a
significant variance of the parameters that typically follow Gauss-
ian distribution. We perform quantization of the parameters
where each range of values is assigned a single representative
value, and the number of values is given experimentally. We use
k-means clustering of all parameters to find each value represen-
tative, and then we substitute each value with its corresponding
k-means cluster center. An example in Figure 5 shows the effect
of the quantization of the tree angles. The first two rows show
the two views of the tree, and the histogram shows the angle dis-
tribution that indicates a bi-modal histogram with two prevailing
values. It is further exemplified by reducing the number of param-
eters where the pair of the values on the lowest row shows the
percentage of the parameters and the actual number of unique pa-
rameters. The quantization preserves the tree shape even for a rel-
atively small number of clusters, such as reducing the number of
unique values from 773→ 7, i.e., by 99%.

We then de-parameterize the quantized modules. We expand
the L-system alphabet by replacing each module with a letter, i.e.,

F (0.5) is substituted by F05. The total dataset size is reduced by
compressing the numerical values from 31.2 GB to 13.8 GB (55.8%).
The set of turtle commands from Table 1 is expanded accordingly,
e.g., F05 is interpreted as “move forward by the distance 0.5”. Note
that each symbol then corresponds to a class of symbols: the mean-
ing is the same, and it is given by the letter (Table 1), but the num-
bers correspond to the parameter. The de-parameterization is per-
formed for all symbols from Table 1.

6.3 Rule Generation

We initially tested the Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber 1997]. We attempted to learn the
string directly, but LSTM was (a) unable to learn the long string and
(b) produced syntactically incorrect strings with missing brackets.
The bracket pairs identify branches corresponding to a different
hierarchy level, making geometric neighbors located far away in
the string. In other words, while the letters A and G in the string
A[BCDEF ]G are separated by seven letters, geometrically, AG are
neighbors on the same branch, and BCDEF is a branch attached at
A. We tried the LSTM to learn the L-system rules, but it could not
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Fig. 7. L-string generation: The current string m is parsed, and all non-terminals are replaced by [m′] generated by the Transformer. The Transformer is

invoked by forming a token indicating species S and the sequence identifying the non-terminal д@i and its context V
д−1
j

. When the string includes only

terminal symbols, its parameters are restored, and the turtle interprets the string to produce the 3D geometry.

produce the hierarchies (see the Appendix for details and Table 8
for the LTSM model parameters). LSTM struggles to learn geomet-
ric information located at a great distance. In contrast, transform-
ers are efficient in learning such distant geometric data because
they use positional encoding. We also trained the Transformer di-
rectly on the L-strings, but it also did not generate the bracket pair
correctly. We report the average loss values from three different
experiments in Figure 21. Case 1 (loss 1.5) uses LSTM on L-system
rules, Case 2 (loss 5.3) uses LSTM on L-strings, and Case 3 (loss
3.1) uses the Transformer on L-strings. While Case 1 has a smaller
loss than the transformer, it cannot learn the rules.

Instead, we follow the topological organization of the L-string
into brackets. We replace each level of hierarchy with a non-
terminal symbol and an L-system rule representing a new level of
hierarchy. It intuitively corresponds to removing the tree branches
and organizing them into hierarchical rules, as depicted in Fig-
ure 6. The tree is parsed inдmax passes (levels of hierarchy), where
дmax = max {д(vi )} vi ∈ T is the highest Gravelius order in the
tree. In each pass, the deepest level of bracket pairs is replaced by
non-terminal symbolsRi

д , whereд is the Gravelius order level and i
is the non-terminal symbol number. The right-hand-side of the
rewriting rule (RHS) is the replaced string, and each string starts
and ends with brackets as they encapsulate a branch. Note that
the brackets are always located at a string’s beginning and end. A
string corresponding to a branch [m] with the left contextml and
the right contextmr is substituted by R

д
i :

ml [m]mr ⇒ mlR
д
i mr

idд : R
д
i → [m]. (5)

This process is repeated until the L-string is bracket-free. An ex-
ample in Figure 6 shows a 2D tree that has been encoded into a se-
quence of modules F+F [−F [−F [−F ][+F ]]FF ]FFF (parameters not
shown). The дmax = 3 and in the first pass, the inner-most paren-
thesis [−F ] and [+F ] are replaced by rules R3

1 → [−F ], R3
2 → [+F ].

The encoding ends when all parentheses have been removed.
The results of this step are the axiom of the grammar ω and

rules encoding the branches on different levels of hierarchy. An
important aspect of this encoding is that each branch includes in-
formation about the distribution of the subbranches: we count the
distance between the non-terminal symbols (subbranches) on the
string.

7 TRAINING

After all the input trees are encoded into L-system rules, we train a
deep neural model that simulates the L-system string rewriting. It
predicts the letters in the string corresponding to the tree geometry

Table 2. Training and Extracted Data: Species, Number of Trees,

Maximum Recursion Depth (Gravelius Order дmax ), Extracted L-string

Length, Number of L-system Rules, and the Training Time

Species # of Trees дmax String length # of Rules Train.
avg, stdev avg, stdev time

Acacia 30 k 10 52 k, 16 k 314, 92 5 h 0 m
Birch 30 k 5 120 k, 12 k 834, 85 13 h 37 m
Maple 30 k 6 127 k, 17 k 860, 116 7 h 39 m
Oak 30 k 9 195 k, 62 k 1,225, 314 5 h 48 m
Pine 30 k 6 141 k, 20 k 1,041, 140 10 h 31 m
Walnut 5 k 13 108 k, 36 k 658, 193 15 h 55 m

Total 155 k 475 k 4,529 42 h 30 m

and learns the distribution of non-terminal symbols corresponding
to the branches at the higher hierarchy levels.

7.1 L-strings to Training Sequences

We convert each L-system rule R
д
i from Equation (5) into a training

sequence Qд
i

Qд
i = S

д
i V

д
i E (6)

that consist of two sub-sequences and one token: the start S, value
V , and the end E = [end]. The model needs to connect two levels
of hierarchy (branches), and this information needs to be included
explicitly in the tokens. We put the rule’s predecessor in the start-
ing sequence and the RHS of the rule in the value sequence. Let’s
have the following rules:

R
д−1
0 → RHS (R

д−1
j ) (7)

R
д
i → RHS (R

д
i ), (8)

where RHS indicates the right-hand-side of the rule. The

RHS (R
д−1
j ) is a sequence of strings of terminal (m∗,m ∈ M) and

non-terminal symbols m∗Rд
0 m∗Rд

1 . . .m
∗ R

д
i . The training se-

quence for each of the non-terminals is:

Q
д
i =
〈
S д@i

〉
RHS (R

д−1
j )RHS (R

д
i )[end] (9)

where symbols S ∈ {A,B,M,O, P ,W } are the species identifier
(Acacia, Birch, Maple, Oak, Pine, and Walnut) (see Table 2), and the
sequence д@i in S is the rule ID. The rule R0

0 corresponds to the
tree trunk does not have a predecessor, and the training sequence
is

Q0
0 =
〈
[S 0@0]RHS (R0

0)[end]
〉
. (10)
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7.2 Model Architecture and Training

We use seq2seq [Sutskever et al. 2014] using the Transformer
model, which follows [Vaswani et al. 2017], with Positional En-
coding using sine and cosine functions and we show our model
in Figure 22. Tokens are encoded based on their occurrence fre-
quencies from the training data, and we use the Teacher Forcing
method [Williams and Zipser 1989] to train the Transformer (see
implementation in Section 9.1). We use early stopping to avoid
overfitting or stop the training if a loss value does not improve
for ten epochs.

During the training, we input a sequence Qд
i (Equation (6)), and

the model generates a new value sequence V′. We measure the
performance of the Transformer by calculating differences using
cross entropy [Bishop and Nasrabadi 2006] between the ground
truth sequence Vд

i and the generated sequence V̂ , which are

based on the same starting sequence Sд
i .

Let |P | be the number of unique parameters from the training
data. The loss function is

loss = −
|P |∑

i=1

Vд
i log(V̂д

i ). (11)

The loss function is designed to give equal weight to the gener-
ated sequenceV′ as varying weights produced a correct trunk but
too short or long branches. This loss function helps the generation
of well-balanced trees.

8 GENERATION

The generation process is similar to string rewriting in L-
systems [Prusinkiewicz and Lindenmayer 1990] in that it takes the
current stringm and rewrites all non-terminal symbols in parallel
with new strings. The main difference is that we do not parse a set
of rewriting rules because the Transformer encodes the rules. In-
stead, the Transformer generates a sequence corresponding to the
RHS (R

д
i ) of any rule R

д
i from the input data set per species (see

Figure 7). We execute the Transformer by providing the species S ,
the non-terminal symbol R

д
i rule number, and its context (the pre-

decessor R
д−1
j ). It is important to note that the Transformer does

not generate the exact copy of the RHS , but its sequence depends
on the context. We use Temperature Sampling commonly used in
text generation [Guo et al. 2018] that provides valid randomized
tokens. In effect, the generated trees are also randomized. We use
the temperature constant of 0.9 during the generation. Having the

contextV
д−1
j , the Transformer predicts the probability of the next

tokens, and we apply the temperature sampling and then choose a
token with the highest probability. Without the temperature sam-
pling, the highest probability tokens from the model will be the
same, causing the generation of identical trees. The tokens are gen-
erated until the Transformer outputs E.

The key to deep L-string rewriting is how the Transformer to-
kens are formed. The current string m represents the tree geome-
try, and the deep generation starts by initializing m to the species
S axiom m ← R0

0. We parse the string, and for each non-terminal,

we form the token [S д@i V
д−1
j ] corresponding to the rule R

д
i and

its predecessor V
д−1
j ← RHS (R

д−1
j ). Note that the axiom R0

0 does

not have a predecessor, so its predecessor is set to an empty string
V ← ϵ . The Transformer then responds with the output stringm′.

The non-terminal symbol divides m into its left and right con-
text mlR

д
i mr . We replace the newly generated string by encapsu-

lating it into L-system brackets [m′], so the new string has the
form m ← ml [m′]mr . The newly generated sequence may add
new non-terminal symbols corresponding to higher-level branch-
ing. The generation ends when m does not include non-terminal
symbols.

We restore the parameters from the generated string by revers-
ing the de-parameterization from Section 6.2. The turtle then in-
terprets the string, and the tree geometry is generated. The gener-
ating process is guaranteed to terminate because the training data
contains [end] at the end of every sequence. Figure 17 shows that
the generated trees follow a similar distribution of the training data
distribution.

9 IMPLEMENTATION AND RESULTS

9.1 Implementation

We use C++ to develop a simulator program to generate L-system
string-based trees. The neural network is implemented in PyTorch
version 1.12. We train the neural network on an Intel i9-12900 k
at 4.8 GHz with Nvidia GeForce RTX 3090. All tree models were
rendered by path tracing implemented in Nvidia OptiX 7.4.

Our implementation uses seq2seq [Sutskever et al. 2014] and
the Transformer model based on Pytorch 1.12, which follows
[Vaswani et al. 2017], and Positional Encoding using sine and co-
sine functions (see Figure 22 in the Appendix). Tokens are encoded
based on their occurrence frequencies from the training data. We
train the model with Adam optimizer [Kingma and Ba 2014] with
a learning rate of 5 × 10−5, and we stop the training if there are
no improvements in loss values for ten epochs to prevent an over-
fitting. The model has three Transformer encoders and three de-
coder layers. We set four as the number of attention heads, 128 as
the features for the encoder and decoder layers, 128 as the dimen-
sion of the feedforward network, and 0.1 for the dropout rate for
the encoder and decoder layers (see Figure 22). We set 512 as the
training batch size and used the Teacher Forcing [Williams and
Zipser 1989] to train the Transformer.

9.2 Generated Trees

We used the Transformer to generate 200 trees for each species (1
k total) and show examples in Figures 11–16. We used the 200 trees
for validation, as discussed below.

Training and Data Size: We train each Transformer model on
155k of tree models (Acacia, Birch, Maple, Oak, Pine) and 5k of
tree models on Walnut (Table 2). We split the training data with
an 80:20 ratio for training and validation. The training stops when
overfitting occurs. We used |S | = 6 models, one for each tree
species. Acacia, Birch, Maple, Oak, Pine, and Walnut tree models
have been trained on 8, 5, 7, 5, 9, and 47 epochs (see Table 2). We
maximize the 24 GB of the GPU memory by using the batch size
of 512. The table also shows the amount of extracted data from the
tree models: the string length storing the tree geometry and the
number of the extracted bracket-free L-system rules.
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Table 3. The Frequency of Occurrence of Each Terminal Symbol Parameter in the Input and the Generated Data Showed as Pairs μ, σ 2

Species “+” “-” “^” “&” “/” “\” “F”

Acacia (input) 12.8,14.7 12.9,14.6 26.2,22.2 5.4,5.2 97.8,46.3 0.5,1.9 0.8,0.4
(generated) 12.8, 13.2 13.0,13.2 23.9,21.9 5.3,4.0 101.6,32.9 0.5,0.2 0.8,0.4

Birch (input) 1.0,0.8 1.1,0.9 23.0,22.0 1.1,0.6 116.2,44.6 74.2,88.2 0.8,0.4
(generated) 1.1,0.8 1.2,0.9 20.3,21.8 1.1,0.8 116.1,37.9 90.5,89.7 0.8,0.4

Maple (input) 2.0,1.8 2.2,2.0 23.4,23.9 2.5,1.9 116.6,40.4 75.7,88.2 0.8,0.4
(generated) 1.9,1.8 2.2,1.9 19.7,23.3 2.2,1.9 117.0,34.7 84.4,89.2 0.9,0.3

Oak (input) 16.5,7.3 1.3,1.9 11.0,14.2 2.1,2.0 117.7,33.3 78.6,88.3 0.8,0.4
(generated) 16.6,6.7 1.1,1.4 9.4,13.1 1.9,1.7 117.1,30.6 81.2,88.7 0.9,0.3

Pine (input) 1.8,1.9 1.8,1.9 41.0,38.9 2.5,2.0 116.0,43.4 73.2,87.3 0.8,0.3
(generated) 1.8,1.8 1.9,1.9 36.3,38.6 2.5,1.9 115.2,39.3 83.4,88.5 0.8,0.3

Walnut (input) 17.1,7.5 2.2,4.2 10.8,14.4 2.8,3.2 118.0,31.0 79.6,87.9 0.9,0.3
(generated) 17.3,7.3 1.1,3.2 12.0,14.6 3.2,3.3 118.8,30.6 86.1,87.9 0.9,0.3

9.3 Validation

A common way to compare strings is to pre-compute the discrete
distribution of the following symbol given the current one and
then use sampling to predict the next one. However, L-systems in-
clude hierarchies, and the brackets affect the string-edit distance,
thus precluding us from using this approach. We validate our ap-
proach by comparing the similarity of distribution using extracted
features of the training and generated data.

The L-strings encode 3D geometry, and we validate the ability of
our model to reproduce the input tree geometric models (ground
truth) by comparing their statistical distributions to the input data.
The input data (Table 2) include 30 k trees per tree species and 5 k
trees for Walnut. We generated 200 trees per species (Table 5) using
the Transformer and compared them to the training data. In par-
ticular, we (a) measure their geometric properties (height, depth,
geometry), (b) compare their perceived realism using ICTree per-
ceptual metrics, and (c) show the three closest trees from the input
dataset.

Tree Shape Global Features compare the height and width of
the trees from the training set and the generated trees (Figure 19,
Figure 36, Figure 37). The difference between the average width of
the generated and real data is 19.7%. And the maximum difference
is 36.8% for the Acacia tree species. The difference between the av-
erage height of the generated and real data is 21.9%, and the max-
imum difference is 37.1% for the Birch trees. The generated trees
are about 2%–9% taller than the ground truth because the temper-
ature sampling (Section 8) generates slightly more non-terminal
symbols. This accumulates Forward (F) symbols in Figure 17. The
discrepancies are within the range of the standard deviation. The
differences from the tree shape global features between the ground
truth trees and generated trees show our model does not generate
the exact size of training data in terms of the tree shape.

Tree Depth refers to the complexity of tree branching, and it is
measured as the maximum level of hierarchy from an L-system
string (see Figure 19) and its density function of histogram in
Figure 23. The difference between the average level of the hierar-
chy of the generated and real data is 6.3%. The maximum difference
is 15.8% for the Oak tree species. Generating more branching levels
can cause a thickening of the trunk and the lower branches.

Fig. 8. Changes of the non-terminal symbol frequency during training of

the input and the generated data.

Table 4. The Average Distance of Branchings

Species Input Generated Δ

avg, std avg, std [%]

Acacia 1.8, 1.2 1.8, 1.3 0

Birch 1.1, 0.4 1.1, 0.4 0

Maple 1.2, 0.6 1.2, 0.5 0

Oak 1.6, 1.1 1.5, 1.1 6

Pine 1.0, 0.4 1.1, 0.4 10

Walnut 1.9, 1.3 1.6, 1.0 15

Terminal Symbols encode the tree geometry and we compared
the frequency of each terminal symbol in the input data of 30 k
trees for each species and the 200 trees generated by our method.
Figure 17 and Table 3 show the comparison of their distributions.
The generated trees have similar averages and standard deviations
of the terminal symbol distributions. In particular, the average dif-
ference of angles is Acacia: 3.7%, Birch 7.6%, Maple 7.3%, Pine 5.8%,
Oak 6.8%, Walnut 5.4%, and the overall average difference is 6.1%.
The average difference in lengths of branches is Acacia: 1.7%, Birch
2.1%, Maple 4.2%, Pine 3.1%, Oak 2.8%, and Walnut 1.0% and the
overall average difference is 2.5%. We also report the distribution
of values of terminal symbols. Figures 24–29 in the Supplemen-
tary shows the density function of the distribution of the terminal
symbols. The overall average difference in angles and lengths of
branches shows that our model generates trees with a similar dis-
tribution of geometric attributes.

Figure 8 shows how the frequency of the terminal symbols
changes during the training process. The initial distribution of the
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Fig. 9. The effect of the number of input data trees (5 k-10 k-30 k) on

the validation loss. The x -axis shows the percentage of dataset size used

for the training. The larger training dataset shows better performance in

general.

training data (red) varies significantly from the input (blue). How-
ever, after about 400 iterations, the training loss shows that the
model is converging, and after 900 iterations, the differences be-
tween the distribution of training data and the generated data are
negligible.

Non-terminal Symbols define tree branching, and a qualita-
tive indicator of their distribution is their average distance in each
tree. We hypothesize that the distribution of the branchings in the
input and the generated data should be similar. We measure the
distances by traversing the trees from the root and calculating the
geodesic distance of the next branch. Note that a simple count of
the non-terminals would not report a correct result, as the two
strings F (2) and F (1)F (1) have the same geometric meaning. We
perform this task recursively for every tree and report the aver-
age and the standard deviation in Figure 18 and Table 4 we also
report its density function of histogram in Figure 20. The overall
average distance difference is 5.2% that indicates an agreement be-
tween the input and the generated data. The distributions of the
non-terminal symbols correspond to the branching elements, and
preserving their distributions shows that the branching is also pre-
served (see Table 4).

Figure 9 shows the effect of the amount of training data on the
validation loss. We trained the model using 5 k, 10 k, and 30 k
Birch trees. Each model takes 38 min, 53 min, and 150 min, respec-
tively. After the model trained on 100% of available trees in each
dataset, their best loss values were 3.179, 2.751, and 2.437 for 5,000,
10, 000 and 30,000 trees. The loss values of the 5 k trees model and
the 10 k trees model are 30.4% and 12.9% higher than the 30 k trees
model. We experiment with a weighted loss using angle and dis-
tance tokens. Interestingly, the weight parameter choice does not
significantly affect the validation loss. We experimented with the
following combinations: [angle, distance] [0.1,0.9], [0.5,0.5], and
[0.9, 0.1] leading to validation losses of 1.013, 1.012, and 1.013.

Depth Level Distribution compares the Gravelius order of
each tree (see all figures in the Supplementary Materials). The fig-
ures show the models learned well by comparing averaged values
between the parameters because of their small differences. More-
over, generated trees have a larger standard deviation, indicating
that the models did not memorize the ground truth data. Still, they
can generate new trees likely in the training data but not the same
trees.

Tree Similarity shows a side-by-side comparison of a ran-
domly selected generated tree with three samples from the training
dataset that were geometrically closest. Tree geometric similarity
is an open research problem, and we adopted the tree geometry

Table 5. Transformer-generated Trees: Species, Number of Trees,

Maximum Recursion Depth (Gravelius Order дmax ), and the

Training Time

Species Number of Trees дmax Gen. time Gen. time

дmax all single tree

Acacia 200 10 37.80 min 11.34 s

Birch 200 5 55.60 min 16.68 s

Maple 200 6 53.73 min 16.12 s

Oak 200 9 58.27 min 17.48 s

Pine 200 6 68.47 min 20.54 s

Walnut 200 13 62.13 min 18.64 s

total 1,200 56.00 min 16.80 s

Fig. 10. Visual comparison of trees generated by latent L-systems (left)

and three geometrically closest trees from the validation dataset (right).

decomposition into a list of features introduced in Polasek et al.
[2021]. In particular, the tree is divided into a list of chains that
are sequences of segments defining a branch. The feature vector
stores each chain’s length, curvature, maximum and minimum an-
gle, straightness, and the number of segments. We also store the
global feature, that is, the maximum depth of segments (Gravelius
number) of the tree. We refer authors to Polasek et al. [2021, Sec-
tion 4.3] for more details on how the features are calculated. The
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Table 6. Perceived Tree Realism Metrics ICTree for the Input

Data and the Generated Models

Species Input (avg, stdev) Generated (avg, stdev)

Acacia 0.96, 0.01 0.97, 0.01

Birch 0.94, 0.01 0.98, 0.01

Maple 0.94, 0.02 0.99, 0.01

Oak 0.92, 0.03 0.96, 0.02

Pine 0.94, 0.01 0.98, 0.01

Walnut 0.95, 0.02 0.94, 0.02

Total 0.94, 0.02 0.97, 0.01

Fig. 11. Acacia tree models generated with our system.

Fig. 12. Oak tree models generated with our system.

feature vector of the selected generated tree is used to find the
three nearest neighbors in the training data set by using L2 met-
rics. Results in Figure 10 show the Transformer-generated 3D ge-
ometry (left) and the three nearest neighbors from the validation
dataset unseen during the training.

ICTree is a recent work [Polasek et al. 2021] that outputs per-
ceived visual realism of tree models from their geometry and im-
ages. The deep learning-based method provides a value of per-
ceived tree realism. We hypothesize that the ICTree values of the
input dataset should not vary from the generated models. The in-
put data for acacia, birch, tree, maple, pine, and walnut have 0.96,
0.94, 0.94, 0.92, 0.95, and 0.95. The average score for the generated
trees is 0.94.(0-non-realistic, 1-realistic) from its geometry.

Table 6 shows the perceived visual realism values per species
for the input and the generated models. Our results show that the
average perceived realism of all ground truth trees is 0.94, and
the generated ones are 0.97 with a difference of 3.20%, with the

Fig. 13. Maple tree models generated with our system.

Fig. 14. Walnut tree models generated with our system.

Fig. 15. Birch tree models generated with our system.

Fig. 16. Pine tree models generated with our system.

highest difference for Maple of 5.31%. The standard deviation of
the ground truth is 0.02, and the generated trees are 0.01. While
the difference seems large, it is small compared to the average
value. ICTree metrics for the ground truth data are slightly smaller
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Table 7. Tree Features from ICTree [Polasek et al. 2021], the Input and the Generated Data Showed as Pairs μ, σ 2

Species Internode
Count

Length Max Child Angle
Total

Max Child Angle
Total

Max Sibling Angle
Total

Total Length Slope Straightness

Acacia (input) 1.547,0.093 1.911,0.088 0.343,0.024 0.775,0.025 0.343,0.024 1.790,0.075 1.056,0.058 0.924,0.003
(generated) 1.328,0.119 2.320,0.147 0.456,0.032 0.786,0.034 0.457,0.032 2.139,0.129 1.095,0.089 0.919,0.005

Birch (input) 0.783,0.029 1.614,0.062 0.257,0.021 0.473,0.012 0.258,0.020 1.574,0.059 0.884,0.027 0.954,0.001
(generated) 0.673,0.029 1.932,0.046 0.336,0.014 0.519,0.011 0.344,0.014 1.873,0.044 0.861,0.076 0.953,0.001

Maple (input) 0.814,0.049 1.861,0.101 0.334,0.032 0.553,0.020 0.338,0.031 1.800,0.095 0.986,0.026 0.949,0.002
(generated) 0.613,0.039 2.392,0.089 0.472,0.021 0.625,0.015 0.476,0.019 2.297,0.086 0.905,0.096 0.946,0.001

Oak (input) 1.126,0.176 2.388,0.326 0.339,0.042 0.518,0.026 0.342,0.042 2.314,0.309 1.029,0.112 0.964,0.002
(generated) 0.836,0.089 3.034,0.314 0.412,0.021 0.533,0.014 0.412,0.021 2.934,0.304 0.881,0.122 0.963,0.002

Pine (input) 0.799,0.027 1.631,0.061 0.418,0.034 0.826,0.021 0.427,0.033 1.512,0.052 1.525,0.027 0.876,0.003
(generated) 0.645,0.021 1.925,0.046 0.633,0.029 0.943,0.017 0.639,0.028 1.731,0.040 1.542,0.036 0.853,0.004

Walnut (input) 1.247,0.122 2.637,0.197 0.365,0.027 0.560,0.022 0.371,0.028 2.540,0.183 1.130,0.124 0.960,0.002
(generated) 1.124,0.078 2.401,0.098 0.352,0.019 0.555,0.017 0.357,0.020 2.313,0.092 1.120,0.095 0.960,0.002

Fig. 17. Comparison of the distributions of the terminal symbols in the input and generated data. The top row shows the distribution of the angles and the

bottom row shows the distribution of the “F” symbol for the input and the generated data.

Fig. 18. Comparison of the distributions of the non-terminal symbols (branchings) in the input and the generated data.

than our generated trees. The similarity of the scores and their
distributions shows that the models would be perceived as realistic
and the small standard deviation (0.01) indicates a low number of
outliers.

Tree Features. We also calculate the comprehensive set of ex-
tracted geometric features by using the approach from Polasek
et al. [2021], Stava et al. [2014]. In particular, we compare the chain
internode count, chain length, chain max child angle total, chain
max sibling angle total, chain total length, chain slope, and chain
straightness (see Table 7). The overall average and standard de-
viation from the ground truth with tree features is 1.04 and 0.65,
respectively. Also, the model-generated tree features agree with
the ground truth at 92.3% with 1.12 and 0.75 as its overall average
and standard deviation. The max child angle total has the largest

average percentage difference of 30.25%, and straightness has the
smallest average percentage difference, which is 0.61%.

10 CONCLUSIONS AND FUTURE WORK

L-systems are a powerful mathematical formalism, with the main
drawback being the unintuitiveness of the tree model description.
Our approach uses L-systems as an intermediate representation
that is invisible to the user as it replaces the L-system rules with a
deep neural model that can be trained from real data. We train our
model on 155 k 3D tree geometries. We show that it can generate
an arbitrary number of tree geometries similar to the training data
as validated by comparing the topology, geometry, and perceived
realism. Our key novelty is in representing the tree geometry as
a string that can be used by a common deep neural model. We
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Fig. 19. Comparison of the tree height and width (upper row) and the recursion depth (lower row) in the input and generated data and it shows the input

and the generated data. The bar shows the average of values and the line shows the standard deviation of values.

Fig. 20. A histogram of non-terminal symbols for (Top)Acacia, Birch, Maple and (Bottom)Oak, Pine and Walnut trees.

show that the generated trees have similar geometric and topo-
logical properties and similar perceptual measures as the training
data.

Our model has several limitations. One of them is the common
limitation of procedural models, i.e., low control. The user sends
an input token to the Transformer, and the deep neural model re-
sponds with a tree geometry. The second limitation is the input
training set. While computer graphics-based 3D tree models are
becoming realistic, it would be helpful to train our deep model on
a set of real tree geometries. However, to the best of our knowl-
edge, such a dataset does not exist. Another limitation is the rela-
tively slow generation time of our models (seconds). While existing

procedural methods written in C++ and CUDA are capable of gen-
erating 3D tree models interacting with wind [Pirk et al. 2014], our
Python-based implementation is much slower.

There are several possible avenues for future work. The first is
in providing control over the space of the generated trees. While
procedural models have shown flexibility in interactive model gen-
eration [Longay et al. 2012], our deep model provides the 3D
model geometry at once. Deep neural models are often challeng-
ing to be employed interactively, and a potential future work
should address interactive editing with a deep neural model. It
would also be interesting to employ our work in different tasks,
such as tree reconstruction. Another possible future work should

ACM Transactions on Graphics, Vol. 43, No. 1, Article 7. Publication date: November 2023.
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address the successive tree hierarchy generation and the envi-
ronmental factors. We have shown that the Transformer can en-
code string hierarchies that represent topology and 3D geometry.
An exciting area of future work would show how different hier-
archies or application areas could be coupled with deep neural
models.

A APPENDIX

LSTM: We designed an LSTM models with various parameters
combinations with seq2seq. We report sets of hyper-parameter
in Table 8, where each column represents the number of layers
in the Encoder and Decoder, Encoder embedding dimension, De-
coder embedding dimension, and the hidden layer dimension. Our
first generated sequence, which corresponds to the tree trunk, was
impossible to generate by the trained LSTM-based model because
it does not contain enough information to deal with unbalanced
parenthesis. The generated sequence was impossible to convert
back into the trunk, which is needed to generate the rest of the
tree. Moreover, we fed the correct data to the trained model, but it
was not capable of recreating the expected output.

Fig. 21. Performance Comparison on Different Model Architecture and

Data Representations. Case 1 uses LSTM on L-system rules, Case 2 uses

LSTM on L-strings, and Case 3 uses the Transformer on L-strings.

Fig. 22. Model Architecture (H: the number of attention heads, D: the num-

ber of dimensions).

Table 8. Hyper-parameter of LSTM Models

Layers Enc. Embedding Dec. Embedding Dimension

6 512 512 256

6 128 128 64

6 128 128 256

6 32 32 256

3 256 256 512

3 64 64 128

3 64 64 64

2 32 32 256

1 256 256 512

1 128 128 256

1 64 64 128

1 64 64 64
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