
COMPUTER GRAPHICS AND APPLICATIONS 1

Large-Scale Physics-Based Terrain Editing
Using Adaptive Tiles on the GPU

Juraj Vanek, Bedřich Beneš, Adam Herout, Ondřej Šťava

Abstract—Terrain modeling is an important task in digital content creation and physics-based approaches have the potential to simplify

it by introducing a higher level of realism. However, most of the existing simulations are hindered by a low level of user control, because

they fail on large-scale phenomena, or because they are focused only on the modeling of limited effects. We introduce a new interactive,

intuitive, and accessible physics-based framework for digital terrain editing. Our solution is suitable for users involved in digital content

authoring (such as game designers, artists, 3D modelers, and digital content providers) and does not assume any in-depth knowledge

about physics-based simulations. To address the scalability issues of previous algorithms, we provide an adaptive GPU-amenable

solution. Large terrains can be loaded from external sources, generated procedurally, or created manually, and they are edited at

interactive framerates on the GPU. We introduce two simplifications that allow us to perform large scale editing. First, the terrain is

divided into tiles of different resolutions according to the complexity of the underlying terrain. Second, each tile is stored as a mip-map

texture and different levels of detail are used during the physics-based simulation depending on the dynamics of terrain changes. We

demonstrate our approach at several examples including the editing of terrains, brushing with hydraulic simulation, and blending terrain

patches into an existing terrain. In comparison with nonadaptive computation, by using our approach we can achieve a 50% speedup

with a simultaneous 25% savings of memory. Most important, we can process terrain sizes that were not possible to process with

previous approaches.

Index Terms—Digital content authoring, large-scale terrain, physics-based simulation, terrain editing, mip-map, hydraulic erosion,

GPU.

F

1 INTRODUCTION

Terrain editing is an important element of a digital
content creator’s workflow. Terrain databases of digital
elevation models (DEMs) are freely available, various
methods for procedural terrain generation exist, and
users can edit the terrains by a variety of tools and
software. Intuitive user-accessible physics-based simula-
tions have the potential to improve interactive content
creation and authoring for computer animations and the
entertainment industry. These simulations can provide
an additional dimension of control for terrain modeling.
Nowadays, physics-based editing is not a common prac-
tice for several reasons. First, simulations usually are not
intuitive, are difficult to control, and their final effect
is hard to estimate. Second, and more important, only
small-scale physics-based interactive editing is usually
possible, because computations are time-consuming and
require large memory. Attempts to edit large sets of data
are usually below interactive frame rates because the
methods simply do not scale well.

The first key observation of our approach is that many
physics-based simulations are spatially separable and
can be done in parallel. In turn, this localizes the editing
operations that can be applied only to areas where the

• J. Vanek and A. Herout, Brno University of Technology, Czech Republic.
E-mail: ivanek,herout@fit.vutbr.cz

• B.Beneš and O.Šťava Purdue University, USA
E-mail: bbenes,ostava@purdue.edu

simulation is needed. The second key observation is
that the frequency of changes over the terrain varies.
Areas with many changes can be simulated with higher
simulation precision, whereas areas with lower variances
require less precision.

Based on these observations, we introduce a new user-
friendly, intuitive, and accessible physics-based frame-
work for large-scale digital terrain editing. Our solution
is suitable for users involved in digital content authoring
(game designers, artists, 3D modelers, and digital con-
tent providers, among others) and assume no in-depth
knowledge about physics-based simulations. To address
the scalability issues, we harness the parallelism of the
simulations and provide an adaptive GPU-amenable
solution. Terrains of sizes not possible with previous
approaches can be interactively edited.

We introduce two simplifications that allow us to
perform large-scale editing. First, the input is analyzed
and divided into tiles of different resolutions, depending
on the complexity of the terrain in each tile. During the
editing process the tiles are continually evaluated and,
if necessary, resampled to higher or lower resolution.
Second, each tile is stored as a mip-map texture. Dif-
ferent levels of detail are used for each tile for physics-
based simulation depending on whether the dynamics
of the terrain change. The mip-map pyramid allows
us to use a different resolution for each pixel while
calculating the physics-based simulation. Figure 1 shows
an example of large-terrain editing. The upper left image
shows the initial terrain in resolution 4k× 4k pixels and



COMPUTER GRAPHICS AND APPLICATIONS 2

three layers of material (approximately 3GB of data), and
the lower image shows the corresponding adaptive tile
subdivision. The right image shows the same terrain
after a surface patch of resolution 1k × 1k is added,
running a hydraulic-erosion brush at various areas, and
manually creating mountains and valleys. The average
time required to compute one simulation step was 23ms,
the simulation ran for 10 seconds, and the scene editing
took a few seconds.

2 PREVIOUS WORK

Procedural terrain modeling methods using fractals [1],
multi-fractals, and hypertextures [2] can be used to
generate arbitrarily sized data sets, but they provide
no reasonable user control, and the results may often
appear unrealistic. A procedural approach presented by
Kelley et al. [3] employs user interaction to sketch ridges
and valleys that guide a fractal system, but this approach
is ad hoc, is not physically-based, and allow for no
terrain editing.

More recently, procedural-based terrain generation ap-
proaches have been extended by using example-based
modeling techniques that allow for modifying the shape
and structure of the terrain to a predefined pattern [4],
but example-based methods do not allow small terrain
changes and they do not support physics-based editing.

Various software packages for procedural modeling
with interactive editing exist, such as Bryce or Terragen,
but they usually provide no physics-based editing tools,
or they fail to edit large scale phenomena.

Physics-based approaches have been introduced into
terrain modeling by water diffusion and thermal weath-
ering in [5] and are later extended in many directions
including corrosion and erosion, based on chemical
properties of materials in [6]. The most important long-
lasting terrain-forming phenomenon is the water and
hydraulic erosion was emplyed for 2D cases in [7].
Layered data representation for erosion simulation has
been introduced in [8] and a full 3D hydraulic erosion
in [9].

Performance of the erosion methods can be improved
by off-loading the simulation to a GPU as done by Mei
et al. [10], [11] and Št́ava et al. [12] who modeled erosion
of both running and still water on multi-layered terrains.
These methods provide very good user control for small
to medium sized terrains but, because of memory and
performance constraints of the GPUs, they are unsuitable
for the modeling of large terrains.

Whereas most of the above-described approaches are
based on the Eulerian solution of Navier-Stokes equa-
tions for fluid dynamics, the Lagrangian solution by
means of smoothed particle hydrodynamics was coupled
with hydraulic erosion in [13]. This solution can be
hindered by rapidly increasing the number of particles,
required for the simulation.

Our paper continues with a high-level system
overview. Section 4 provides an in-depth description

with all details about the tiling generation, resolution,
size, and resampling. The same section also describes the
simplified physics-based simulation algorithm that runs
on an adaptive mip-map pyramid. Section 5 discusses
implementation details, and Section 6 describes results
of our experiments, performance measurements, opti-
mizations, errors, and GPU memory considerations. The
paper concludes with a section that discusses limitations
and possible future work.

3 SYSTEM OVERVIEW

Our terrain consists of multiple layers of materials and
uses layered data representation introduced in [8]. This
approach allows for efficient representation of different
materials and transitions (erosion and deposition) from
one type to another. The overview of our system is
depicted in Figures 2 and 3. The preprocessing step
includes data definition and subdivision into tiles of
different resolution. The input data can be defined in
different ways. Each layer can be generated procedurally,
loaded as a single large texture, or it can be mosaicked
from various files interactively. In the last mode, the
user defines each layer by dragging the input images
over the layer and dropping them at a desired location.
The input image is then merged with the existing data,
using a user-selected blending mode. The image can be
added, multiplied, or subtracted from the existing layer.
Our input data is not restricted to a rectangular domain,
because tiles for some layers may not be present. We call
our data structure a virtual (layered) terrain.

Fig. 2: Data preprocessing. Virtual layered terrain is com-

posed of tiles of different resolutions. Each layer can be

loaded as a whole, generated procedurally, or composed
from multiple images.



COMPUTER GRAPHICS AND APPLICATIONS 3

Fig. 1: The upper row shows the input scene in resolution 4k× 4k and nearly 1 GB of data before (left) and after (right)

interactive editing. The user added several patches of terrain (shown as successive insets in the upper right image)

in resolution 1k × 1k, edited some valleys and mountains, and ran hydraulic erosion on certain areas. The overall
editing of the scene took 10 seconds and the average runtime of the simulation per frame was 23 ms. The lower row

shows the corresponding tiling of the entire scene, where areas with high-altitude variation are represented in higher
resolution than areas with small variation are.

When the virtual terrain is defined, it is further ana-
lyzed and divided into tiles. All tiles cover the same area
of the virtual terrain, but the actual resolution of each tile
depends on the data complexity in all underlying layers.
Information about tile properties and placement of the
tiles is stored in the main memory of the computer, and
their data are uploaded and processed on the GPU when
needed.

After the preprocessing step, the virtual terrain is
ready to be edited, as shown in Figure 3. The user can
apply various editing operations, such as smoothing,
pulling, and pushing of vertices and parts of the terrain,
area selection, copy and paste, etc. Editing mode uses
physics-based simulations. We have implemented two
physics-based operations: thermal weathering [5] and
hydraulic erosion [12]. Each modified tile is periodically
evaluated to determine if its resolution should be recal-
culated by the tile generator. Concurrently, a mip-map
pyramid is calculated for each tile. The virtual terrain is
rendered at the end.

Our algorithm is implemented with strong GPU sup-
port. All simulations and editing operations are imple-
mented as GPU shaders. The tiling scheme allows for
an efficient out-of-core simulation. (Whereas this term
usually refers to a procedure that does not fit into the
main memory and is offloaded from a hard drive, we
use it loosely as the simulation that does not fit into the
GPU memory and is loaded from the main memory).
All affected tiles are processed on the GPU, and the
results are loaded back into the main memory only when

Fig. 3: The interactive terrain is edited using our ap-
proach. Each tile can be edited either manually or by

using the physics-based simulation. After the terrain

changes, the affected tiles are evaluated, and, if neces-
sary, the tile resolution is changed. The entire terrain is

visualized in each step.

necessary. The support of frame buffer objects allow for
seamless full GPU-supported rendering of the generated
terrain with advanced real-time effects, such as HDR
rendering, screen space ambient occlusion, parallax map-
ping, shadows, and refractions for water.

4 TERRAIN TILING

Let’s recall that the result of data preprocessing is a set of
2D images (layers) in the main memory of the computer
called the virtual terrain, which is subdivided into tiles
with a constant size, but varying resolutions.

4.1 Tile Resolution

Each tile resolution must be the power of two. More-
over, it must fall within the user defined range
2min, 2min+1, . . . , 2max . In our implementation, the low-
est efficient tile resolution was min = 5 and the upper



COMPUTER GRAPHICS AND APPLICATIONS 4

limit was constrained by the size of available main mem-
ory. Values greater than max = 10 resulted in frequent
swapping between the GPU and the main memory, thus
slowing down the simulation. Each tile covers the same
area, but the actual resolution depends on the complexity
of the tile content, which can be seen in Figure 4.

Fig. 4: Each tile covers the same area of the virtual terrain,

but its actual resolution depends on the complexity of the

underlying layers.

We determine the tile complexity by a simple metric
that measures the overall differences of terrain altitudes.
First, we find the minimum and the maximum of alti-
tudes of the entire terrain. For each tile, we then use
the parallel reduction algorithm on the GPU. The tile is
repeatedly scaled-down to the resolution 32 × 32, and
the difference between the minimum and the maximum
is found. The difference is then normalized into an
interval defined by the minimum and maximum values
from the entire terrain. The tile resolution is found by
linearly mapping the normalized tile difference onto the
selected interval of texture resolutions. Note that each
tile consists of various layers of materials; thus the actual
calculation is performed several times on each layer. The
tile resolution depends on the layer with the highest
complexity. This method is efficient, runs on the GPU,
and is used not only to preprocess the input data, but
also to evaluate the tile changes on the fly.

After a tile has been updated either by user interac-
tion or by physics-based simulation (see Figure 3), its
content is evaluated to determine if the texture needs to
be resampled to either a higher or a lower resolution.
We apply the above-described algorithm for resolution
selection on the modified tile and compare the selected
resolution with the actual one. If the new resolution is
different, the tile is resampled. The global minimum and
maximum of the virtual terrain are also updated, so a
change of a single tile can cause a resampling of tiles
covering different areas.

4.2 Physics-Based Simulation on a Mip-Map

We use two erosion algorithms. The first is thermal
weathering, introduced in [5] and later used for layered
data [8]. Thermal weathering causes small particles of a
material to fall from elevated locations and pile up. The
falling is slowed by inner friction of the material and
it stops when the so-called talus angle is reached. This
angle is about 30o for sand and is the value we use in
our implementation.

The second physics-based simulation used in our sys-
tem is hydraulic erosion. This is caused by running water
and the forces it exerts on the underlying terrain. Various
hydraulic erosion algorithms have been introduced [6],
[7], [9], [11]. Without loss of generality, we use force-
based hydraulic erosion in our system [12]. The force
applied to the terrain separates a certain amount of
material that is transported in the running water and
eventually deposited at a different location when the wa-
ter slows. The key element of an efficient hydraulic ero-
sion algorithm is the coupling of the erosion/deposition
model with the water transportation. We use the pipe
model [14], which is an approximation of the solution of
the Navier-Stokes equation for fluid simulation applied
to a special case of shallow-water transportation. Both
thermal weathering and force-based hydraulic erosion
are fully implemented on the GPU.

In our simulation, the material on the topmost layer
and the water can change locations. The topmost layer is
the only layer that is eroded, and the deposited material
is also deposited to the topmost layer. It is important
to note that the topmost layer need not always be the
same. For example, the eroded layer can be a rock and
it will be deposited on another location such as sand. All
erosion algorithms are material preserving.

Each data point of the tile stores the water level, water
flow, and height of each layer of material. These data are
efficiently packed into texture on the GPU and accessed
via shaders. Several values must be recalculated in each
simulation step, and the new values depend on the
values from the previous steps:

• Water flow is a vector computed from the water-
height differences between the actual and neighbor-
ing cells.

• Water height is the actual water level, and it de-
pends on the inflow/outflow from/to neighboring
cells.

• Layer composition needs to be changed according to
the force-based erosion. Fast flowing water captures
sediments from the topmost layer and deposits them
elsewhere when the water flow slows.

• The amount of removed material caused by thermal
weathering is determined by the angle between
neighboring cells.

The tile resolution is determined by the complexity
of the terrain, but it does not necessarily reflect the
complexity of the flowing water. Because the physics
simulation is the most complicated procedure, we use



COMPUTER GRAPHICS AND APPLICATIONS 5

another spatial subdivision for each tile. We generate a
mip-map pyramid of textures, and the hydraulic erosion
is calculated at the level that corresponds to the speed
of the moving water. Intuitively, slowly moving water
exerts smaller forces on the terrain, and the effect can
be applied to smaller resolutions. In this way, we trade
numerical precision of the physics-based simulation for
speed of the application.

Each tile that contains water stores the mip-map pyra-
mid. Let’s denote the maximum resolution of tile D(w, h)
and its n mip-map levels D(n) where each pixel in
a higher level contains averaged data from the four
corresponding pixels of the previous level. Theoretically,
we could use an arbitrary cascading scheme, but mip-
mapping has a great support in GPU hardware.

The actual computing precision of the erosion algo-
rithm is evaluated on a per-pixel basis. To determine
the actual level used for each pixel, an importance map
denoted by A(w, h) is calculated for each tile. The map
has the same resolution as the highest level of the
pyramid and stores an index to each mip-map level
as shown in Figure 5. The value is determined from
the maximum value of the water flow normalized over
terrain that is mapped to the number of mip-map levels.
The value of the importance map is used to select the
actual mip-map level from which the hydraulic erosion
is calculated.

Fig. 5: An example of a terrain (lower part) on the edge of

a lake (upper part) with water flowing over the bank. The
right figure shows the corresponding importance map.

Accessing the mip-map cascade could present a signif-
icant overhead during the calculation; thus the mip-map
is used only to determine the resolution at which the
erosion is calculated. The actual mip-map is merged into
a 2D image denoted by D̂(ŵ, ĥ) : ŵ = w, ĥ = h that has
the same resolution as the highest level of the pyramid.
The merging of different mip-map levels into a single
texture is achieved by a successive lookup into different
mip-map levels, comparing with the importance texture
and broadcasting the values into the four corresponding
pixels as schematically shown in Figure 6. Here, only
pixels denoted by A-D and E-L are calculated in the
highest precision. The other values are calculated at
lower resolution and their values are broadcast to mul-
tiple pixels. Algorithm 1 describes the hydraulic erosion
on the mip-map pyramid.

Algorithm 1 Hydraulic erosion on a mip-map.

Input: Merged data structure D̂, importance map A

Output: New mip-map D(N)

1: for each mip-map level i = 0 to N do
2: for all pixels in D̂ do
3: if the pixel has the same importance level

A(x, y) == i then
4: calculate physics on this level of detail

D(i)(x, y) := DF(D̂(x, y))
5: end if
6: end for
7: end for

DF computes hydraulic erosion

The algorithm tests each pixel of the highest level
of the pyramid N times, where N is the number of
mip-map levels. If the importance value for the given
pixel is equal to its value from the merged map (step
3) the physics-based algorithm is executed. When the
algorithm ends, the mip-map and the merged map are
recalculated.

The speedup of the adaptive calculation is demon-
strated by the merged map in Figure 6. The original tile
has a resolution of 8× 8 pixels; however, only 20 unique
values (A-T) are calculated.

Fig. 6: Merging mip-map levels into the merged map D̂

using importance map A. Values from higher levels of the

mip-map are broadcast into lower levels, as shown in the

upper left quadrant.

4.3 Interactive Editing

Interactive editing exploits the spatial locality of changes
invoked by the terrain modifications. When using a
brush to edit terrain, we first detect the affected tiles;
then we transfer them on the GPU, and edit them on the
GPU. The active tile lookup is done quickly, because each
tile has its address derived from the terrain origin and
information about the cursor position. The accompany-
ing video demonstrates some of the editing operations,
such as pulling and pushing some areas of the terrain,
applying terrain patches, and smoothing. One interesting
operation is editing the layer that is under another one
that allows for creation of a rising objects under another



COMPUTER GRAPHICS AND APPLICATIONS 6

layer. The thermal weathering automatically creates the
effect of falling sand.

An editing operation can change the height differences
in terrain, but the automated mechanism for determining
the tile resolution introduced in Section 4 will immedi-
ately determine the resolution and resample it in real-
time.

5 IMPLEMENTATION

The algorithm is implemented in C++ and uses OpenGL
4.0 and GLSL. All tests were performed on a desktop
with Windows7 64 bits, Intel i7 920 clocked at 2.67GHz,
and NVIDIA GTX 480 with 1.5GB of memory. We used
GLSL because it has a great support for hardware mip-
mapping as it allows fetching data from different levels.
GLSL, in its latest version 400, also includes functions al-
lowing a single instruction fetching of surrounding texels
(called texture gathering). Moreover, GLSL is supported
by all major graphic chip manufacturers.

Our algorithm uses several 2D data structures: water
level, sediment level, water flow, and terrain layers.
Water flow and terrain layers are implemented as four-
channel 32-bit floating point textures; water and sedi-
ment levels are packed into a single two-channel texture.

The importance map adds one single-channel, and the
original data textures are automatically converted into
mip-maps on the GPU. Mip-map merging is performed
in separate data structures which again represent water
and sediment heights, flow, and terrain. The importance
map has additional memory requirements, and there is
also additional work required to calculate cascade levels
and to merge them into a single data texture. Overall,
our method would need 50% more memory if tiling were
not used. However, in practical examples shown in this
paper (Table 1), the memory saving was about 30%.

The Eulerian approach to fluid simulation is suitable
for GPU implementation because it can fully utilize
the parallel computing power of GPU. All cells can be
calculated independently on each other because they use
values only from neighboring cells created in previous
simulation steps. Care must be paid during the rendering
loop because writing and reading from the same data
texture at the same time is not allowed. This is solved by
first rendering into a mip-map chain and then merging
into a final image. Merged data are then used in the
next step as read-only texture for mip-map generation.
Implementation uses frame buffer objects (FBO) and
fragment shader to perform all screen-space calculations.
Writing into data texture is performed by attaching the
texture to FBO and drawing it as a full screen quad with
the shader activated. Because the algorithm uses a lot of
dynamic branching with indexed arrays, a fast GPU with
support for an OpenGL version higher than 3 is needed.
On GPUs with an OpenGL 4 support, it is possible to
use fast instructions to gather all surrounding fragments
around active fragments

Rendering is also done using OpenGL 4 with a pro-
grammable graphic pipeline. Each tile contains a rectan-
gular mesh with the number of polygons based on the
tile resolution. The mesh is displaced by a compound
height of terrain and water layers in vertex shader. The
result is then visualized in fragment shader. Each terrain
layer has different color textures, and the colors are
blended together to create smooth transitions between
layers according to each layer of thickness. Water is
displayed on top of the terrain and it is also partially
blended with the terrain layers.

To further improve the visual quality, we use advanced
real-time rendering methods, such as high dynamic
range lighting, screen-based ambient occlusion, water re-
flection and refraction, dynamic shadows, surface bump,
and parallax mapping.

6 RESULTS AND DISCUSSION

The first result in Figure 1 shows an example of in-
teractive editing. The user initially created procedural
terrain from a Perlin noise in three layers of material
each in resolution 4k × 4k. This model was loaded into
the system and tiled. The entire model has a theoretical
size of nearly 3 GB, but the tiled size was only 1 GB.
The user then used three images in 1k × 1k resolution
(showed as insets of the second image) and added them
into the terrain using the blending mode. The system
automatically recalculated the resolution of the tiles, as
seen in the second row. Overall, this editing took less
than 15 seconds, and the tile recalculation as well as the
thermal weathering took about 25 ms.

The second result in Figure 7 shows a real data digital
elevation model of the Grand Canyon that was artifi-
cially flooded by a strong water source. The simulation
time was 100 ms per frame, and the terrain resolution
was 8k × 4k.

The next scene in Figure 8, shows an example of in-
teractive physics-based erosion. A scene with mountains
from different materials has been eroded by a water
source manually located over them, as indicated by the
blue circle. The simulation time was 25ms per frame,
and the terrain resolution was 4k × 4k. The example
shows how the different materials erode with different
speed and how the sand is being deposited under the
mountains.

Figure 10 shows a very large scene that did not fit into
the memory of the GPU. The original scene of 12k× 12k
was tiled into 12×12 tiles with maximum resolution 1k×
1k. The scene used about 2.5 GB of memory. The average
simulation time of the scene was 43 ms per frame. The
scene represented on the GPU used maximum of 1.5 GB
and ran at 12 fps with both rendering and simulation.
The inset on the right shows a detail of the image from
the left.

6.1 Tile Size and GPU Memory Considerations

One of the aspects significantly affecting performance is
the actual size and, as a consequence, the total number



COMPUTER GRAPHICS AND APPLICATIONS 7

Fig. 8: Example of interactive editing using a physics-based brush (displayed as a blue circle) with a localized rain.

The object is made of rock with soil on its top.

Fig. 7: Digital elevation map of the Grand Canyon in

resolution 8k × 4k pixels (up) was used as an input of

the erosion simulation (down).

of tiles. Intuitively, a large number of tiles will cause
a performance hit because of the tile synchronization
overhead. A small number will obfuscate the perfor-
mance gain of the importance map and varying tile
resolution. Because the actual effect of the number of
tiles can be affected by various aspects, we have created a
benchmark that determines the optimal number of tiles.
As can be seen on the shape of the simulation time in
Figure 9, the measurement confirms the intuition. The
best performance is achieved for tiles covering approxi-
mately 1-5% of the area of the virtual terrain.

There is a hardware limit of the GPU memory. Because
most calculations are done on the GPU, storing as many
tiles as possible on the GPU is beneficial. We could fit
up to 256 tiles with small resolution (128px) or a few
large tiles (1024px) into the GPU memory. However, the
application is fully functioning even when processing

Fig. 9: Large scene simulation as the function of tile

size. Large numbers of small tiles have performance

overhead and small numbers of large tiles do not utilize
the adaptability efficiently. A reasonable size of the tile is

about 1-5% of the terrain area’s total size.

much larger scenes that do not fit into the GPU memory,
because the operating system driver will swap the least-
recently used memory pages into the main computer
memory.

Tiles are synchronized directly on the GPU. If a pixel
lies on the border of a tile, the neighboring cells are
selected from the appropriate tiles because all tiles can
access textures from their surrounding tiles. This pro-
cess guarantees seamless transition of water flow and
accompanied quantities among tiles of the same resolu-
tion. When neighboring tiles have different resolution,
hardware-level linear interpolation is used when fetch-
ing values that introduce a minor interpolation error.
However, we have not observed any significant impact
of this error in our experiments.

Table 1 shows performance and memory requirements
of the scenes from this paper. All scenes were rendered
in the non-adaptive mode in the maximum possible
resolution of 928MB of memory and the timing was a
nearly constant 34ms. Our adaptive method shows an
average speedup of 1.46 and average memory savings
of 75%

6.2 Simulation Error

To bring the physics-based terrain editing to interactive
frame rates, we introduce numerical simplifications at



COMPUTER GRAPHICS AND APPLICATIONS 8

Fig. 10: Very large scene (2.5 GB) of resolution 12k × 12k occupies 1.5 GB of the GPU memory and is eroded and

rendered on the GPU at 12 fps.

Scene Time [ms] Speedup Memory [MB] Savings [%]
Figure 1 L 23.6 1.44 784 78
Figure 1 R 21.1 1.61 698 75
Figure 4 25.4 1.34 700 75
Figure 7 22.7 1.45 770 82

TABLE 1: Time and memory requirements of scenes from

the paper. The timing for all scenes in non-adaptive mode
was 34 ms and the memory requirements were 928MB

of video RAM. The table shows a runtime of the adaptive
method and its speedup, as well as the memory require-

ments and memory savings. The scene from Figure 10 is

not included, because it can be edited only in the adaptive
mode

many different levels. The sources of the possible errors
are: different tile resolution, evaluation of the hydraulic
erosion at varying levels of detail, and conversion of
data from different levels of resolution (merging between
mip-maps and between neighboring tiles in different
resolution). It would be quite difficult to track the effect
of all these simplifications and to provide their in-depth
comparison. However, it is important to note that this
approach is intended for interactive editing and not for
physically precise simulations. The pipe model used for
the shallow-water simulation itself is not an exact phys-
ical simulation. Moreover, fluid simulation is a dynamic
system and is extremely sensitive to initial conditions. A
small change in the initial conditions will cause the same
system to significantly diverge in the solution after a few
steps even for physically exact simulations that make the
comparison even more difficult.

We try to make all possible attempts to ensure that
the simplifications and inducted inaccuracies will create
no visually distracting errors. Merging between different
levels, for example, can cause oscillations in the water
simulation. Linear interpolation between different levels
smoothes visual artifacts and is more visually plausi-
ble than faster nearest-neighbor interpolation. Figure 11
(and the accompanying video) shows sequence of a large

scene with water erosion simulation. Both simulations
run for 550 frames and there is no significant visual
difference.

a)

b)

Fig. 11: Comparison of a) the adaptive version with b)
full erosion simulation. Both simulations were run for

550 frames to make sure the water had enough time to

propagate through the scene. There were no significant
visual differences.

Visual artifacts can appear on tile borders when adja-
cent tiles have different resolution. Though data synchro-
nization errors can be small, visual artifacts are caused
because each tile uses its own polygonal mesh, and there
can be visible cracks between two meshes with different
mesh density. This problem could be removed by putting
all tiles on single large mesh and using the appropriate
terrain LOD algorithm. Although potentially problem-
atic, especially for neighboring tiles with significantly
different resolution, the terrain tiling error was minimal
in our experiments.



COMPUTER GRAPHICS AND APPLICATIONS 9

7 CONCLUSION

We have introduced an intuitive physics-based frame-
work for digital content authoring (game designers,
artists, 3D modelers, and digital content providers,
among others). To address the scalability issues of previ-
ous algorithms, we provided an adaptive GPU-oriented
solution. Very large terrain (tens of GB of data) can be
loaded from external sources, generated procedurally,
and created manually, and they are edited at interac-
tive frame rates. We introduced two simplifications that
allow for large-scale editing. First, the terrain is di-
vided into tiles of different resolutions depending on the
amount of detail. Second, each tile is stored as a mip-map
texture, and different levels of detail are used during the
physics-based simulation, depending on the dynamics of
the water flowing over the terrain. We demonstrate our
approach using several examples including large terrain
editing, brushing terrains with hydraulic simulation, and
blending terrain patches into an existing terrain. Using
our approach, we achieve a 50% speedup comparing to
non-adaptive computation, and we can process terrains
of sizes that were not possible with previous approaches.

However, this approach has several notable issues and
potential pitfalls. The mip-map subdivision will be ren-
dered ineffective for large water dynamics scenes such as
rain. The tile resolution subdivision will be ineffective for
white noise scenes or other scenes with high-frequency
information equally spatially distributed. Another issue
is the limit of the GPU memory. When the simulation
exceeds the amount of available memory on the GPU
the driver starts swapping memory pages from the GPU
with the main memory which has a performance penalty.
In-house memory management, such as per-tile LRU
cache, could address this problem and could allow the
editing of larger datasets. Last but not least, a good
error evaluation and analysis could improve algorithm
robustness.

There are many possible avenues for future work. As
mentioned above, a better memory management would
be useful. Similarly, our current implementation resam-
ples all tiles that need resampling immediately, and that
is costly. It would be possible to implement a priority
queue that would process only the tiles that are being
edited, or that have significant visual importance. We are
convinced that our method is a framework that would
allow not only the incorporation of different physics-
based methods, but also new editing techniques.

ACKNOWLEDGMENTS

We would like to thank NVIDIA for providing graphics
hardware. This work has been supported by NSF IIS-
0964302, NSF OCI-0753116 Integrating Behavioral, Geo-
metrical and Graphical Modeling to Simulate and Visu-
alize Urban Areas, by the research program LC-06008
(Center for Computer Graphics), and by the research
plan MSM0021630528.

REFERENCES

[1] B. B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman
and Company, 1983.

[2] K. Perlin and E. M. Hoffert, “Hypertexture,” in Proc. of SIG-
GRAPH ’89, 1989, pp. 253–262.

[3] A. D. Kelley, M. C. Malin, and G. M. Nielson, “Terrain simulation
using a model of stream erosion,” in Proc. of SIGGRAPH ’88, 1988,
pp. 263–268.

[4] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain synthesis from
digital elevation models,” IEEE Trans. Visual. Comp. Graph., vol. 13,
no. 4, pp. 834–848, 2007.

[5] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and
rendering of eroded fractal terrains,” in Proc. of SIGGRAPH ’89,
1989, pp. 41–50.

[6] C. Wojtan, M. Carlson, P. J. Mucha, and G. Turk, “Animating
corrosion and erosion,” in Eurographics Workshop on Natural Phe-
nomena, 2007.

[7] N. Chiba, K. Muraoka, and K. Fujita, “An erosion model based
on velocity fields for the visual simulation of mountain scenery,”
The Journal of Visualization and Computer Animation, vol. 9, no. 4,
pp. 185–194, 1998.

[8] B. Beneš and R. Forsbach, “Layered data representation for visual
simulation of terrain erosion,” in SCCG ’01: Proc. of the 17th Spring
conference on Computer graphics, 2001, p. 80.

[9] B. Beneš, V. Těšı́nský, J. Hornyš, and S. K. Bhatia, “Hydraulic
erosion,” Computer Animation and Virtual Worlds, vol. 17, no. 2,
pp. 99–108, 2006.

[10] N. H. Anh, A. Sourin, and P. Aswani, “Physically based hy-
draulic erosion simulation on graphics processing unit,” in Proc.
of GRAPHITE ’07, 2007.

[11] X. Mei, P. Decaudin, and B.-G. Hu, “Fast hydraulic erosion
simulation and visualization on GPU,” in Proc. of Pacific Graphics,
2007, pp. 47–56.

[12] O. Št’ava, B. Beneš, M. Brisbin, and J. Křivánek, “Interactive
terrain modeling using hydraulic erosion,” in Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, ser. SCA ’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 201–210.

[13] P. Krištof, B. Beneš, J. Křivánek, and O. Šťava, “Hydraulic ero-
sion using smoothed particle hydrodynamics,” Computer Graphics
Forum (Proceedings of Eurographics 2009), vol. 28, no. 2, mar 2009.

[14] N. Holmberg and B. C. Wünsche, “Efficient modeling and ren-
dering of turbulent water over natural terrain,” in Proc. of
GRAPHITE ’04, 2004, pp. 15–22.


