IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

7579

Evolution-Based Shape and Behavior
Co-Design of Virtual Agents

Zhiquan Wang “, Bedrich Benes

Abstract—We introduce a novel co-design method for au-
tonomous moving agents’ shape attributes and locomotion by com-
bining deep reinforcement learning and evolution with user control.
Our main inspiration comes from evolution, which has led to wide
variability and adaptation in Nature and has significantly improved
design and behavior simultaneously. Our method takes an input
agent with optional user-defined constraints, such as leg parts that
should not evolve or are only within the allowed ranges of changes.
It uses physics-based simulation to determine its locomotion and
finds a behavior policy for the input design that is used as a baseline
for comparison. The agent is randomly modified within the allowed
ranges, creating a new generation of several hundred agents. The
generation is trained by transferring the previous policy, which
significantly speeds up the training. The best-performing agents
are selected, and a new generation is formed using their crossover
and mutations. The next generations are then trained until sat-
isfactory results are reached. We show a wide variety of evolved
agents, and our results show that even with only 10% of allowed
changes, the overall performance of the evolved agents improves by
50%. If more significant changes to the initial design are allowed,
our experiments’ performance will improve even more to 150%.
Our method significantly improved motion tasks without changing
body structures, and it does not require considerable computation
resources as it works on a single GPU and provides results by
training thousands of agents within 30 minutes.

Index Terms—Evolutionary algorithms, physics-based simu-
lation, reinforcement learning.

1. INTRODUCTION

UTHORING autonomous moving agents is a significant

open problem with applications ranging from robotics to
animation [50]. Their manual creation and motion design offer
a high level of control but do not scale and are error-prone.
Automatic generation does not always lead to the desired mor-
phology and topology. Moreover, having the agents react to the
environment requires the design of behavioral policies. Recent
approaches focused on the automatic design of behavior policies,
and advances have been achieved with the help of deep rein-
forcement learning (DeepRL) combined with motion simulation
and fine-designed reward/objective function in physics-based
environments [21], [44], [45].

Manuscript received 21 November 2023; revised 8 January 2024; accepted
15 January 2024. Date of publication 18 January 2024; date of current version
29 October 2024. Recommended for acceptance by L. Wang. (Corresponding
author: Zhiquan Wang.)

The authors are with Purdue University, West Lafayette, IN 47907 USA
(e-mail: wang4490@purdue.edu; bbenes @purdue.edu; qureshi7 @purdue.edu;
cmousas @purdue.edu).

Digital Object Identifier 10.1109/TVCG.2024.3355745

, Ahmed H. Qureshi

, and Christos Mousas

While a large body of related work has addressed virtual agent
behavior and control policy design, the co-design of a virtual
agent shape and its corresponding control policy is an open
research problem. While structural and behavioral co-design is
the natural way for living forms, itis a challenging computational
problem because the search space is ample. The changes in the
agent’s configuration may cause the original control method to
diverge from the expected motion. Existing algorithms optimiz-
ing the agent and its controller either use simple configurations
(e.g., 2D space, voxels) [3] or often lead to structures that
deviate considerably from the initial design. It is also essential to
balance the optimized and the initial structure, as uncontrolled
optimization may lead to a significantly different shape from
the user’s expectations. At the same time, a good way would be
to allow body parts to be added or removed via evolution. Our
work shows that even subtle changes to the initial design can
significantly increase performance: “a slow agent with better
legs will run faster”.

Our first key observation comes from evolutionary algorithms
that address the wide variability of forms and their adapta-
tion [40]. Moreover, recent progress in DeepRL has introduced
ways to learn a single, universal behavior policy for a wide
range of physical structures resulting in a smaller memory foot-
print and efficient behavior learning in large-scale settings [15].
Therefore, using universal DeepRL frameworks has the potential
to provide an efficient way to explore the ample solution space
and design evolution-based methods simultaneously. Our sec-
ond key observation comes from the high variation the evolution-
ary design often causes. This is undesirable, and user constraints
over how the agents evolve can significantly guide the agent’s
shape and prune the search space. Our third observation sup-
ports discrete morphological changes potentially indicating the
evolution preference during the structure optimization. Suppose
a body part becomes significantly shorter during evolution. The
algorithm will explore removing the part entirely, as it may not
be needed to aid the overall goal.

We introduce a novel evolution-based algorithm that co-
designs the 3D physical parameters of an agent and its corre-
sponding behavior within a user-defined boundary. Our work
aims to co-design various agents with similar physics attributes
within the range of user inputs and a universal controller to
walk in the given environment. The user input defines the
range of the body part’s length, radius, and range of joints’
angles affecting the agents’ kinematic and physics attributes.
The evolution-based method creates new agents based on the
user-given template agent and optimizes their performance. For

1077-2626 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5611-0335
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0003-2104-2333
https://orcid.org/0000-0003-0955-7959
mailto:wang4490@purdue.edu
mailto:bbenes@purdue.edu
mailto:qureshi7@purdue.edu
mailto:cmousas@purdue.edu

7580

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

PG DO

Fixed Structure:100% 5*Gen: +27%

10" Gen: +48%

20" Gen: +61% 30" Gen: +92%

Change Structure:100% 1" Epoch: +97%

Fig. 1.

2thEpoch: +78%

3t"Epoch: +78% 4thEpoch: +49%

User-created agent is optimized via evolution (top). The structure is fixed, but its attributes (body part length, width, mass, initial pose, joint range, stiffness,

and damping) can change. Even small changes in the attributes lead to significant improvement in performance, as shown in the zoomed-in parts. The performance
(see Section V-C) of the baseline agent is 100%, and it improves through the evolution to 27, 48, 61, and 92%. Agent’s performance can be improved without
significantly altering the original design, even with user constraints. The bottom row shows the optimization when structural changes are allowed, and the evolution
will attempt to add or delete body parts. The performance improves through the evolution to 97%, 78%, 78%, and 49% through four epochs of optimization. Each
epoch of change structure evolution contains 30 generations of fixed structure evolutions.

each generation, we first train a policy net with Proximal Policy
Optimization (PPO) to control agents’ motion. Our method
builds on the recent work of Gupta et al. [15] that allows for
learning a universal controller over a modular robot design space
with different structures. We designed a universal policy based
on Multiple Layer Perceptron (MLP) that controls all the agents
with the same topological structure with a single deep neural
network that trains faster on multiple agents in one generation
and has a strong generalization ability over generations. After
the training phase, we create a new generation by selecting
high-performing agents and merging their attributes represented
as genes. Through this evolution, we produced agents with
higher performance in several generations. The user controls
what and how much can be modified through evolution, leading
to agents that vary slightly from the original design but achieve
significantly better performance (tens to hundreds of percent).
An example in Fig. 1 shows the original design (a). When the
body modifications are not allowed, our algorithm evolves a new,
better-performing agent (b). Enabling the body modifications
improves the performance even more (c), and allowing muta-
tions causes more significant alterations to the original design,
increasing the performance to 228% (d). The same agent evolved
while its body shape was fixed, as shown in (g-k).

Contributions: 1) An evolution-based optimization that pro-
duces agent attributes that hold the design requirement and fit
the given task. 2) Inspired by Metamorph [15], we train various
agents with a single universal policy and expand it with the
behavior inherited from the pre-trained model. 3) User control
over the allowable agent’s modifications in terms of parameter
ranges of allowed values. 4) A training pipeline to allow the
evolution of agents with different structures.

II. RELATED WORK

We related our work to procedural modeling, physics-based
animation, (deep) reinforcement learning for agent motion syn-
thesis, and co-designing structure and behavior.

Early Physics-Based and Procedural Models: Procedural
approaches generate a model by executing a code, and the
procedural rules and their parameters define a class of generated
objects. Procedural animation generates animation sequences
that provide a diverse series of actions that could otherwise be
created using predefined motion clips. A seminal example is the
work of Reynolds [42], who introduced a reactive control [22]
of procedural agents that faithfully recreated complex motion
patterns of flocks of birds and schools of fish. Physics-based
animation represents the agents as interconnected rigid bodies
with mass and moment of inertia controlled by joint torques
or muscle models [55]. As the control mechanism of an agent
significantly affects the motion quality, the choice of control
method is important depending on the task. Peng and van de
Panne [39] compared the difference across torque control, PD
controller, and muscle base control. Many methods work on the
control policy to synthesize realistic locomotion. One approach
utilizes motion equations or implicit constraints to optimize
the locomotion-generated physics-based gaits by numerically
integrating equations of motion [41]. Van de Panne etal. [51] de-
veloped a periodic control method with cyclic control graph [32]
that applies a contact-invariant optimization to produce symme-
try and periodicity fully automatically. Bi-pedal creatures were
optimized by controlling their muscles in [11]. The design of a
physics-based controller remains challenging as it relies on the
appropriate design of the agent and the task-specific objective
functions assigned to it.

Annother approaches learn to synthesize motions from a
motion dataset or reference motion clips [6], [28], [29], [54],
[55], [58]. For example, the real-time interactive controller based
on human motion data that predicts the forces in a short window
has been used in [8] and the simulation of a 3D full-body
biped locomotion by modulating continuously and seamlessly
trajectory in [27]. Wampler et al. [52] applied joint inverse
optimization to learn the motion style from the database.

Machine Learning: The seminal works of Sims [47], [48],
[49] uses genetic algorithms [23], [25] to evolve 3D creatures

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

by using physics-based simulation, neural networks, genetic
algorithms, and competition. These works were one of the key
inspirations for our approach.

Probably the first works to apply machine learning to control
locomotion were by Grzeszczuk et al. [13], [14] who used neural
networks to learn the motion of fish. DeepRL provides an agent’s
control policy automatically, and it has been proven effective
in diverse and challenging tasks, such as using a finite state
machine (FSM) to guide the learning target of RL and drive
a 2D biped walking on different terrains [35]. Yu and Turk et
al. [59] encouraged low-energy and symmetric motions in loss
functions, and Abdolhosseini and Ling et al. [1] address the
symmetry from the structure of policy network, data duplication,
and loss function and they also handle different types of robots
or terrains. One of the drawbacks is the loss of direct control of
the target motion because the reward function does not provide
explicit motion features.

Combining DeepRL with motion data has the potential to ad-
dress this issue by giving an imitation target. With the assistance
of motion reference, the learning process can discard massive,
meaningless motion and dramatically reduce the exploration
of action space. Peng and Abbeel el at. [34] enabled learning
challenging motion tasks by imitating motion data or video
frames directly [37]. Won and Lee [56] handle shape variations
of a virtual character. However, learning from the unstructured
motion database or motion reference with inaccuracies can make
learning the policy difficult. A fully automated approach based
on adversarial imitation learning to address this problem by gen-
erating new motion clips was introduced in [38]. Peng et al. [36]
combined adversarial imitation learning and unsupervised RL
techniques to develop skill embeddings that produce life-like
behaviors for virtual characters. The characters learn versatile
and reusable physically simulated skills.

Co-optimizing design and behavior attempts to find behav-
ior policy and shape simultaneously. Evolution has been used
to design the shape of robots [4], [17], [18], [30], and neural
graph evolution has been applied to their design [53]. Our work
is inspired by the recent work (RoboGrammar) [60] that uses
graph search to optimize procedural robots for locomotion on
various terrains. RoboGrammar uses a set of well-tuned fixed
body attributes (Iength, density, control parameters), while our
method evolves the body attributes of the virtual agents. Lee
et al. [26] combined body structures from different candidate
agents to keep the motion style. Others focused on motion
style transfer from different morphologies [2]. Ha et al. [19]
focused on the co-design of the shape and the function of robotics
limbs, and the same authors used implicit function theorem to
co-design the shape and function of robots [20]. Digumarti et
al. [9] designed legged robots optimized for locomotion, and
others focus on hand grasping [33], search on terrains [57], or
agent construction [43]. Close to our work is [3], which uses
co-design via evolution to co-optimize the design and control
of 2D grid-based soft robots. This method works in 2D on a
fixed set of agent parts and trains each agent individually, while
our approach uses group training that significantly shortens
training. This is inspired by the works [15], [24], which controls
different agents with one universal controller. We designed

7581

our universal controller with an MLP network instead of the
self-attention layer as it is faster than a Transformer or GNN
to train and provides results in minutes on a single GPU but
the same performance. Our controller handles agents with the
same topology but different body attributes. Gupta et al. [16]
evolve the agent’s structure by mutations and sampling without
merging the parents’ genes to reproduce the children. It does not
provide control over the agent’s design during evolution.

III. OVERVIEW

The input to our method (see Fig. 2(a)) is an agent that was
either provided by the user or generated randomly. The agent has
its body parts with mass and connections with defined motion.
The user can also define constraints that guide the changes in the
agent form. Examples of the constraints (marked schematically
as yellow arrows) are the ranges of the allowed changes in
the length of the body, the width of the legs, etc. Our method
improves the performance of the physically simulated agent
within the constraints via evolution and ensures the result does
not deviate from users’ expectations. The constraints do not need
to be tuned carefully, and their ranges could be small to ensure
the visual similarity between the original and optimized designs.

The input agent is trained (Fig. 2(b)) by the PPO in a physics-
based environment as a simulated robot with a rigid body, colli-
sion detection, shape, and motors to perform a task. The output of
this training is used as a baseline for evaluating the performance
of the following stages of the algorithm. The learned policy is
transferred into the agent’s generation (Fig. 2(d)) as a start policy
that accelerates the following generations’ training with encoded
motion prior.

The algorithm then enters into the co-design phase of evolu-
tion (Fig. 2(c)-(f)). It creates several hundreds of variants by
randomly sampling the allowed ranges of the parameters of
the input agent (Fig. 2(c)). This new generation of agents is
trained with the universal PPO, which significantly accelerates
the training time and allows training on a single GPU. The
trained agents are sorted according to their fitness, and the top-
performing agents are selected (Fig. 2(e)). The selected agents
undergo crossover and mutation to generate a new generation
(Fig. 2(f)), and the new generation is trained by bootstrapping
with the policy from the parent generation. During the evolution,
the agent keeps improving its attributes, and the algorithm stops
when the improvement is insignificant, or the user decides the
output is satisfactory.

IV. AGENT DESCRIPTION

Our agent description can be used in DeepRL frameworks,
supports physics-based simulation, and allows for a fast defini-
tion or user constraints.

A. Shape

The agent (see Fig. 3) is a directed acyclic graph G = {V, E'}
with vertices v; € V' and edges e; ; : v; — v;. Each v; corre-
sponds to a node that connects different parts of the agents and

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

7582

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

Agent Policy -

PPO Training

. - . Create variants
gle-agent - base policy

P

PPO Training
group of agents - universal policy

Selection Crossover and mutation

%, /T
Sgs

¥ e

Fig. 2.

New Generation

Overview: The input agent is either generated randomly or by the user, and the user can also define constraints (yellow arrows) (a). The initial Proximal

Policy Optimization (PPO) trains the input agent to provide baseline agent policy (b). The algorithm then creates variants of the initial model (c¢) and trains them
with the universal PPO (d). Selection (e), crossover, and mutation (f) create a new generation trained again. The system outputs the best(s) co-designed agents and

their policies (g).

Fig. 3. Example of an agent, its corresponding topological graph, and the
coordinate systems of the joints (inset).

Fig. 4. User-defined constraints.

e;; 1s a joint that connects two parts (nodes v; and v;) of the
agent’s body.

Each agent consists of two building blocks: body parts are
denoted by the upper index B, and legs with the foot are denoted
by LL and RL for the left and right leg, respectively. The acyclic
graph is a tree with the root always being the node v¥. An
example in Fig. 3 shows an agent with two pairs of legs and
a body with four body parts. An additional index distinguishes
each leg, e.g., the third vertex on the second left leg from the
torso has index v££? (indexed from zero).

While the topology of the agent is described by the graph G,
the geometry is captured by additional data stored in each graph
vertex v that is called agent’s attributes. Each body part is
represented as a generalized cylinder (a capsule), and we store
its local coordinate system, orientation, radius, and length. The
edges also store the rotation axis and rotation range. The user
constraints (see Fig. 4(b)) are defined as the ranges of motion,
length, radius, etc. Note that the ranges may be asymmetrical
(see Fig. 4(a)). A global constraint defines how much evolution
can change the attributes as a whole.

B. Physics Simulation and Movement

The physics of the motion of each agent is simulated with
rigid body dynamics. In addition to the geometric attributes, each
edge e also stores physics attributes: stiffness, damping, friction,
and mass density. Each body part also stores its mass, derived
from the density and volume. The movement simulation uses
the Isaac Gym [31], which runs parallel physics simulation with
multiple environments on GPU. The agent’s topology, geometry,
and attributes are stored as an MJCF file interpreted by the Isaac
Gym. The simulation engine has various parameters, of which
the most notable is the agent’s collision with the environment and
self-collision that were enabled in our experiments. Enabling
self-collision detection slows the simulation significantly. We
perform a self-collision check for all initial designs and dis-
card self-colliding agents. The range of changes our simulation
allows is relatively small (shown in Section VII-B). Although
minor collisions can occur, we do not check for them to keep
the simulation fast.

The agent’s movement is given by the torque 7 applied to
each joint over time. There are two methods to control the joint
of an agent. The first option (direct control) applies the torque
directly to each joint, and the actual torque value is provided by
the policy network described in Section V. The torque control is
fast but can be noisy and unstable as the torque is sampled from
apolicy-given distribution. The second option uses Proportional
Derivative (PD) controller that works as an intermediate between
the control policy and the torque. The control policy specifies the
target position for the joint, and the PD provides the torque. This
control method provides stable motion as the PD controller can
reduce the motion jittering. We use both options in our method
and refer to them as direct torque control and PD.

C. Generation

We generate the agents either manually or randomly. The
manual description is performed by writing the agent description
into a text file that is then visualized, and the motion is displayed.
This is a tedious trial-and-error process. The random generation
creates the description automatically in a two-step process that
starts by generating body parts and then attaching legs. The
random generation may lead to non-realistic configurations,
such as legs inside the body. We test each agent by detecting
these configurations before training and visually verifying them
for consistency.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

7583

[Global description s9: distance to the target position, heading direction, up direction

Action

Morphology representation s™ “

Perceptive representation s?

, | distribution

Rigid body data

EENERLON | length, radius, density

Spatial Data Joint Data

position, rotation in local, joint position

initial position and rotation rotation range, axis direction

Body part n length, radius, density

nitial position and rotation

Transform Data

initial position and rotation rotation range, axis direction] position, rotation in local, joint position

rotation range, axis direction] position, rotation in local, joint position

Physics

linear, angular, and joint velocity

linear, angular, and joint velocity

}
F o

Fig. 5.
processed by a deep neural network that generates the corresponding action.

V. DEEPRL MODEL REPRESENTATION

The DeepRL generates a control policy that produces the
agent’s locomotion. The learned control policy should be robust
across the entire generation. Moreover, we need to train a large
number of agents, so the control policy should be able to train
rapidly.

The agent’s description and attribute values become the
DeepRL framework states optimized towards the desired be-
havior. We use Proximal Policy Optimization (PPO), an Actor-
Critic-based RL algorithm [46]. The Critic estimates the value
function and acts as a baseline for the computation of advantages,
while the Actor updates the policy distribution in the suggested
direction. The controller is trained with PPO with advantages
computed with Generalized Advantage Estimation (A) [45]. The
controller receives the state of an agent s(t) at the time ¢, and
it outputs an action a(t) for each joint that leads to the state
s(t 4+ At). The action a(t) is either the torque 7 applied directly
to each joint or a position of a PD controller that then computes
the required torque (Section I'V-B).

A. States and Actions

The state of the agent s, at time ¢ is (see also Fig. 5):
St = (8?7‘9?75?)’ (1)

where s} is the agent’s morphology, st denotes the perceptive
representation, and the global representation is denoted by s7.
We will not specify the time ¢ unless needed in the following
text.

The morphology representation s™ consists of

Sln = (Srigidbodya Sspatial s Sjoint))

where s,.;idp0dy includes the physics attributes of abody: length,
radius, and density. The spatial data s,,41;4; includes the initial
heading direction of the body computed from fromto attributes
in an MJCF file and the initial local position. The values of
Sjoint contain the attributes of the joints attached to the body,
such as the rotation axis and the rotation range of the joint.
The morphology representation s™ does not change during the
simulation and training, and it changes only after evolution when
the new generation is generated (Section VI). The network can
decide on different agents based on their morphology attributes
because this part is a constant input to the policy network.

Control Policy Network (Actor in PPO) of a single agent consisting of multiple body parts. The body part properties and the global description are

The perceptive representation st stores the dynamics infor-
mation that changes at each time step ¢

p _
St = (Stransform> Sphysics Sact)a

where the transform attributes S¢.qnsform include the local
position, local rotation represented as a quaternion, and the
joint position. The physics attributes s,,ysics include linear,
angular, and joint velocity. Actions from the previous time step
of each joint are also used. The last parameter is the action s
that specifies the target position of the PD controller or direct
torques for each joint. The actual value of actions is sampled
from Gaussian distributions given by a control policy. We use
hinge joints for each agent, specified as the 1D rotation angle ¢,
normalized based on their joint rotation ranges.

Finally, the global description s9 contains information that
indicates the overall behavior of the agent, i.e., distance to the
target point, heading direction, and the up vector of the torso.

B. Network Architecture

The Actor and the Critic in the PPO algorithm are modeled
with a deep neural network (see Fig 5). The Actor-network is
a control policy 7 that maps the given state s to the Gaussian
distributions over actions 7(als) = N (u(s), X), which takes a
mean i(s) from the output of the deep neural network and a
diagonal covariance matrix X specified by a vector of learnable
parameters o. The mean is specified by a fully connected net-
work with three hidden layers with sizes [256,128,64] and the
Exponential Linear Unit (ELU) [7] as the activation function,
followed by a linear layer as the output. The covariance matrix
values ¥ = diag(og, 01, . ..,0,) are learnable parameters and
are updated as part of the deep neural network with gradient
descent. The Critic network V' (s(¢)) is modeled as a separate
network with the same architecture as the Actor-network, except
that its output size is one providing the given state value. A fully
connected network is beneficial as it provides faster learning and
easier transfer learning than transformer-based networks. We
implemented both solutions, and the transformer takes around
120 minutes to converge to the optimal policy. In comparison,
the fully connected actor policy takes 20 minutes to converge at
the initial stage and 2 minutes from a pre-trained model from
the ancestors.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

7584

C. Rewards

The reward function is designed to produce natural motion
that reflects the motion of real animals, e.g., for the agent
in Fig. 10, we attempted to set the parameters to resemble a
caterpillar’s motion. We use the same values of reward terms
from [5], [10], [60] to create a fair and standard reward signal for
experiments while considering motion aesthetics. The reward r
evaluates an agent’s performance, e.g., encouraging the agent to
walk forward over flat terrain. It attempts to maintain a constant
moving speed towards a target distance, and the agent should
be able to keep stable locomotion without flipping or deviating
from the target direction. It also minimizes energy consumption.
The rewards function is a sum of multiple task objectives

r=rP+r" 4141 2)

where r? is the pose reward that encourages the agent to maintain
a stable initial pose during the movement, r is the velocity
reward, ¢ denotes the efficiency reward, and ¢ is the alive
reward.

The pose reward rP maintains the heading direction of the
agent’s body aligned with the target direction (0,1,0) as the agent
walks along the y-axis. The up direction of the head should point
to the up-axis (0,0,1) to prevent the agent from swinging its body
or flipping:

rP = wheadzng . Theadzng + w"P ,r,up’ (3)

and the weights w"¢?¥m9 = (0.5 and w*? = 0.1. The heading
reward 7"¢¢%"9 is computed as

pheading = heading - (07 1, 0)
heading
heading - p
pheading _ . <theading’ 1> “

where p/°?@"9 is the projection of the heading vector of the head
to the target direction, tjeqding = 0.8 is the threshold of getting
the maximum heading reward. We apply the same equation to the
up stable reward 7P, except that the aligning vector points up,
and we use a different threshold of 0.9 that has been established
experimentally.

The velocity reward 7" encourages the agent to move forward
along the y-axis

r’ = (PY(t) = PU(t = 1)) /dy, Q)

where PY(t) is the walking distance along y-axis at the time step
tand d; = 1/60 s.

The efficient reward 7 encourages the agent to perform
energy-efficient actions each time by penalizing high torques of
joints close to extreme positions to have smoother locomotion.

ré = wact . Tn,ct 4 wPOwer . ppower + wjm',ntlimit . Tjointlimit’
(6)
where the weights are w®! = wPo%" = —0.05 and
wlomtlimit — () 1. The action cost
Tact _ Z a2
Yjoint

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

penalizes high torque action given by the control policy or joint
position closer to the range limitation in the PD control. The

energy cost
Z la - vl

Vjoints

ppower _

prevents the agent from taking high-energy consumption actions
by avoiding high joint velocity v.

The joint-at-limit reward r7°"*/"mit prevents the agent from
not utilizing all joints by penalizing the joint stuck at the limit

position
L,
0,

where pjoins is the normalized joint position, ¢7°itimit = (.99
is the threshold to receive the penalty and w/omtimit — (.1
is the weight. The alive reward 7 is set to zero when the agent
walks out of the scene’s boundaries; otherwise, it is set to one.

‘We measure the performance of an agent based on the reward
function in (2), which is a weighted linear combination of
sub-rewards designed for the desired locomotion of the agent.
It has the following targets: 1) keeping a stable pose and
heading direction without flipping or rolling (3), 2) walking with
atarget velocity (5), and 3) walking efficiently with fewer energy
consumption (6). A higher reward indicates a better performance
on these targets. Table A.7, available online, in the Appendix
shows the effect of these reward designs.

: joint jointlimit
pdointlimit _ , jointlimit Z if p/ > 17

Vjoint

otherwise

D. Training

Our control policy is trained with the PPO [46] on GPU-based
parallel environment Isaac Gym [31]. The training is performed
first for the template input agent (Fig. 2(a)) and then for each
generation during the evolution (Fig. 2(d). Both training stages
proceed episodically, starting at an initial state sg of each agent,
which is randomly sampled from a given range to enhance
the generalization of the policy network. The experience tuples
(s(t),a(t),r(t),s(t + 1)) are sampled in parallel at each time
step t by sampling actions a from control policy 7 with a given
state s(t). The experience tuples are stored in the replay buffer
for the training iteration later. Each episode is simulated within
a maximum number of steps, or some specific conditions like
flipping or walking in the wrong direction can terminate it. After
the replay buffer is filled with experience tuples, several training
iterations are performed to update the Actor-network (policy
network) and the Critic network (value network). The learning
rate [r is dynamically adapted to the KL-divergence k! between
the new and old policy

I — max (Ir/1.5, Irmin),
"= min (Ir - 1.5, 1" maz),

if kIl > desired 2 - ki 7
if kIl > desired 2 - ki

where 7pin = le™® is the minimum and I7,,,, = le™3 is
the maximum learning rate allowed during the training,
and desired £l is a hyper-parameter that controls the update of
learning rate based on the distance between old policy and the
new policy during policy update iteration.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

7585

Generation

Replay Buffer

Variant vy

Variant vy

Universal Controller ()

8-

Physics Simulation }—B’{

Variant v,

o0 '

Variant v,

|

Policy Update

Actor Update <

Variant v,

Fig. 6.

Single-agent training: We train the initial (template) agent
(Fig. 2(b)) to complete the task until the reward (2) reaches
maximum or does not change significantly. The result provides
the baseline policy, reward value, and initial locomotion.

Generation Training: The input to the generation training is
the template agent policy, which attempts to optimize a whole
generation of agents for evolution. Since each generation of
agents shares the same structure, the control policy of the tem-
plate agent is reused via transfer learning. Then, the descendants
could quickly inherit the locomotion experience from the previ-
ous generation, which, in effect, increases the speed of training
(to 20% in our experiments).

The generation includes n variants trained in parallel (Fig. 6)
eachin its environment. At each time step ¢, the universal control
policy takes the states s of an agent v; and outputs its actions a.
The experiences are sampled and stored in the replay buffer. The
experience tuples sampled from different variants are randomly
sampled for the policy update phase. This training part is inspired
by metamorph [15] that trains a universal controller with a
transformer base structure for robots with different morphology.
We use a fully connected network in the policy net instead
of an attention-base structure because MLP provides the same
performance and trains around 8-10x faster. We tested the
transformer [15] that provided similar results, but the training
took about two hours instead of 10 minutes by using MLP.

VI. EVOLUTION
A. Fixed Structure Evolution

Each trained group of agents (Fig. 6) produces a set of variants
of agents with different body attributes altogether with their
reward function. The goal is to choose the best variants of
agents and create a new generation while ensuring that their
most beneficial traits propagate and possibly improve in the next
generation.

Let V9 = {v{,v],...,v9} denote the g—th generation with
variants of agents v;. Each agent has a list of attributes att;
that we call its gene. The next generation g + 1 is produced via
selection, crossover, and mutation [12], [25].

Selection: We sort all variants V9 in the actual generation
g according to their reward and select the top p% (p = 20)
agent variants. This initial set becomes the seed of the gener-
ation V9+1,

Critic Update

{ Random Sampler

Grouped agent training pipeline where s,,, is the morphology state, s,, the receptive state, a are the actions and r rewards.

Crossover: The seed of the new generation is expanded to the
number of variants n by crossover. We take the genes att; and
att; of two randomly chosen agent variants v; and v;, from the
seed set. We use arandom crossover that takes an attribute att; k]
and swaps it with att;[k| with the 50% probability, where k
denotes the k—th value in a binary gene. This process is repeated
until a new generation V9% with n variants has been created.
The attributes that can be evolved during the evolution include
radius, length, density, initial position, body rotation, stiffness,
damping, max effort, and joint rotation range.

Mutation: Each attribute can be mutated by altering its value
by arandom value 4. The overall probability of mutation is set
to 1% [12].

The user-defined constraints: The user controls the evolution
(Section IV-A) by setting some attributes fixed. These attributes
will not be affected by the mutation and crossover. Moreover,
the user can also specify the range of values as user-defined
constraint limits. Values that would mutate out of these ranges
are clipped.

Some attributes can be linked (for example, a pair of symmet-
ric legs or body parts belonging to the same group (torso body))
and will always be treated as a fixed group. When one of them
is swapped, the other will be as well. If one value changes, the
others will be changed by the same value.

B. Changing Body Structure Evolution

Here, we explore the option of changing the body structure
during evolution. The previous section described optimized
agents with a fixed structure, and the evolution modified their
body attributes. By measuring the difference between the origi-
nal and the optimized design, we observed that the changes in the
length of the different bodies indicate the preference of the evo-
lution path of different agents. These changes imply the agent’s
convergence to longer or shorter body parts to accomplish the
task.

We perform informed structure evolution by adding or delet-
ing some body parts to reach a better structure. Our approach
is similar to [16], but we use the information from the previous
generation to guide the changes. We then evolve the modified
agent using the fixed structure evolution. However, allowing
the evolutionary algorithm to modify the structure arbitrarily

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

7586
a) b))
Fig. 7. Baseline agent (a) is evolved by allowing +10% (b), and +20% (c)

of variance of all its parameters. The reward function value 470 of the baseline
agent (a) improves to 132% (b), and 151% (c).

precludes us from using transfer learning between generations,
and the optimization must be run from scratch.

Structure Optimization of an agent is modified by either
adding (splitting) or removing parts. During the evolution, we
evaluate the ratio of length changes of each body part, and we
split the part with the greatest positive body change in two. The
length of each body will be half of the original length, and the
total length will be constant to maintain the appearance of the
agent. We delete the body part with the largest negative body
change ratio (shrinking). When deleting the part, we maintain
the agent topology by correctly reattaching the parts.

Selection: At the first epoch, we perform the fixed structure
evolution to produce N optimized agents and select the agent
that achieved the highest reward as the candidate for structure
optimization. We then split and removed several parts of the
winner and trained each from scratch, no matter whether the
performance was better or not compared to the previous genera-
tion. The best candidate is then used for structure optimization.

Optimization Termination: We stop the optimization if perfor-
mance decreases or the ratio of changes is lower than a threshold
to prevent performance collapse. Since the change of structure
will lead to a different performance easily, e.g., missing one leg
could lead to an agent’s inability to move, it is easy for the agent
to fall into a bad scenario for the un-smoothness of the problem.

VII. IMPLEMENTATION AND RESULTS

A. Implementation

We use Python to develop the agent generator and all the
components in our evolution system. Isaac Gym [31] was used
for the physics simulation of the agent, and we implemented the
PPO optimization in Python. The neural network is based on
Pytorch version 1.8.1. The computation, including deep neural
network training, physics simulation, and rendering, runs on a
single Nvidia GeForce RTX 3090.

B. Results

1) Fixed Structure Evolution: We test the effect of the evolu-
tion on the agent co-design on several manually designed agents
(Figs. 7, 10, and 11), randomly generated agents (Fig. 8) and
on an optimized design (Fig. 9). All results are summarized in
Table I, and details of each body part are in the Appendix. Please
note this paper has an accompanying video that shows its results.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

Baseline

Evolved

Fig.8. Simple baseline agent (top) evolved by allowing +20% of variance of
all its parameters. The evolved agents travel a larger distance at the same allotted
time, and the evolved reward functions are improved by 489—566 (116%).

Baseline

Evolved

Fig. 9. Medium complex baseline agent (top) evolved by allowing +20% of
variance of its parameters. The evolved reward functions are 572—921 (161%).
The original design of this agent is from [60].

TABLE I
QUANTITATIVE RESULTS OF ALL EXPERIMENTS

Constrained Reward New Reward (%) Change (%)
Fix Evo

Fig. 1 (a) - 20% 960 100% (Baseline) N/A

Fig. 1 (b) No 20% 1,274 132% 0.39%
Fig. 1 (c) No 20% 1,594 166% 5.82%
Fig. 1 (d) No 20% 1,775 184% 5.84%
Fig. 1 (e) No 20% 1,913 199% 5.63%
Fig. 1 (f) No 20% 2,169 228% 5.72%
Fig. 1 () Body 20% 1,160 121% 0.56%
Fig. 1 (h) Body 20% 1,842 192% 8.93%
Fig. 1 (i) Body 20% 2,174 226% 9.40%
Fig. 1 (j) Body 20% 2,355 245% 9.45%
Fig. 1 (k) Body 20% 2,428 253% 9.71%
Fig. 7 (a) - 0% 470 100% (Baseline) N/A

Fig. 7 (b) No 10% 621 132% 3.24%
Fig. 7 (¢) No 20% 710 151% 8.75%
Fig. 8 (base) - 0% 489 100% (Baseline) N/A

Fig. 8 (evo) No 20% 566 116% 10.83%
Fig. 9 (base) - 0% 572 100% (Baseline) N/A

Fig. 9 (evo) No 20% 921 161% 8.02%
Fig. 10 (base) - 0% 683 100% (Baseline) N/A

Fig. 10 (evo) No 20% 1,108 155% 2.47%
Fig. 11 (a) - 0% 683 100% (Baseline) N/A

Fig. 11 (b) Torso 40% 1,108 162% 5.24%
Fig. 11 (¢) Leg 40% 870 127 6.44%

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

Baseline

Evolved

Fig.10. Complex asymmetric baseline agent (top) evolved by allowing +20%
of variance. The evolved reward functions are 1,118—1,737 (155%).

The first example in Fig. 1 shows the effect of the evolution
on the changes and reward function of an agent. The baseline
agent is trained to walk with the state-of-the-art PPO training
(a), and we then use the evolutionary algorithm to improve its
performance while changing its attributes to complete the same
task. The reward function value for the baseline agent is 473,
and it improves through the evolution after the first generation
by 132% (b), the fifth generation 166% (c), 15-th generation
184% (d), 25-th generation 199% (e), and 35-th generation to
228% (f). We then take the same agent and fix its body shape so
it cannot change through evolution. The agent is trained from the
baseline leading to the new reward after the first generation by
121% (g), the fifth generation 192% (h), 15-th generation 226%
(1), 25-th generation 245% (j), and 35-th generation to 253% (k).

The experiment in Fig. 7 studies the effect of globally increas-
ing the range of allowed changes. The baseline input agent was
trained, leading to a reward function value 470. We then run the
evolutionary co-design, allowing the global change attributes by
+10% and +20%. While the reward is increasing by 132%, and
151% of the baseline design, the structure of the agent has also
changed significantly.

Figs. 8,9, and 10 show three agents with increasing complex-
ity evolved by allowing +20% of global attributes changes. The
motion snapshots are taken after the same time spent, showing
the traveled distance for comparison. The simple agent improved
to 153%

Another example in Fig. 11 shows the effect of the restricted
control of the evolution. We fixed the torso (Fig. 11(a)) during
the evolution by not allowing any changes in the agent. While the
body remains the same, the legs and their control were allowed to
change by 40%, leading to an improvement of 162%. Fig. 11(b))
shows the same agent where only the torso can evolve, and the
legs remain fixed. This limits the motion, and the improvement
was only 127% of the baseline.

Our experiments show that small changes in the existing
structure parameters can substantially improve the agent’s per-
formance. The related work [60] shows 50% improvement on
the original design (from 4 to 6 on flat terrain) in their reward
functions while optimizing the structure to fit the environment.
Our work shows that evolution can achieve up to 100% im-
provements without changing the structure. We also attempted
a wider range of changes, as shown in Fig. 12 where 90% of
changes were allowed. Using such large modifications does not
allow for efficient sampling of the shape space and quickly leads

7587

Fig. 11. Agent (a) is evolved with a restricted torso and the allowed changes
of 40% to the rest of the body. (b) The legs improved, and the reward function
changed 683—1,108 (162%). (c) The last row shows the agent evolved only
with allowed modifications to the torso (legs are fixed). The reward function
changed 683—870 (127%).

Baseline

W.MAWJ ™ -
: N /

~ f-‘_'\/’%"\,‘ .
/\ / -N,r\ %vﬁ\ A ‘(-.

Evolved \

Fig. 12. Allowing £90% variations produced bad-performing shapes.

2,050
1,850
1,650
1,450
1,250
1,050

850

With mutations

Reward

Without mutations

Baseline: 960 Generation #

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 13. Agent from Fig. 1 is evolved with and without the mutation, showing
that the mutations positively affect the reward function. The line is the mean of
multiple tests, and the error bar indicates the standard deviation. Note that the
standard deviation is small, and the error quickly becomes negligible.

to degenerated configurations. Allowing modifications of 100%
and more led to agents that did not move at all.

While the examples mentioned above were generated with the
PD control, the accompanying video shows that our evolutionary
algorithm handles the direct torque control from the PPO.

We tested the effect of the mutation on the convergence of the
reward function. We trained the baseline agent from Fig. 1 with
and without the mutation. The progress of both reward functions
in Fig. 13 shows that the mutation positively affects the reward
function, leading to faster convergence and about 9% higher
reward (2,091 vs. 1,856).

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

7588
2450
B
©
1950| 3
< Fig.9
1450
950 Fig.8
450 Tri/(
50 Generation #

1 3 5 7 9 1 13 15 17 19 21 23 25 27 29

Fig. 14. Reward function evolution for the examples from this paper (mean
and standard deviation).

The reward functions of results from this paper through the 30
generations of the evolution are shown in Fig. 14. The reward
function increases most if no constraints are imposed on the
model or if the model has high complexity, allowing for more
changes. The error bar indicates the standard deviation.

We attempted to provide insight into the traits affecting the
agents’ overall performance. We analyzed the data from the Ap-
pendix showing all numbers of the agent changes from Figs. 8, 9,
10, and 11. The tendency to allow the agents to perform better is
diminishing their weight. The control parameters are important
in the locomotion as its global changes are relatively higher than
the others. The statistics show that increasing the body’s average
length also helps improve performance. This is especially true
for the legs, indicating that longer legs are beneficial. Moreover,
stiffness and the max effort tend to increase through the evolution
as they provide a faster response to the target joint position and
increase the maximum torque. An exceptionis an agentin Fig. 11
that could not evolve its legs, leading to decreased damping
and max effort. If the agent is high and unstable, the evolution
reduces the torque, which decreases the risk of falling. We also
notice that the middle and tail torso often becomes heavier to
help maintain stability. If the user-defined constraints fix the
torso, the evolution attempts to find different ways to improve
efficiency.

The agent generation training with the universal controller is
trained for 30 epochs and 150 variants. Each variant runs on six
parallel environments. The training for each generation takes
around 30 seconds. The overall evolution of the 30 generations
takes around 22 minutes, depending on the complexity of the
agent and the environment. The main limitation is the size of
the GPU memory. An agent takes 5 minutes to be trained, and
the total time needed for the optimization without the universal
controller and transfer learning used for the optimization would
be 375 hours for 30 generations with 150 agents per generation.
However, using the universal controller and the transfer learning
cuts the time to around 22 minutes (1,125 x faster).

To show the upper bound of our method, we performed two
experiments on the agent from Fig. 1 to explore the perfor-
mance of the universal policy compared to a single agent policy
training from scratch. We selected the best design from every
five generations (generation 1-35). We performed two experi-
ments for a single controller with equivalent training epochs in
our evolution method 1) training without a pre-trained policy
with the same iteration 50, where the agent achieved rewards

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

2400

2200
2000 split
1800
1600 Fixed Structure Evolution

1400

1200
1000 L]

3000
2800

2600 \ - .\ R 75 lit VSV/H.

2400 - split g P L2

2200 oY eveicte Sopit o Delete g
a

2000

\
e [}
1800 ; | “split @ porere %
1600 L Fixed Structure Evolution o
1400 Delete .
1200 “-Baseline split
®

1000

A Deletq

1 2 3 a4 5 6 7 8 9

Fig. 15. Changing structure evolution of two agents and the corresponding
reward function.

481,289, 273, 361, 347, 314, 300, 284 and 2) training with
the pre-trained policy, and get rewards 1,310, 1,576, 1,732,
1,733,1,841,1,883,1,973,and 2,141. These designs trained with
shared controller and pre-trained models achieved 1,274, 1,595,
1,722, 1,776, 1,866, 1,913, 1,992, and 2,190 rewards which
are -2.75%, 1.21%, -0.58%,2.48%,1.36%,1.59%,0.96%,2.49%
than the single controller showing that our method achieves
similar results with smaller performance loss.

2) Changing Structure Evolution: We experiment with
agents that changed their structure during evolution. It is not fea-
sible to allow changes for all agents as this requires training them
individually from scratch, thus losing the main advantage of the
universal controller that allows training hundreds of agents of the
same structure with different parameters. We experimented with
the changing structure evolution on two agents: 1) a complex
asymmetric agent from Fig. 10 and 2) a simple symmetric agent
in Fig. 12. After the parameter training, we split the most quickly
growing part in two or deleted the most quickly shrinking part.
We then optimized the agent from scratch.

The first result in Fig. 15 top shows the evolution preference
of an agent with a long torso and multiple legs whose motion
is driven by the body’s swinging and the movement of the legs.
The results show that evolution tends to grow more torso parts
to extend flexibility and move faster. The selection decision of
the five epochs are split (torso), split (torso), split (torso), split
(torso), delete (leg), and the rewards of the selected agents are
1,118 (baseline), 1,737 (fixed evolution), 2,211, 1,996, 2,001,
and 1,676. We stopped the experiment when the performance
decreased. The performance of the agent increased 27% after
the first epoch. It kept a similar performance in the following
epochs, which indicates the fixed structure evolution already
provides a good design without changing the structure.

The second example in Fig. 15 bottom shows an agent with
three body parts and two legs. The results show that the evolution
method reduces the total weight by deleting legs to achieve faster
movement speed. The agent learns to jump with high swing
frequency with an unbalanced pose. The selection decisions
of the seven epochs were delete (leg), split (leg), delete (leg),
split (leg), split (leg), split (leg), and delete(leg). The rewards of
the selected agents are 1,364 (baseline), 2,191 (fixed evolution),
2,140,2,575,2,737,2,717,2,576, and 1,937. We also stopped the

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

pValue: 0.6152 > 5%
pValue: < 0.1%
pValue: < 0.1%

3.5
3
2

1.5 l
1

Embodied Intelligence

1

Ours

RoboGrammar

Fig. 16. Statistical comparison of pairs of detection thresholds analyzed with
Wilcoxon test.

evolution when the performance decreased. The performance of
the agent increased 25% at the fourth epoch with shorter front
legs, high leg swinging frequency, and an unbalanced body.

The runtime of the changing structure evolution depends on
the epochs it runs,s; the first experiment took 30 minutes per
epoch and five epochs (150 minutes total), and the second
experiment took around 20 minutes and seven epochs (140
minutes total).

3) User Study on Perceived Realism: Study Design: We per-
formed a user study to evaluate the perceived realism of the
generated motion. We have shown a video of a moving agent and
asked, "How realistic is the motion of the 3D structure compared
to living creatures? . The options were ”Not realistic at all (1)”,
“Not realistic (2)”, “Realistic (3)”, and ”Very Realistic (4)”. The
participants selected the answer after the video ended.

Ethical approval: The study was approved by Purdue Univer-
sity’s Institutional Review Board IRB-2023-1439.

Setting All videos were represented online, and the partici-
pants used their own computers and web browsers.

Participants: We have recruited 21 participants ages 18-55
from undergraduate and graduate students, as well as faculty
members population. The user study included 15 males, three
females, three self-described, and three prefer not to say. Three
participants self-reported having no experience with character
animation, three had a low, eight had medium, and four had high
experience.

Procedure: The participants were shown nine videos: three
from the Embodied Intelligence [16], three from RoboGram-
mar [60], and three from our results (Figs. 7, 9, and 10). The play
time of each video was around 10 seconds, and the sequence of
the videos was randomized.

Data collection: All collected were stored in a coma-
separated-value file, and the participants were anonymized.

Data Analysis & Result: We ran Wilcoxon tests for the
data that violated the normality assumption. Normality was
investigated with the Shapiro-Wilk test. The p-values of the
Wilcoxon tests between embodied intelligence and our work
are 5.217 — 13 < 0.001, Embodied Intelligence and Robogram-
mar is 3.2935e — 8 < 0.001, our work and Robogrammar is
0.6152 > 0.05. The results show significant differences (p <
0.05) between Embodied Intelligence and our work, as well
as Embodied Intelligence and RoboGrammar. It shows no sig-
nificant differences between our work and Robogrammar. The
study suggests that the motion generated by our algorithm is
perceived as realistic compared to living creatures, it is on par

7589

with RoboGrammar and outperforms Embodied Intelligence
(Fig. 16).

VIII. CONCLUSION

We have introduced a novel approach that improves state-
of-the-art DeepRL training by adding evolutionary changes to
the agent’s parameters. While the agent’s topology remains the
same, the genetic algorithm explores the space of the agent’s
attributes and attempts to improve its performance to complete
the given task. Our approach has two main advantages. First, it
allows for user control of the evolving parts. Second, it uses a
universal policy and transfer learning that enables us to train a
whole generation of agents on a single GPU. This significantly
shortens the training time of the evolutionary algorithm to less
than one minute per generation during the evolution. We have
shown various examples of agents trained with varying shapes
and parameters, showing that the performance improved by tens
of percent even after just a few generations.

Our approach has several limitations. First, we used Isaac
Gym and PPO as our simulation and RL training baseline. While
this is a suitable choice for comparison, the RL algorithms and
physics engine include parameters that need to be tuned, and they
may have a negative effect on the training. We have carefully
used the same parameters when comparing the results, but we
noted, for example, that self-collision detection for complex
agents changes the results significantly. The second limitation
comes from the choice of the initial agent. If the template
agent fails the task, the descendants will not benefit from the
pre-trained policy. We use a universal policy for controlling all
agents instead of training separate policies per agent. While
this speeds up the computation significantly, it likely leads to
a sub-optimal policy at the first several generations.

There are many possible avenues for future work. First,
studying how many and what parameters suit the user would
be interesting. We showed several ways of controlling the shape
and its evolution, but the actual user intent and feedback would
be a worthy research project. Second, the space that needs to be
explored during the evolution is vast, and it is evident that our
approach is leading only to a limited set of solutions. Future work
could use several solutions and see what makes them different.
Another important problem is to answer the question of what
makes the design perform better. It could be achieved by tracking
the values of attributes and seeing how they relate to the perfor-
mance. However, the relation is very unlikely straightforward,
and the parameters may affect each other. Also, when adding
a new part, the actual location of the new part is fixed (based
on its previous location). It would be interesting to evaluate
different positions and their effect on the overall performance.
Meanwhile, studying how to transfer the pre-trained model from
the ancestors is challenging. As the input and output dimensions
change, the policy cannot be fine-tuned based on the pre-trained
model. Exploring the transfer learning on different structures can
speed up the optimization. An evident future work is studying
more complex tasks and environments and allowing topology
changes to the body. It would also be interesting to compare
it to previous work. However, our approach does not require

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

7590

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 12, DECEMBER 2024

significant computing resources, while most of the related work
would require significant computing power to generate results
for comparison. We could also experience multi-objective sce-
narios by applying the multi-objective evolutionary algorithm.
Our work focuses on the chained multi-legged agents. It would
be interesting to show how the same approach works for different
configurations of agents.

(1]

(2]

(3]

(4]

[3]
[6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, and M. V. de Panne,
“On learning symmetric locomotion,” in Proc. Conf. Motion Interaction
Games, 2019, pp. 1-10.

M. Abdul-Massih, I. Yoo, and B. Benes, “Motion style retargeting to
characters with different morphologies,” Comput. Graph. Forum, vol. 36,
no. 6, pp. 86-99, 2017, doi: 10.1111/cgf.12860.

J. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik, “Evolution GYM:
A large-scale benchmark for evolving soft robots,” in Proc. Adv. Neural
Inf. Process. Syst., 2021, pp. 2201-2214.

J. C. Bongard, “Evolutionary robotics,” Commun. ACM, vol. 56, no. 8,
pp. 74-83, 2013.

G. Brockman et al., “Openai GYM,” 2016, arXiv:1606.01540.

N. Chentanez, M. Miiller, M. Macklin, V. Makoviychuk, and S. Jeschke,
“Physics-based motion capture imitation with deep reinforcement learn-
ing,” in Proc. 11th Annu. Int. Conf. Motion Interact. Games, 2018,
pp. 1-10.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (ELUs),”
2015, arXiv:1511.07289.

M. Da Silva, Y. Abe, and J. Popovi¢, “Simulation of human motion
data using short-horizon model-predictive control,” in Computer Graphics
Forum. Hoboken, NJ, USA: Wiley, 2008, pp. 371-380.

K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and R. Siegwart,
“Concurrent optimization of mechanical design and locomotion control of
a legged robot,” in Mobile Service Robotics. Singapore: World Scientific,
2014, pp. 315-323.

B. Ellenberger, “Pybullet gymperium,” 2018-2019. [Online]. Available:
https://github.com/benelot/pybullet-gym

T. Geijtenbeek, M. Van De Panne, and A. F. Van Der Stappen, “Flexible
muscle-based locomotion for bipedal creatures,” ACM Trans. Graph.,
vol. 32, no. 6, pp. 1-11, 2013.

D. E. Goldberg, Genetic Algorithms. Noida, India: Pearson Education
India, 2006.

R. Grzeszczuk and D. Terzopoulos, “Automated learning of muscle-
actuated locomotion through control abstraction,” in Proc. 22nd Annu.
Conf. Comput. Graph. interactive Techn., 1995, pp. 63-70.

R. Grzeszczuk, D. Terzopoulos, and G. Hinton, “NeuroAnimator: Fast
neural network emulation and control of physics-based models,” in
Proc. 25th Annu. Conf. Comput. Graph. Interactive Techn., 1998,
pp. 9-20.

A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei, “MetaMorph: Learning
universal controllers with transformers,” 2022, arXiv:2203.11931.

A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei, “Embodied intelligence
via learning and evolution,” Nature Commun., vol. 12, no. 1, pp. 1-12,
2021.

D. Ha, “Reinforcement learning for improving agent design,” Artif. Life,
vol. 25, no. 4, pp. 352-365, 2019.

d. Ha, “Reinforcement learning for improving agent design,” Artif. Life,
vol. 25, no. 4, pp. 352-365, 2019, doi: 10.1162/artl_a_00301.

S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Task-based limb
optimization for legged robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2016, pp. 2062-2068.

S.Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, Robotics, S. Srinivasa,
N. Ayanian, N. Amato, and S. Kuindersma, Eds., USA: MIT Press Journals,
2017, doi: 10.15607/rss.2017.xiii.003.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861-1870.

C. Hartman and B. Benes, “Autonomous boids,” Comput. Animation
Virtual Worlds, vol. 17, no. 3, pp. 199-206 2006, doi: 10.1002/cav.123.
J. H. Holland, “Genetic algorithms,” Sci. Amer., vol. 267, no. 1, pp. 66-73,
1992.

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]

[50]

[51]

W. Huang, I. Mordatch, and D. Pathak, “One policy to control them all:
Shared modular policies for agent-agnostic control,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 4455-4464.

J. R. Koza, “Survey of genetic algorithms and genetic programming,” in
Proc. Wescon Conf. Rec., 1995, pp. 589-594.

S. Lee, J. Lee, and J. Lee, “Learning virtual chimeras by dynamic motion
reassembly,” ACM Trans. Graph., vol. 41, no. 6, pp. 1-13, 2022.

Y. Lee, S. Kim, and J. Lee, “Data-driven biped control,” in Proc. ACM
SIGGRAPH Conf. 2010 Papers, 2010, pp. 1-8.

C.K.Liu, A. Hertzmann, and Z. Popovi¢, “Learning physics-based motion
style with nonlinear inverse optimization,” ACM Trans. Graph., vol. 24,
no. 3, pp. 1071-1081, 2005.

L.LiuandJ. Hodgins, “Learning to schedule control fragments for physics-
based characters using deep Q-learning,” ACM Trans. Graph., vol. 36,
no. 3, pp. 1-14, 2017.

K. S. Luck, H. B. Amor, and R. Calandra, “Data-efficient co-adaptation
of morphology and behaviour with deep reinforcement learning,” in Proc.
Conf. Robot Learn., 2020, pp. 854-869.

V. Makoviychuk et al., “Isaac gym: High performance GPU-based physics
simulation for robot learning,” 2021, arXiv:2108.10470.

1. Mordatch, E. Todorov, and Z. Popovié, “Discovery of complex behaviors
through contact-invariant optimization,” ACM Trans. Graph., vol. 31,
no. 4, pp. 1-8, 2012.

X.Pan, A. Garg, A. Anandkumar, and Y. Zhu, “Emergent hand morphology
and control from optimizing robust grasps of diverse objects,” in Proc.
IEEE Int. Conf. Robot. Automat., 2021, pp. 7540-7547.

X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 1-14, 2018.

X. B. Peng, G. Berseth, and M. Van de Panne, “Dynamic terrain traversal
skills using reinforcement learning,” ACM Trans. Graph., vol. 34, no. 4,
pp. 1-11, 2015.

X.B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, “ASE: Large-scale
reusable adversarial skill embeddings for physically simulated characters,”
ACM Trans. Graph., vol. 41, no. 4, pp. 1-18, 2022.

X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “SFV:
Reinforcement learning of physical skills from videos,” ACM Trans.
Graph., vol. 37, no. 6, pp. 1-14, 2018.

X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp:
Adversarial motion priors for stylized physics-based character control,”
ACM Trans. Graph., vol. 40, no. 4, pp. 1-20, 2021.

X. B. Peng and M. van de Panne, “Learning locomotion skills using
deepRL: Does the choice of action space matter?,” in Proc. ACM SIG-
GRAPH/Eurographics Symp. Comput. Animation, 2017, pp. 1-13.

R. Pfeifer and J. Bongard, How the Body Shapes the Way We Think: A New
View of Intelligence. Cambridge, MA, USA: MIT Press, 2006.

M. H. Raibert and J. K. Hodgins, “Animation of dynamic legged locomo-
tion,” in Proc. 18th Annu. Conf. Comput. Graph. Interactive Techn., 1991,
pp. 349-358.

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proc. 14th Annu. Conf. Comput. Graph. Interactive Techn.,
1987, pp. 25-34.

C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learning to
construct and control agents using deep reinforcement learning,” in Proc.
Int. Conf. Robot. Automat., 2019, pp. 9798-9805.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889-1897.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2015, arXiv:1506.02438.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv: 1707.06347.

K. Sims, “Artificial evolution for computer graphics,” in Proc. 18th Annu.
Conf. Comput. Graph. Interactive Techn., 1991, pp. 319-328.

K. Sims, “Evolving 3 D morphology and behavior by competition,” Artif.
Life, vol. 1, no. 4, pp. 353-372, 1994.

K. Sims, “Evolving virtual creatures,” in Proc. 21st Annu. Conf. Comput.
Graph. Interactive Techn., 1994, pp. 15-22.

E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” in Proc. IEEE/RSJ Int. Conf. Intell. robots Syst., 2012,
pp. 5026-5033.

M. Van de Panne, R. Kim, and E. Fiume, “Virtual wind-up toys for
animation,” in Graphics Interface. Princeton, NJ, USA: Citeseer, 1994,
pp. 208-208.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1111/cgf.12860
https://github.com/benelot/pybullet-gym
https://dx.doi.org/10.1162/artl_a_00301
https://dx.doi.org/10.15607/rss.2017.xiii.003
https://dx.doi.org/10.1002/cav.123

WANG et al.: EVOLUTION-BASED SHAPE AND BEHAVIOR CO-DESIGN OF VIRTUAL AGENTS

[52]

[53]

[54]

[55]

K. Wampler, Z. Popovi¢, and J. Popovi¢, “Generalizing locomotion style
to new animals with inverse optimal regression,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 1-11, 2014.

T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution: Towards
efficient automatic robot design,” 2019, arXiv.:1906.05370.

J. Won, D. Gopinath, and J. Hodgins, “A scalable approach to control di-
verse behaviors for physically simulated characters,” ACM Trans. Graph.,
vol. 39, no. 4, pp. 331, 2020.

J. Won, D. Gopinath, and J. Hodgins, “Control strategies for physically
simulated characters performing two-player competitive sports,” ACM
Trans. Graph., vol. 40, no. 4, pp. 1-11, 2021.

[56]

(571

[58]
[59]

[60]

7591

J. Won and J. Lee, “Learning body shape variation in physics-based
characters,” ACM Trans. Graph., vol. 38, no. 6, pp. 1-12, 2019.

J. Xu, A. Spielberg, A. Zhao, D. Rus, and W. Matusik, “Multi-objective
graph heuristic search for terrestrial robot design,” in Proc. IEEE Int. Conf.
Robot. Automat., 2021, pp. 9863-9869.

K. Yin, K. Loken, and M. Van de Panne, “SIMBICON: Simple biped
locomotion control,” ACM Trans. Graph., vol. 26, no. 3, pp. 105—es, 2007.
W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-energy
locomotion,” ACM Trans. Graph., vol. 37, no. 4, pp. 1-12, 2018.

A. Zhao et al., “RoboGrammar: Graph grammar for terrain-optimized
robot design,” ACM Trans. Graph., vol. 39, no. 6, pp. 1-16, 2020.

Authorized licensed use limited to: Purdue University. Downloaded on January 25,2026 at 21:28:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

