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Abstract

Accurate tree species identification through bark characteristics is essential for effective
forest management, but traditionally requires extensive expertise. This study leverages
artificial intelligence (AI), specifically the EfficientNet-B3 convolutional neural network, to
enhance AI-based tree bark identification, focusing on northern red oak (Quercus rubra),
hackberry (Celtis occidentalis), and bitternut hickory (Carya cordiformis) using the CentralBark
dataset. We investigated three environmental variables—time of day (lighting conditions),
bark moisture content (wet or dry), and cardinal direction of observation—to identify
sources of classification inaccuracies. Results revealed that bark moisture significantly
reduced accuracy by 8.19% in wet conditions (89.32% dry vs. 81.13% wet). In comparison,
the time of day had a significant impact on hackberry (95.56% evening) and northern red oak
(80.80% afternoon), with notable chi-squared associations (p < 0.05). Cardinal direction had
minimal effect (4.72% variation). Bitternut hickory detection consistently underperformed
(26.76%), highlighting morphological challenges. These findings underscore the need for
targeted dataset augmentation with wet and afternoon images, alongside preprocessing
techniques like illumination normalization, to improve model robustness. Enhanced
AI tools will streamline forest inventories, support biodiversity monitoring, and bolster
conservation in dynamic forest ecosystems.

Keywords: dendrology; artificial intelligence; deep learning; convolutional neural networks

1. Introduction
Accurate tree species identification through bark characteristics is a vital skill for

foresters, enabling precise differentiation critical for effective forest management. There are
many ways to identify trees, including leaves, fruit, and bark [1]. Traditionally, this expertise
demands years of experience and advanced training, limiting its accessibility. Recent
advancements in artificial intelligence (AI), particularly deep learning and convolutional
neural networks (CNNs), offer the potential to replicate this precision with automated,
rapid, and remote identification tools [2]. This project aims to develop AI-based tree bark
identification tools to streamline digital forestry and support conservation efforts without
requiring extensive professional training.

Deep learning has enabled human-like pattern recognition by learning from large,
labeled datasets [3]. In tree bark identification, CNNs have demonstrated accuracy compa-
rable to or surpassing traditional texture classification methods, with straightforward imple-
mentation and end-to-end training [1,4,5]. However, existing datasets, such as BarkTex [6],
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Trunk12 [7], and BarkNet 1.0 [4], which provide labeled bark images of hardwood species
across the United States, Canada, and Europe, are limited by variability in scope, species di-
versity, and accessibility [8]. These constraints hinder comprehensive AI training, resulting
in identification systems that currently underperform compared to experienced foresters.

To address these limitations, this study leverages the CentralBark dataset [9], which
includes over 19,000 images of 25 commercially valuable hardwood species from the Central
Hardwood and Central Appalachian regions, accompanied by metadata such as diameter
at breast height (DBH), bark moisture content (wet or dry), GPS location, timestamp, date,
and camera settings [9]. We are focusing on a new, smaller three-species dataset separate
from the CentralBark dataset—northern red oak, hackberry, and bitternut hickory. We
are calling this new dataset CBDS_Small. This research investigates the impact of three
key variables contributing to inaccuracies in AI-based bark identification: (1) time of day
(affecting lighting conditions), (2) bark moisture content, and (3) cardinal direction of
observation (north, south, east, or west). Identifying primary sources of error will guide
improvements in data collection and preprocessing, such as standardizing image capture
protocols or augmenting datasets with underrepresented conditions.

By enhancing the robustness of deep learning models, this work aims to develop
reliable AI tools for real-world forestry applications, where environmental variability
is a common occurrence. Improved bark identification systems will streamline forest
inventory processes, enable precise monitoring of species diversity and health, and support
sustainable forest management.

2. Materials and Methods
2.1. Study Area

Data collection for CBDS_Small was conducted in two forested areas near West
Lafayette, Indiana, USA, which were selected for their ecological suitability as habitats for
the target tree species and for their accessibility for field research. These sites, depicted in
Figure 1, provide diverse forest conditions representative of the Central Hardwood region,
ensuring robust data collection across varying environmental contexts. The primary site,
Celery Bog Nature Area, is a public nature center located northwest of Purdue University
campus at 1620 Lindberg Road, West Lafayette, IN 47906. This 195-acre wetland and forest
ecosystem supports a rich diversity of hardwood species, including northern red oak,
making it an ideal location for studying bark characteristics under natural conditions. The
second site, Richard G. Lugar Forestry Farm, is located west of the campus at 555 North
Sharon Chapel Road, West Lafayette, IN 47906. This 120-acre research facility, managed by
Purdue University, features managed forest plots with mature hardwood stands, offering
a controlled yet naturalistic setting for data collection. Both sites were chosen to capture
images of northern red oak (Quercus rubra), hackberry (Celtis occidentalis), and bitternut
hickory (Carya cordiformis), species prevalent in the region and critical for commercial
and ecological purposes. The selection of these locations ensures that the collected data
reflect real-world forest conditions, enhancing the applicability of findings to regional forest
management practices.
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Figure 1. Study Sites for CBDS_Small Data Collection: Celery Bog Nature Center (left) and Richard
G. Lugar Forestry Farm (right).

2.2. Image Collection

High-resolution bark images were captured using an iPhone 14 Pro equipped with Li-
DAR capabilities, which enhances depth perception and image quality, critical for capturing
fine bark textures and patterns. The LiDAR sensor improves focus and detail in complex
natural environments, ensuring that images accurately represent bark characteristics under
varying conditions. Diameter at breast height (DBH) measurements were obtained using
a Spencer logger’s tape, a standard forestry tool, with values rounded to the nearest inch
to maintain consistency. To investigate variables contributing to AI model misclassifica-
tion, we standardized tree size and age across the three target species—northern red oak,
hackberry, and bitternut hickory—as illustrated in Figure 2. Only trees with a DBH of
16–18 inches were included, as this range corresponds to mature trees with well-developed
bark textures, minimizing variations due to ontogenetic differences. This standardization
reduces confounding factors such as bark immaturity or excessive roughness found in older
trees, ensuring that observed differences in classification accuracy are attributable to the
investigated variables (time of day, moisture level, and cardinal direction) rather than tree
morphology. Field protocols were designed to ensure data reliability and reproducibility
for future studies.

Figure 2. Bark Images of (a) northern red oak, (b) hackberry, and (c) bitternut hickory.

2.3. Data Description

To investigate the factors influencing AI model performance, we examined three
variables: time of day (which affects lighting conditions), bark moisture level (wet or
dry), and the cardinal direction of image capture (North, East, South, or West). These



Algorithms 2025, 18, 417 4 of 10

variables were selected based on their potential to alter bark appearance, as lighting,
moisture, and directional shadows can obscure or enhance diagnostic features. CBDS_Small
focuses on three species based on their data availability and prior model performance [9].
Each species—northern red oak, (91.28% accuracy), hackberry (75.53% accuracy), and
bitternut hickory (63.38% accuracy)—had at least 125 data points, with each data point
comprising four images (one per cardinal direction), yielding a minimum of 500 images
per species [9]. This selection strategy enabled us to assess model robustness across a
spectrum of classification accuracies, ranging from high to low performers, and provided
insights into differential error sources. Field data collection leveraged the ArcGIS Field
Maps application, which facilitated offline data capture using the iPhone 14 Pro, ensuring
operational efficiency in remote forest settings. Images and metadata, including GPS
coordinates, timestamp, date, and camera settings, were stored offline and uploaded upon
re-establishing an internet connection, maintaining data integrity. To capture lighting
variability, images were taken at three time intervals: morning (07:00–10:00), afternoon
(12:00–15:00), and evening (17:00–20:00), corresponding to distinct solar angles and light
intensities. Bark moisture was assessed by collecting images on rainy, overcast days (wet
bark) and dry, sunny days (dry bark), reflecting common environmental conditions. Our
new CBDS_Small dataset comprises 252 images, with 96 images of northern red oak,
84 images of hackberry, and 72 images of bitternut hickory. For each tree, four images were
captured in a counterclockwise sequence (North, West, South, East) to evaluate directional
effects. To ensure consistency, only three trees per species were sampled, yielding a
minimum of 72 images across nine trees. These controls standardized bark characteristics,
minimizing confounding variables and enhancing the reliability of findings.

2.4. Bark Image Classification

Prior research [9] demonstrated that Convolutional Neural Networks (CNNs) are effec-
tive for bark image classification. We evaluated three models: EfficientNet-B3 [10], ResNet-
50 [11], and MobileNet-V3-small [12]. For this paper, we focus solely on EfficientNet-B3,
which achieved the highest overall accuracy of 83.21% in our previous work [9]. Its bal-
ance of computational efficiency and high performance makes it ideal for analyzing how
environmental factors influence classification accuracy.

We compared the experimental design of CBDS_Small with that of the Central-
Bark Dataset from our previous work [9]. While CBDS encompassed 25 species across
19,147 images from 4697 trees, CBDS_Small is deliberately smaller, with 252 images from
9 trees of 3 species. This focused approach isolates and analyzes the impact of environmen-
tal variables—time of day, bark moisture, and cardinal direction—on classification accuracy,
allowing us to attribute performance differences to these specific factors rather than dataset
scale or model architecture.

The model was trained using the Adam optimizer [13] with a learning rate of 0.01
and a cross-entropy loss function, standard choices for optimizing deep learning models
in image classification tasks. To enhance robustness and mitigate overfitting, we applied
data augmentation techniques, including random image rotation, horizontal and vertical
flipping, and grayscale transformations, which simulate natural variations in image capture.
All models were trained on 224 × 224-pixel input images with a mini-batch size of 32,
a configuration optimized for computational efficiency and model convergence. The
validation strategy, stratified five-fold cross-validation with tree-level splitting, remains
consistent with our previous work. During testing, test images were center-cropped and
rescaled to the required dimensions to evaluate the dataset’s baseline performance under
standardized conditions.
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3. Results and Discussion
Analysis of the CBDS_Small dataset revealed classification accuracies that both aligned

with and diverged from trends observed in our prior research using the larger CentralBark
dataset [9]. As presented in Table 1, hackberry and northern red oak exhibited a reversal
in relative performance compared to earlier studies. Specifically, hackberry achieved a
classification accuracy of 90.00%, outperforming northern red oak at 86.46% by a margin
of 3.54%. This shift is notable, given that northern red oak previously demonstrated
higher accuracy (91.28%) in the CentralBark dataset. However, the smaller sample size
of the current dataset—comprising 96 images for northern red oak, 84 for hackberry,
and 72 for bitternut hickory—warrants cautious interpretation. The dataset involved
repeated imaging of the same trees under varying light conditions, moisture levels, and
cardinal directions, potentially amplifying specific environmental influences not fully
captured in the larger dataset. Consistent with expectations, bitternut hickory exhibited the
lowest classification accuracy at 26.76%, aligning with its prior performance (63.38%) and
underscoring persistent challenges in accurately classifying this species. The low accuracy
for bitternut hickory may stem from its subtle bark features, which are less visually distinct
than those of hackberry or northern red oak, particularly under variable conditions. These
findings suggest that while hackberry’s distinctive features may confer an advantage in
smaller, controlled datasets, scaling up data collection and diversifying environmental
conditions are critical to stabilizing model performance across species.

Table 1. Raw classification accuracy for the CBDS_Small vs. CentralBark using the EfficientNEt-
b3 model.

Species CBDS_Small
Accuracy (%) # CentralBark

Accuracy (%) #

Northern Red Oak
Hackberry

Bitternut Hickory

86.46 (3.30)
90.00 (2.88)
26.76 (4.73)

96
84
72

91.28
75.53
63.38

1158
846
609

Further analysis examined the influence of three environmental variables—cardinal
direction of image capture, bark moisture condition, and time of day—on classification
accuracy. Table 2 shows that no consistent pattern emerged to suggest that cardinal direction
significantly impacted model performance. The maximum observed difference in accuracy
was 4.72%, with east-facing images yielding the highest accuracy, 88.42%, and west-facing
images the lowest, 83.70%. north- and south-facing images had accuracies of 84.61%
and 85.95%, respectively. These results align with our hypothesis that directional effects,
particularly those tied to sunrise (east) and sunset (west), may introduce variability due
to differences in lighting and shadow patterns. However, the modest variation suggests
that cardinal direction is a less dominant factor than anticipated, possibly because the
EfficientNet-B3 model [10] is robust to subtle lighting differences caused by directional
orientation. This finding has practical implications for field data collection, suggesting
that strict control of cardinal direction may not be necessary, thereby allowing for greater
flexibility in image capture protocols. Nonetheless, the slight advantage of east-facing
images may warrant further investigation into whether morning light enhances bark feature
visibility, particularly for species with complex textures.
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Table 2. Model performance by cardinal direction across all species.

Direction Accuracy (%)

North 84.61 (2.38)
West 83.70 (2.49)
South 85.95 (2.47)
East 88.42 (2.15)

Analysis of bark moisture conditions revealed a pronounced impact on classification
accuracy, as shown in Table 3. Images captured under dry conditions yielded an accuracy
of 89.32%, surpassing wet conditions by 8.19% (81.13% accuracy). This disparity was antici-
pated for the selected species—northern red oak, hackberry, and bitternut hickory—which
exhibit slate-gray bark when dry but darken significantly when wet, altering their visual
appearance. For northern red oak, the characteristic “ski track” furrows [14] transitioning
from slate gray to off-white become less distinct under wet conditions, potentially confus-
ing the model. Similarly, hackberry’s wart-like protuberances [14] a defining feature, may
appear subdued when wet, reducing contrast. Bitternut hickory, with its tightly packed
bark and narrow slits, is particularly susceptible to misclassification when wet, as moisture
masks its subtle peeling texture [15].

Table 3. Impact of bark hydration on prediction accuracy across all species.

Moisture Condition Accuracy (%) #

Dry 74.86 (3.54) 140
Wet 66.67 (4.05) 108

The classification accuracies for northern red oak, hackberry, and bitternut hickory
across morning (07:00–10:00), afternoon (12:00–15:00), and evening (17:00–20:00), as shown
in Table 4, reveal the impact of lighting conditions on the EfficientNet-B3 model’s perfor-
mance in bark-based tree identification. Northern red oak achieved the highest accuracies
in morning (91.67%) and evening (90.00%) but dropped to 80.80% in the afternoon, likely
due to harsh midday light creating high-contrast shadows that obscure its deep furrows.
Hackberry exhibited a progressive increase, from 85.00% in the morning to 95.56% in the
evening, where low-angle light enhanced its bumpy protuberances, supported by a larger
evening sample (45 images vs. 30 for morning/afternoon). Bitternut hickory consistently
performed poorly (20.83–33.33%), with its faint bark slits and peeling challenging the model
across all conditions, exacerbated by a smaller evening sample (25 images).

Table 4. Classification accuracy by time of day.

Time Species Accuracy (%) #

Morning Northern red oak 91.67 (5.02) 30
Hackberry 85.00 (6.48) 30

Bitternut hickory 20.83 (7.37) 30

Afternoon Northern red oak 80.80 (6.63) 30
Hackberry 86.67 (6.17) 30

Bitternut hickory 33.33 (8.56) 30

Evening Northern red oak 90.00 (5.45) 30
Hackberry 95.56 (3.04) 45

Bitternut hickory 26.00 (8.75) 25
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These results align with prior findings, where bark moisture significantly reduced
accuracy by 8.19% in wet conditions (Table 3), likely interacting with lighting effects
(e.g., wet bark in afternoon light worsening northern red oak’s performance). Cardinal
direction had minimal impact (4.72% maximum difference, Table 2), emphasizing time
of day as a more critical variable. The species’ morphological differences—northern red
oak’s prominent furrows, hackberry’s distinctive protuberances, and bitternut hickory’s
fine features—explain their varying sensitivities to lighting, with hackberry’s robustness
contrasting with bitternut hickory’s persistent challenges.

The findings underscore the need for robust models to handle lighting variations in
AI-based tree identification. Augmenting the CentralBark dataset [9] with diverse light-
ing conditions, particularly afternoon images for northern red oak and varied conditions
for bitternut hickory, is essential [3]. Techniques such as illumination normalization or
attention mechanisms can enhance feature detection, while species-specific strategies (e.g.,
oversampling for bitternut hickory) address morphological challenges. These improve-
ments are crucial for practical applications, such as UAV-based monitoring, which supports
precision forestry and conservation in dynamic forest environments.

The Chi-Square test results in Table 5 evaluate the association between time of day
(morning, afternoon, evening) and classification outcomes (correct or incorrect) for hack-
berry, northern red oak, and bitternut hickory using the EfficientNet-B3 model for AI-
based tree bark identification. Hackberry (χ 2 = 10.9877, p = 0.0041) and northern red oak
(χ2 = 7.6633, p = 0.0217) show significant associations (p < 0.05), confirming that lighting
conditions significantly influence their classification accuracy. Hackberry’s accuracy peaks
at 95.56% in the evening, likely due to low-angle light enhancing its nodular appearance,
while northern red oak’s accuracy drops to 80.80% in the afternoon, where harsh light
obscures its grooved furrow pattern, compared to 91.67% in the morning and 90.00% in
the evening. Bitternut hickory’s non-significant result ((χ2 = 4.8251), (p = 0.0896)) aligns
with its consistently low accuracies (20.83–33.33%), reflecting challenges in detecting its
subtle bark slits across all lighting conditions, compounded by a smaller evening sample
(25 images vs. 30 for others).

Table 5. Chi-square Test: Binary Classification among different time/light conditions.

Species Chi-Square p-Value

Hackberry 10.99 <0.05
Northern red oak 7.66 0.02
Bitternut hickory 4.83 0.09

These findings complement prior results found in Warner et al. (2024) [9], where
bark moisture reduced accuracy by 8.19% in wet conditions, likely exacerbating lighting
effects (e.g., wet bark in afternoon light for northern red oak), and cardinal direction had
minimal impact (4.72% difference). The significant results for hackberry and northern red
oak highlight their sensitivity to lighting due to distinct morphological features, while
bitternut hickory’s non-significant result highlights its morphological challenges. The study
suggests augmenting the CentralBark dataset [9] with more afternoon images for northern
red oak and diverse conditions for bitternut hickory, alongside preprocessing techniques
like illumination normalization [2]. Hackberry’s robustness suggests less augmentation for
distinct species, while bitternut hickory needs species-specific strategies.

Limitations

We can confirm that no data leakage occurred in this study. Our CBDS_Small dataset,
comprised of 252 images, was used exclusively for testing and not included in the training
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of the EfficientNet-B3 model. Furthermore, both Centralbark and CBDS_Small, the training
is split by trees and not by images.

The moisture-induced color shift highlights a critical limitation in current deep learn-
ing models, which rely heavily on color and texture cues [3]. Addressing this challenge
requires targeted augmentation of training datasets with wet bark images and potential
preprocessing techniques, such as color normalization, to mitigate the impact of moisture
on feature detection. These findings underscore the need for robust models capable of gen-
eralizing across environmental conditions encountered in real-world forestry applications.

4. Conclusions
The novelty of this paper is the evaluation of the EfficientNet-B3 model’s robustness in

AI-based bark classification using CBDS_Small, focusing on environmental impacts–time
of day, bark moisture, and cardinal direction on northern red oak, hackberry, and bitternut
hickory classification. The analysis of a CBDS_Small dataset revealed that hackberry
outperformed northern red oak (90.00% vs. 86.46% accuracy), reversing prior trends from
the CentralBark dataset [9], while bitternut hickory consistently exhibited low accuracy
(26.76%), aligning with its prior performance (63.38%). These results were influenced
by the smaller sample size and repeated imaging under varied conditions. Furthermore,
the observed reversal in trends for hackberry vs. northern red oak is likely to stem from
its distinct physical characteristics, which facilitate identification across all life stages.
Hackberry’s characteristic wart-like protrusions are not as prominent on young trees,
unlike red oak, where diagnostic features like “ski tracks” show pretty early in the tree’s
life cycle. At the 10-inch DBH threshold used in Warner et al., 2024 northern red oak is
more readily distinguishable than hackberry [9]. This difference becomes more pronounced
in our study, which targets a 16–18-inch DBH range, where hackberry’s prominent features
enhance its recognizability in our smaller dataset. and underscore the interplay of species
morphology and environmental factors in model performance.

Bark moisture condition emerged as a significant factor, with dry conditions yielding
8.19% higher accuracy than wet conditions (89.32% vs. 81.13%), as wet bark darkens the
normal appearance like northern red oak’s “ski tracks”, hackberry’s wart-like texture,
and bitternut hickory’s imperceptible bark characteristics. Time of day also significantly
affected accuracy, with Chi-Square tests confirming strong associations for hackberry
(χ2 = 10.99, p = <0.05) and northern red oak (χ 2 = 7.66, p = 0.02), driven by evening
(95.56% for hackberry) and morning (91.67% for northern red oak) light enhancing feature
visibility, while afternoon’s harsh light reduced northern red oak’s accuracy (80.80%).
Bitternut hickory’s non-significant result (χ2 = 4.83, p = 0.09) reflects its morphological
challenges, as its subtle features remain difficult to classify across all lighting conditions.
Cardinal direction had minimal impact (4.72% maximum difference), suggesting that
lighting intensity and angle are more critical than directional shadows.

These findings highlight the need for robust deep learning models to address environ-
mental variability in AI-based tree identification. Targeted augmentation of the CentralBark
dataset with wet bark and afternoon images, particularly for northern red oak, and diverse
conditions for bitternut hickory, is essential to improve model generalization. Prepro-
cessing techniques, such as illumination normalization and attention mechanisms, could
enhance feature detection under varying light and moisture conditions [2]. Species-specific
strategies, including oversampling or transfer learning for bitternut hickory, are crucial to
overcome morphological challenges. These improvements are vital for practical applica-
tions like UAV-based monitoring [16], enabling reliable automated species identification in
dynamic forest environments.
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5. Future Work
Despite limitations, such as potential non-independence from repeated tree imaging

and varying sample sizes, this study advances the development of AI tools for digital
forestry. By addressing lighting and moisture-related errors and tailoring approaches to
species with subtle features, the research supports precision forest management, biodiver-
sity monitoring, and conservation efforts in the face of ecological challenges like climate
change and invasive species. Future work should explore and not be limited to the Central-
Bark dataset. Using other well-known datasets could reveal the ability to pinpoint specific
time-of-day effects and develop advanced modeling techniques to enhance accuracy for
challenging species, further bridging the gap between human expertise and automated
tree identification.
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