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Abstract—In this paper, we propose DeepTree, a novel method for modeling trees based on learning developmental rules for
branching structures instead of manually defining them. We call our deep neural model “situated latent” because its behavior is
determined by the intrinsic state -encoded as a latent space of a deep neural model- and by the extrinsic (environmental) data that is
“situated” as the location in the 3D space and on the tree structure. We use a neural network pipeline to train a situated latent space
that allows us to locally predict branch growth only based on a single node in the branch graph of a tree model. We use this
representation to progressively develop new branch nodes, thereby mimicking the growth process of trees. Starting from a root node, a
tree is generated by iteratively querying the neural network on the newly added nodes resulting in the branching structure of the whole
tree. Our method enables generating a wide variety of tree shapes without the need to define intricate parameters that control their
growth and behavior. Furthermore, we show that the situated latents can also be used to encode the environmental response of tree
models, e.g., when trees grow next to obstacles. We validate the effectiveness of our method by measuring the similarity of our tree
models and by procedurally generated ones based on a number of established metrics for tree form.

Index Terms—Botanical Tree Models, Deep Learning, Shape Modeling, Generative Methods

1 INTRODUCTION

EGETATION is ubiquitous in almost all environments,
Vranging from vast outdoor landscapes to indoor
spaces. Consequently, models of trees and plants serve as
essential assets in applications such as games and movies,
mixed reality, architecture and urban planning, agriculture,
and forestry, or even the training of autonomous agents. For
many applications, it is of utmost importance to define plant
models with a high degree of geometric detail to produce
high-quality renderings or model interactions with plant
models, e.g., to plan a path around them. Procedural models
have proven to effectively capture the wide variety of plant
forms found in Nature and efficiently generate large sets of
models.

Procedural and developmental modeling of vegetation
in CG has been used in diverse ways, often combined
with other approaches, such as modeling the environmental
response of trees [1], the reconstruction of tree models
from images or point sets [2], [3], [4], inverse procedural
modeling [5], by focusing on interactive modeling with
user-defined sketches [6], or by leveraging neural networks
that compose trees of procedurally generated branching
patterns [7]. The breadth of these approaches is a testament
to the complexity of realistically modeling plants. However,
despite the progress, generating trees with procedural mod-
els remains an open and challenging research problem. In
particular, developmental models are difficult to control.
They use a large set of mutually dependent non-linear
parameters that affect the generated structures in unclear
ways.
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We seek to develop a generative model that would
capture the resulting shape of the bud’s behavior. While
engineering such behavior is challenging because each tree
node experiences varying conditions, deep learning is suit-
able for learning and encoding the bud’s response to such
conditions. We propose a novel deep neural model that we
call “situated latent” because its behavior is determined
by the intrinsic state -encoded as a latent space of a deep
neural model- and by the extrinsic (environmental) data
that is “situated” as the location in the 3D space and on
the tree structure. We use a large dataset of 3D tree models
to train a pipeline of neural networks on branchlets — atomic
branching structures consisting of a node and its immediate
children. We learn a situated latent space, a representation
that makes predictions for branch growth based on where a
branch node is located in the growth space of a tree model.
Once trained, the neural networks can predict the topol-
ogy (number of children) and geometry (position and the
branch width of children) for a single input node. The deep
neural model is a compact representation that encodes the
tree response based on the environment (extrinsic) and the
positional information within the tree structure (intrinsic).
We encode the entire tree and its environmental response as
a single compact deep neural representation. Our model is
the first deep-learning model for tree branching, and it over-
comes the difficult control of procedural models by learning
the possible scenarios that a branchlet can encounter.

A new tree is generated iteratively by executing the
network on individual nodes of the branching structure.
Starting from the root node, the single network is executed
for each node, and it predicts the number and positions of
its children. The predicted child nodes are added to the
branch graph, and in the next iteration, the network pre-
dicts their immediate children again. Similar to procedural
modeling algorithms that are also implemented recursively
or iteratively, this allows producing complex branching
structures only with a few iterations. While DeepTree learns
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Fig. 1. lllustration of our DeepTree generation approach: we use a common procedural model to generate a dataset of different species (a). As part
of our algorithm, we train a neural network pipeline (b) to predict the topological and geometric properties of branching patterns based on a situated
latent space. This means that branch features are predicted locally and by only considering a single node (c). Given a node, our network pipeline
is able to predict branchlets, the branching structures of the immediate successors of a node — thereby mimicking the developmental process of a
tree model (d, e). Eventually, our algorithm will automatically terminate when a complex tree model has been generated (f). Branchlets are shown

with colors in (c), (d), and (e).

the response of branchlets, it is not a reconstruction method
as the generated trees are non-deterministic and only share
low-level common properties of the entire training set.

Our results show that the situated latent space can
encode and generate diverse branching patterns of multi-
ple tree species by successfully predicting branch growth’s
primary and secondary attributes (e.g., branching angles,
internode length, branch width, etc.). The network also pre-
dicts the termination of branches (no immediate children)
for twigs toward the outer regions of the tree crown, which
then terminates the development of a model. Moreover,
we show that the situated latent space can also be used
to encode the environmental response of trees, i.e., the
adaptation of branching structures according to tropisms
and obstacles in the model’s environment.

We are not aware of any deep neural models capable of
generating 3D biological tree shape. Therefore, we validate
the effectiveness of our method in encoding tree form by
comparing tree models generated with a state-of-the-art
procedural model, and our qualitative results show that
our method generates branching structures with almost
identical geometric properties. We measure the similarity
of branching structures based on histograms over the geo-
metric properties at different levels of fully developed tree
models. We also use a recently proposed perceptual metric
to assess the quality of generated tree models further.

Examples of a procedurally generated tree and a DeepTree
model are shown in Fig. 1. The DeepTree model is generated
by iteratively querying a neural network on the current set
of terminal nodes. The network predicts new branch nodes —
thereby mimicking the growth process — that are then added
to the branch graph. A complex tree model can be generated
with a few iterations.

In summary, our contributions are: (1) we propose a
novel method for learning to predict the topological and
geometric properties of branchlets based on a novel neural
network pipeline; (2) we show that the learned situated
latent space can be used to iteratively generate tree models,

which provides a novel way to encode and generate tree
form; (3) we validate our method through state-of-the-art
qualitative and quantitative metrics.

2 RELATED WORK

Due to the importance of vegetation in several application
domains, modeling trees and plants has received significant
research attention over the past decades (see review [8]). The
goal of the early approaches was to focus on faithfully mod-
eling the morphology of branching structures. Approaches
include fractals [9], repetitive patterns [10], environmen-
tally sensitive automata [11], and particle-systems [12]. L-
systems [13] — as one of the most fundamental procedural
approaches — enable to define the tree growth as a set of
parallel production rules and has been shown to allow for
capturing a wide variety of plant forms, even when consid-
ering the environmental response of plants [14]. However,
while L-systems are a powerful mechanism for generating
plant form, defining production rules to generate complex
trees is an elaborate task that requires a substantial amount
of knowledge, which often renders their use for applications
impractical. Early procedural models [15] aim to address
these shortcomings by combining rule-based approaches
with geometric modeling and user interaction [16]. How-
ever, they are more specialized and do not support modeling
the same range of branching patterns. Finally, the goal of
inverse procedural modeling [5], [17] is to automatically
find the parameter values of procedural models of plants
through optimization schemes or to find the production
rules [18].

Recent procedural methods for plants emphasize more
principled representations [19], [20] or the underlying bio-
logical processes of plant development. Stava et al., [5], for
example, add biological priors to their procedural model
to provide more nuanced control for shape-defining pa-
rameters. Other methods focus on the self-organization of
plants [1], their environmental response [14], [21], the com-
petition for resources [11], [22], or modeling features of spe-
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Fig. 2. Overview: We use branchlets of tree models generated with a common procedural model to train our neural networks (a). To generate a
tree, we iteratively use our neural network pipeline to predict the topology and geometry of new nodes. A classification network predicts the number
of new children for a node that triggers a cascade of regression networks predicting the signatures of each child by using the output of the previous
regression network (e.g., Regressor 2 uses the parent node signature as well as the output signature of Regressor 1). Starting with the root node,
we maintain a list of active nodes. We pop an active node from the list in each iteration and trigger the neural networks to predict its children. The
children are then added to the branch graph and the list of active nodes (b, c). The generation of a tree model stops when the classification network
predicts zero children for an active node, which happens individually for different branches (d).

cific types of plants [23]. The availability of more powerful
graphics hardware-enabled approaches that use procedural
models of plants to simulate the animation of growth [24],
[25], their physical response to wind [26], [27] and fire [28],
advanced material properties of wood [29], [30], or to find
efficient representations of tree models [31]. More recently,
module-based tree representations have gained popularity
to enable simulation of complex vegetation-related phenom-
ena, such as wildfires [32] or climatic gradients [33].

Sketch-based and data-driven approaches often use pro-
cedural models by guiding the generation according to
the defined input data to generate convincing branching
structures. User-defined sketches provide the intriguing ad-
vantage that plants can be modeled with direct control to
meet artistic requirements [34], [35], [36], [37]. Longay et al.,
[6] propose an advanced framework to efficiently produce
complex tree models that can even run on mobile hardware.
Data-driven approaches, on the other hand, focus on solving
a reconstruction task to generate plant models to faithfully
match a captured tree that can either be represented as
one or several images [38], [39], [40], [41], videos [42], or
point clouds [3], [43]. More recently, it has also been recog-
nized that neural networks are a powerful means to guide
procedural modeling by learning bounding volumes to aid
the reconstruction from single images [2] by decomposing
point clouds [7] into semantically meaningful patterns, or
by learning parameters for the placement of plants [44].
Moreover, synthesizing large data collections from a few ex-
amples appears to be an increasingly important pursuit [45].
Finally, some approaches also focus on defining trees based
on partially defined branching structures — procedurally
generated — to enable level of detail schemes [46] or the
processing of large collections of plants [47].

The work of Estrada et al., [48] follows a similar objec-
tive to ours. Their approach also uses a parametric tree-
growth model to regularize topology estimation for tree-
like structures. However, despite these advances, none of
the existing approaches for trees and plants uses neural
networks to encode the rules and parameters for locally
encoding branching patterns for botanical tree models.

3 OVERVIEW

Our goal is to learn all possible combinations of branching
patterns as they occur from the perspective of a single
node in a branch graph. Instead of defining these patterns
manually based on parameters and rules, we employ a set of
neural networks that learn to predict the child nodes based
on the developmental (growth stage, trunk vs. twig, etc.)
and environmental context (obstacles, light, gravity, etc.) of
a parent node in the branch graph. We train the networks
on branchlets, a tree node, and its immediate children (Fig.2,
a). A node is defined by all its attributes that we refer to
as node signature. The node signature serves as input to our
network pipeline, and the output is the signatures of up to
three child nodes that are then used for the generation of
the next nodes.

The DeepTree neural network pipeline consists of a clas-
sification network that predicts the topology of a branchlet,
i.e., how many children a node needs to have. We train
individual regression networks for each child node that
predict the attribute values of the child node’s signature,
i.e., their thickness, length, and growth direction. The input
of the first regression network is the signature of the active
parent node, and it predicts the signature of the first child.
We then query the second regression network to predict
the signature of the second child. This network receives
the signature of the active parent node and the predicted
signature of the first child from the previous step as input.
This process is continued for the number of children the
classifier predicted.

The key idea behind our method is that the networks
learn to predict meaningful attributes of child nodes only
based on where the parent node — along with all its signature
attributes — is located within the tree model. Training the
network with branchlets enables the network to learn a
latent space that encodes which topological and geometric
configurations are reasonable for certain locations in the
tree’s growth space. As an example, for the illustrated tree
graph (Fig. 2, a), the networks first need to predict the trunk
— each node only has one child - for the first few iterations.
The further the generation of a tree model progresses, the
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Fig. 3. Network architecture: our neural network pipeline consists of a classification network to predict 0-3 children for a given node (a). Depending
on the number of children, we use a cascade of regression networks (c) to predict output signatures for each child. Each regression network is
defined as an MLP (b). For each network, we use the current node’s signature, the local voxel space for the node, and the global voxel space as
inputs. We add a point encoder network to obtain a feature from local point sets and to enable predicting branchlets for reconstruction tasks.

more the networks need to predict more diverse and finer
branching patterns up to the point where only small twigs
are generated (Fig. 2, b-d). Eventually, the network also
has to predict the termination of branches, which stops the
generation of a tree model (Fig. 2, d).

The objective of our pipeline is not to reconstruct a given
tree model. Instead, our goal is to propose an alternative
method for defining the rules and parameters used for
generating branch graphs with procedural models. A pro-
cedural model generates a distribution of tree models based
on value ranges defined for the various parameters. A pa-
rameter value is obtained at each growth step by sampling
from the range. For complex procedural models, the ranges
of parameter values can also vary over time. For example, to
capture the impact of gravitropism, branching angles may
vary from a more narrow range for the trunk to a wider one
for the thinner branches in the tree crown. Our method aims
to learn these distributions of branching patterns and how
they vary across a tree model. We use neural networks to
imitate the developmental process locally.

4 DEeP MODELING OF BRANCHING STRUCTURES

Here we introduce our framework, including a formal def-
inition of the used representation of trees, node signatures,
the used neural networks, and the implementation of the
environmental response of tree models.

4.1

We represent tree models as a directed acyclic graph G =
{N, E}, where N are the nodes and E the edges. Given
an oriented edge e¢; = (ns,n¢) with a starting node n;
and the end node n;, a hierarchical relationship is gener-
ated. The node with no predecessor is the root node n,0t.
Branches are defined as chains of a varying number of edges
C = {e1,eq,...,en}; thelength of a chain is denoted as m.
We assign to each node the Hack [49] ordering number o
(also called Gravellius ordering) that assigns o = 0 to the
trunk and one order higher for each branch recursively
(hierarchical ordering). Formally, a node is defined as a tuple
of attributes

Tree Representation

n= (p7t7 d,ds, dp; lpu 0, My, a,, 3) )

@

u\T‘

N

Fig. 4. lllustration of our tree representation: a branchlet is a node with
its immediate successors (0-3 children). Branchlets can have different
geometries, depending on where they are located within a tree model.

where p represents the 3D position of a node in Euclidean
space, t is the branch thickness, d,. is the distance of a node
to the root node in the node hierarchy, d; is the distance
to the start of the branch (chain), g, is the normalized
quaternion representing the orientation of the node w.r.t. the
parent node, [, is the length of the edge to the parent node,
m,, is the number of children of the parent node. Addition-
ally, we add the global attributes: age a, gravitropism v, and
species s, where a and s are integers. We refer to the tuple
n as the input signature of a node, which is used as the input
of our neural networks.

A branchlet is defined as a set of edges of a node and
its children B = {(n;,ni41), ..., (74, Nitc) }. The number of
children of a node is denoted ¢ = 1,...,3. A branchlet can
also have no children B = {(n;,0)}, which is required for
terminal nodes. In Fig. 4, we show renderings of branchlets
with different topological and geometric properties and
where they are located within a tree model.

4.2 Neural Network Pipeline

Most procedural modeling algorithms aim to produce a
graph G to define the properties of a given tree species,
which is accomplished by defining the parameters and rules
for generating node topology and geometry. For example,
one may define the angle at which a branch grows away
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from its parent branch as a range of values that are then
sampled randomly when the procedural model is evaluated
to generate a tree model.

Learning Topology: Contrary to common procedural
approaches, our goal is to learn the generation of branchlets
— the branching pattern for a single node n € N of a
branch graph G. To successfully generate local branching
patterns, we need to simultaneously predict the number
of children (topology) and their geometric attributes (e.g.,
position, thickness, and branching angle). Jointly learning
the topological and geometrical properties of a branch graph
is challenging as most deep network architectures do not
support generating outputs of arbitrary lengths, and the
regression of high-dimensional outputs is difficult. There-
fore, we learn the number of children and their geometric
features separately. To predict the topology of a branchlet,
we train a classification network to predict the number of
children a given parent node should have as probabilities.
More specifically, we aim to learn the mapping:

fclass(n) N — X; (2)

where © € X denotes a tuple of probabilities © = (p1, p2, P3)
for each child node of n € N. The probabilities determine
whether or not to grow a child node. The goal of this
network is only to predict the topology of a branchlet.

Learning Geometry: To learn the geometric properties
of a child node, we define the tuple u = (q,t,1), where ¢
denotes a normalized quaternion representing the direction
of a child node w.rt. the parent node, ¢ is the branch
thickness of a node, and [ the length of the edge between
the parent node and the child node. We refer to the tuple u
as the output signature of a node and use it as the label for
training the regression networks.

To generate the children of a parent node, we need
to predict the geometric properties of up to three tuples
U1, U2, ug for each potential child node. We use a cascade of
up to three regression networks to predict these tuples. The
first network receives only the input signature of a parent
node as the input and is defined as:

Lo(n): N = U, 3)

reg

where u; € U is the output tuple of the first child for a
given node n. For the subsequent children, the second and
third network also receive the predicted output signatures
of the previous steps. Consequently, the networks for the
second and third child can be defined as:

N = Us, )
N — Us, )

ffeg (’17,7 ul)
fEeg (nﬂ Uy, u2)

where u2 € Uz denotes the output tuple of the second child,
and uz € Us is the output tuple of the third child for node n
respectively. Please note that while we did not experiment
with predicting more than three child nodes for each parent
node, the architecture can be extended as outlined here.

4.3

We iteratively apply our network for the nodes of the branch
graph of a tree model to generate the 3D tree structure.
Given the signature of a node 7, the classification network
predicts the number of children that need to be generated

Iterative DPM Tree Generation

ALGORITHM 1: Geometry Generation.

Input: Root node 1,501

Output: Tree graph G.

1 Procedure:

2 Add n,.0 to G.

3 Add n,.: to list of active nodes L.
4 while |L| > 0do
5

6

— nq < Pop node from L.
— 2 < Predict probability of each child

fclass (na)'
7 — wuy < Predict output signature of child 1
s —  with f1 (n,).
9 — wug < Predict output signature of child 2
10—  with 2 (ng,u1).
11— ug < Predict output signature of child 3
12 —  with S’eq(na, Up, Us).
13 — forp; €z do:
14 — « ¢ Generate a random number in the range
[0,1].
15 — ifa > p;:
16 — Make node n; with u; and add to G.
17 — Push n; to L.
18 — end
19 — end
20 end

for this node. We then use the cascade of regression net-
works to predict up to three child nodes. The output of each
of the regression networks is an output signature containing
the quaternion ¢, the thickness ¢, and the length [, for each
child node of n. Given the position p of a node, we can
compute the position of each child node as

Pchild =P+ l- dfront- (6)
The growth direction df,on¢ and the up direction d,,;, are:

R x dinit_front;
R x dinit_u;n (7)

dfront =
dup =

where R is the rotation matrix computed from the quater-
nion q. The vectors of the initial directions d;nst_front and
dinit_up are [0,0,—1] and [0, 1,0] respectively. The vectors
dfront and d,, are used to generate the branch mesh. The
thickness is stored with the child node and later also used
to generate the branch mesh.

To generate a new tree model, a user defines the sig-
nature of the node 7n,,,:. The root node is added to a
list of active nodes L. As long as the list holds nodes, an
active node n, is popped from the list. The classification
network then predicts which of the three children should be
generated; the result is returned as the tuple z = (p1, p2, p3).
If a child node needs to be generated for n,, the cascade of
regression networks predicts the tuple u; for each child. The
child nodes are added to the branch graph, and the list of
active nodes and the network pipeline can be queried for
each node in the subsequent iterations. The generation of a
branch terminates when the classification network predicts
zero children for a node. Pseudocode for our algorithm is
shown in Alg. 1 and an illustration of the iterative construc-
tion of a tree model is shown in Fig. 2.
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Fig. 5. Eight different tree species modeled with the procedural model of Stava et al. [5] (left) and with our DeepTree approach (right). The learned
situated latent spaces allow us to generate the topological and geometric details to model a wide variety of different tree species.

4.4 Environmental Response

We use a voxel space to learn how trees grow around
obstacles in their environment [11]. We represent obstacles
as bounding boxes and generate an occupancy grid Y that
encodes where obstacles are located in the environment. We
generate the occupancy grid by testing the bounding boxes
against the voxels. We use the computed occupancy grids in
two different ways. First, we obtain the 33 neighborhood of
cells for each node as 27 binary occupancy values denoted
as Z. We then add them to our node signature n = nU {Z}.
As shown in Fig. 3 (a-b), we can use these values as addi-
tional input for our classification and regression networks
(magenta boxes). Second, to obtain a global feature of the
environment, we use an additional encoder consisting of
three 3D convolutional layers. The global voxel space is a
one-hot 3D vector where obstacle voxels are marked as one
and empty voxels as zero; it has a size of 323 voxels.The
tree’s root is set in the middle of the voxel space. We
extract the global feature through the additional encoder
and added it to the local feature before the dense layers for
the output heads of the networks. Adding the global feature
of the environment allows us to generate environmentally
sensitive tree models that can be placed arbitrarily into the
environment. In contrast to more complex models of envi-
ronmental sensitivity [1], [14], [21], this approach provides
a lightweight way to generate branching structures for tree
models placed in the vicinity of obstacles.

Surface Mesh

4.5 Point-based Modeling

To provide additional con-
trol for the reconstruction
and sketch-based genera-
tion of tree models, we
have equipped our neural
network architecture with
an additional point-cloud
encoder network (Fig. 3
a-b). We locally sample
points from a point cloud
of a procedurally generated tree model to train our architec-
ture for tree reconstruction with point clouds. For each node
of a branchlet, we define a sample radius r; to compute a
sphere around a node (inset figure). Given a point cloud of
a tree, we select all points within the sphere; the obtained
local point set is denoted as P. We then associate the local
point set to our input signature n = n U { P} and use it as
input to our architecture to obtain a point feature. The point
feature is then added to the signature embedding for the
classification and regression networks. This training setup
aims to condition the prediction of child node attributes
based on the captured local point sets. The implementation
of our point encoder follows PointNet [50]. For most of our
experiments, a radius of s = 2.0 provides the best results
for reconstructing the tree models.

Branchlet Local Point Set

b
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Fig. 6. Modeling age and gravitropism: by adding priors for age and gravitropism to our node tuple n, our neural network pipeline is able
to model realistic branching structures. Here we compare a procedurally generated Oak tree at different developmental stages (a-d) and the
corresponding DeepTree generated ones (e-h). Our method can also capture the differences in branching patterns when considering different
environmental factors, such as gravitropism. The procedurally generated tree models (i-l) show the same structural properties as those generated

with DeepTree (m-p).

5 IMPLEMENTATION

Our framework is implemented as two components: the first
is an interactive framework to efficiently generate large col-
lections of tree models with the procedural model from [5].
Second, we use Pytorch for developing and training our
classification and regression neural networks. Below we
describe how we used these two components of our frame-
work to generate training data and how we trained our
neural network pipeline.

The deep learning model was trained on a single Nvidia
RTX A5000, and it took 6 hours for the regressor and 4 hours
for the classifier. Rendering was performed on a desktop
computer equipped with an Intel(R) Core(TM) i9-9900K and
Nvidia 3090 RTX.

5.1 Dataset Preparation

We used the 29-dimensional parameter space of the proce-
dural model from Sfava et al. [5] to model eight distinct tree
species: Beech, Corkscrew, Maple, Oak, Pine, Tulip, Walnut,
and Willow (Fig. 5, left). An explanation of the parameters
of the procedural model, along with the used parameter
values, can be found in the Appx. Tab. 4 and Tab. 5. We
then generate 500 unique tree models for each species and
normalize their positions (attribute p) into a unit cube. We
split these tree models into 400 for training and 100 for val-
idation. The validation data is used for identifying optimal
hyperparameters for our neural network architectures (e.g.,
learning rate, number layers, etc.). The procedural model
and our DeepTree algorithm only generate branch graphs.

We generate a mesh out of generalized cylinders based on
the branch graph and the stored thickness values to render
images of trees with high visual quality. The voxel space that
we use for representing the environment has 323 voxels. We
compute the bounding box of each obstacle (e.g., walls) and
check whether they occupy the corresponding voxels. This
results in a 3D occupancy grid.

To train the point cloud network, we generate view-
dependent (partial) point clouds for our procedurally gen-
erated tree meshes. To generate the point scans, we mimic
a LiDAR scanner that we place on a 10mx10m ground
plane outside the bounding box of a tree that is located
at the origin of the plane. We then cast rays toward the
tree by sampling points on a sphere located at the scanner
position. This procedure generates partial point scans of our
tree models with 8k-35k points. We then sample this point
cloud for each branchlet to obtain a local point cloud with a
maximum of 512 points as described in Sec. 4.5.

5.2 Training

We train the classification and regression neural networks of
our pipeline based on branchlets. We generate the branchlets
by decomposing the generated branch graph G. Any tree
graph node (with 0-3 children) can be a branchlet. We
traverse each graph in our training dataset and select each
node along with its immediate children to generate a set
of branchlets B. A parent node of a branchlet with all its
attributes becomes the input signature. We then compute the
quaternion ¢ and the length [ based on how child nodes
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n=() n=(p,d,m)

n=(p,t, d,m),

n=(p,td,om) n=(p,t,d,d,q,l,om)

Fig. 7. Ablation study of the classification network: here, we show the impact of different attribute configurations of our node signature as an ablation
study. Training only with the attribute position (p) generates a dense branching structure, and the network fails to terminate (a). Even if additional
attributes such as the root distance (ds) and the number of children of the parent node (m,) are added, the model still fails to terminate (b). c) and
d): only after adding additional attributes, such as the thickness (t) or branch order (o), the model generates more convincing branching structures,
although some branches are still generated into the ground. Please note that we only use the per-node attributes for this experiment and not the
set of global attributes such as species (s), age (a), and gravitropism (v). Then we used Beech tree species for this experiment (Fig.5).

n=(taq,l)

n=(td,q,l)

n=(ptd, ay Ip) n=(p,t,d,oq,l)

Fig. 8. Ablation study of regression networks: the selection of node
attributes for training the regression networks profoundly impacts the
generated branch graphs. Only using a few attributes leads to slim
and sparse branching structures (a, b). Adding attributes to the input
signature, such as the position or the order (c, d), leads to more realistic
branching patterns. Here, we used a classification network with all
parameters. The model with all node attributes is shown in Fig.7 (e).

are connected to the parent node and store these attributes
along with the thickness value ¢ as the output signature that
is used as a label for training the regression networks. For
training the classification network, we simply obtain the
number of children attached to the parent node as the label.

Classification Network Training: we train our classification
network for 150 epochs jointly on the 3,200 tree models of
all species. As illustrated in Fig. 3, our classification network
has three output heads. The last layer uses a sigmoid acti-
vation function. For each head, we aim to simultaneously
predict the probability of whether a particular child needs
to be generated (O=child is omitted, 1=child is added). We
train for this objective with an MSE loss, where the label for
adding a child is 1 and 0 to omit a child node. Depending
on the species the network is trained on, we obtain a child
classification accuracy of 83 - 93%.

To train this network more robustly, we use data aug-
mentation. We add random noise to the position with a
mean of zero and std of 0.0001. Additionally, we ensure a
balanced sampling of nodes of the same properties. Consid-
ering that nodes with a different number of children appear
with different frequencies (e.g., most nodes may have one
child), we balance the number of nodes of each type during
training to avoid network overfitting. For example, nodes
at the trunk are rarely present in our dataset compared
to the many twig nodes in the tree crown. Balancing the
nodes helps to avoid overfitting. Training the classification
network takes about four hours.

Regression Network Training: is performed individually
for 200-300 epochs on the 3,200 tree models of all species.
We trained the regression networks for up to 12 hours. Each
regression network has two output heads: the first generates
outputs for thickness and length. We train this head with
an MSE loss. The second head predicts a quaternion and is
trained with a cosine similarity loss. To avoid overfitting,
we also add random noise to the position for training the
regression networks with a mean of zero and std of le-4.
Depending on the species the network is trained on, we
obtain an MSE of 1.2e-4 - 3e-4 (branch length and thickness)
and a cosine similarity of 0.04 - 0.20 (quaternion).

The networks are trained with the Adam optimizer, a
learning rate of le-4, and a batch of 512. An illustration of
our network architectures — also including the used number
of units in each layer — is shown in Fig. 3. Please note
that each of the used regression networks in the cascade
of networks (Fig. 3, c) is trained individually.

5.3 Rendering

The generated branch graph from the procedural model and
DeepTree are used to compute a surface mesh of branches
from generalized cylinders. Leaves are represented as tex-
tured quads placed along with the outermost branches with
additional procedural parameters for their placement (e.g.,
phyllotaxis) [51]. All models were rendered with a path
tracer written with the Nvidia OptiX 7.4 API [52] tracing
512 rays per pixel.

6 RESULTS, EVALUATION, AND APPLICATIONS

Here, we discuss experiments on how our framework can
be used to generate tree models of different species, ages, or
tropisms. We also discuss applications for our method and
show how we validate our framework based on geometric
and perceptual metrics.

6.1 Results

Fig. 5 shows a qualitative comparison of eight procedurally
generated tree species and the same eight species generated
with DeepTree. Our method can capture the wide variety of
distinct features across the eight tree species, including the
fine nuances in shape and geometric detail. Generating these
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Fig. 9. Regrowth: our method can be used to regrow tree models to thereby adapt them to changing environmental conditions. A fully developed
tree model (a) generated with our method is pruned and can be developed anew (b) to a fully grown tree model (c) by iteratively applying our
DeepTree pipeline to the outermost nodes in the branch graph. If the tree model is placed in the vicinity of an obstacle (d) and then regrown (e), our

method supports generating environmentally sensitive tree models.

Fig. 10. Modeling with environmental sensitivity: when provided with the environment as occupancy grids, our situated latent space is able to
generate convincing branching structures to mimic the growth response of trees to obstacles in their vicinity (a-d). Similar to existing approaches,

such as Pirk et al. [21] (e), our method is also able to generate environmentally-aware branching structures.

Beech

Walnut

Point Cloud Ground Truth (Front)

Ground Truth (Top)

Reconstruction (Front) Reconstruction (Top)

Final

Fig. 11. Reconstruction of tree models from point cloud data: we sample our procedural trees to generate point clouds. We then train our neural
networks with local point clouds and use them to reconstruct unseen tree models from the validation dataset.

species with a procedural model is a significant modeling ef-
fort that requires manually specifying the procedural model
and carefully fine-tuning all the parameters for each species.
In contrast, our method learns the branching patterns of all
species from data by training our network pipeline.

The results in Fig. 6 show that our approach captures
the growth response of tree models and the impact of grav-
itropism. By adding global priors for age a and gravitropism
v to the node tuple n, our pipeline can faithfully generate
the structural details for modeling different age stages (e-
h) and varying degrees of gravitropism (m-p). Compared to
the procedurally generated branching structures (a-h) and (j-
1), our method can generate branching patterns with almost
identical topological and geometric features.

We conducted ablation studies to analyze the impact of
different attributes in our node tuple n during training of the
classification and regression networks. Fig. 7 demonstrates

the impact of using more or fewer parameters during the
training of the classifier. For the result shown in Fig. 7 (a),
we only used the position p attribute for our classifica-
tion network. Training the network only on this attribute
prevents the network from terminating, which results in
very dense and unrealistic branching patterns. Adding the
distance to the branch root d;, and the number of child
nodes of the parent node m,, by itself also does not enable
training of more realistic branching structures (Fig. 7 b)
as the model still fails to predict the correct number of
children. However, by adding the branch thickness t, the
network starts to successfully predict the termination of
branches, which leads to more realistic, still dense branching
structures (Fig. 7 ¢). When also using the other attributes,
the model starts predicting branchlet topologies and geome-
tries that lead to realistic branching patterns (Fig. 7 d, e).
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Reconstructed Model

Point Cloud (Front) Point Cloud (Top)

Reconstruction (Front) ~ Reconstruction (Top)

Fig. 12. Reconstruction of a real tree from captured point cloud data:
DeepTree was trained on synthetic data and generated plausible tree
models from real point clouds.

(f)

Fig. 13. Comparison to AdTree [4, Fig 11 e]: we use an existing point
cloud from their paper (a-b) and show their reconstruction (c). DeepTree
generates a similar tree model (d-f).

Please note that for (a) and (b), we manually stopped the
iterative generation of the models as the neural networks
would not automatically terminate. In Fig. 8, we show a
similar ablation study for the regression networks. For this
experiment, we used a classification network with all node
attributes (Fig 7, e). Only using a few attributes for training
the regression networks leads to slim and sparse branching
structures (a, b). Adding more attributes generates more
realistic branching patterns (c, d).

The result in Fig. 9 shows the usefulness of our method
for content creation. After we generate a fully developed
tree model with our method (a), we can prune and re-
generate the branch graph (b) to another fully developed
tree model (c). If the model is placed next to an obstacle
and then regenerated, it adapts to its new environment (d)
and develops an adapted and realistic branch graph (e).
Generating a new tree model by pruning a branch graph
can be repeated indefinitely. However, please note that each
generated model is unique — our method cannot regenerate
precisely the same model.

Fig. 10 shows that the situated latent spaces encode the
environmental response of a tree model. By adding the local
and global occupancy features, the neural network pipeline
can be trained to model the growth response to obstacles.
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Corkscrew

Pine

Side

Front

Top

Fig. 14. Different viewpoints of tree models show that DeepTree gen-
erates tree models without dominant artifacts (e.g., half-reconstructed
model) and captures tree phyllotaxis.

For this experiment, we also generated a dataset of 500
scenes (400 training, 100 validation) where obstacles were
randomly placed in the vicinity of the procedurally gener-
ated trees. The procedural model accounts for the obstacles
by computing the availability of light in its environment —
branches then grow into regions where more light is avail-
able. By training with tree models and the occupancy grid
from the scene, the neural network pipeline is able to mimic
the modeling of the environmental response. Fig. 10 (a)-(d)
compares our results to the method of Pirk et al. [21] (e),
where environmental sensitivity is modeled based on an in-
verse algorithm. Our DeepTree learning-based approach can
generate a similar response of adapted branching structures
for trees grown in the vicinity of obstacles.

6.2 Applications

Fig. 11 shows a tree reconstruction result. We use our
training data set to generate point clouds of procedurally
generated tree models. We then train our neural network
pipeline on local point clouds to provide the network with
a point feature (Sec. 4.5). Training with the point feature
allows us to generate branching structures that follow the
scanned points, which also works for point clouds of real
trees, as shown in Figs. 12 and 13.

We show multiple views of the same tree models in
Fig. 14 to demonstrate that our method generates plau-
sible tree models from all view directions. Once trained,
our framework enables the generation of tree models of
a specific tree species. Moreover, DeepTree generalizes the
branchlet and not the entire tree. Thus, each generated
model is different. This makes our approach suitable for
generating large datasets of new models, as shown in the
selection of randomly sampled tree models in Fig. 17. Fig. 15
shows that our method can replicate the growth of more
constrained tree shapes. For this result, we generated a
dataset of 500 tree models for each of the shown shapes,
including cone (a), cube (b), and ring (c).

Finally, Tab. 3 (Appx.) shows that our method can also be
used for compressing generated tree models. We compare
the memory footprint of a tree model generated by our
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Fig. 15. Our method can replicate the growth process of form-controlled
tree models. For this result, we trained on a dataset of tree models that
were grown into meshes of cones (a), cubes (b), and rings (c).

Fig. 16. Three failure cases: if the used neural networks are not properly
trained our method tends to generate branching structures with too thin
and too long branches. Here we show examples of Oak (a), Tulip (b),
and Maple (c) trees.

method to common representations for tree models, such as
skeletal graphs and surface meshes. DeepTree can determin-
istically re-generate the same tree model by using the same
random seed and replacing the stochastic probability with a
given number. As we only need to store the root node and
the weights for our neural networks, our method allows
us to compress tree models with a lightweight memory
footprint that is even smaller than most skeletal graphs.

6.3 Evaluation

We are not aware of any deep neural generative model for
3D tree geometry. Therefore we compare our algorithm to
the state-of-the-art procedural model of [2], [5]. We used 500
procedurally generated tree models (P) for each species, and
we generated another 500 trees using DeepTree (DT). We then
compare their geometry and perceived level of realism.

Geometry: We validate the geometric structure of the
trees generated by our DeepTree approach by comparing
their geometric properties to the ground truth, and the
results are shown in Fig. 18 and Tab. 5 (Appx.). The overall
branch length varies by 11% for all trees, the number of
generated branches by 18%, branching distance by 12%, the
number of generated nodes by 11%, and the angles (in order
from the trunk) by 6%, 4%, and 6%. The variations are minor,
and it is essential to note that there is a great difference in
visual importance for the presented features, e.g., the angle
of the branches coming from the trunk has a strong effect
on the overall tree shape, the branching angle of the small
branchlets is not so important. This observation is further
supported by perceptual metrics.
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TABLE 1
ICTree perceptual validation of the ground truth and generated trees
(mean and std for the entire dataset).

Species Ground Truth  DeepTree
Beech [0.47, 0.10] [0.49, 0.09]
Corkscrew  [0.48, 0.11] [0.48, 0.12]
Maple [0.49, 0.11] [0.46,0.12]
Oak [0.50, 0.11] [0.48, 0.12]
Pine [0.50, 0.11] [0.48, 0.11]
Tulip [0.49, 0.11] [0.45, 0.10]
Walnut [0.49, 0.11] [0.47, 0.10]
Willow [0.49, 0.11] [0.46, 0.10]
All trees [0.49, 0.11] [0.47, 0.11]

TABLE 2

Runtime performance comparison of procedurally generated trees (P)
obtained with the method of [5]

and DeepTree generated trees (DT). The runtime is reported in seconds
and only includes the time required to generate the branch graph.

Species Method Runtime # Nodes # Branches
Beech P 23 3376 777
cec DT 27 5672 1634
Corkscrew P 26 2872 751
DT 21 3041 566
Manle P 25 2928 861
P DT 19 2951 817
Oak P 27 4261 1084
DT 2.1 6238 1738
Pine P 26 3506 1000
DT 19 3168 839
Tuli P 26 3050 726
P DT 1.8 3360 773
P 27 5638 589
Walnut DT 20 14975 677
) P 30 4796 1304
Willow DT 2.0 4975 1691

Perceptual Metrics: While the geometric comparison
shows that our trees have geometric traits comparable to
the ground truth, we also want to answer whether the
generated trees are perceived as realistic by humans. While
a standard and tedious approach to this validation is to run
a user study, we validate the generated trees by recently
introduced deep neural perceptual metrics ICTree [53] that
estimate the visual realism of the 3D tree models. ICTree has
been trained by a response of 4,000 human subjects, and it
provides a value between zero to one that corresponds to
the perceived visual realism of the input tree. The authors
introduced view-independent ICTreeF and image-based IC-
Treel metrics. We use the ICTreeF that uses geometric tree
properties.

Tab. 1 shows the average and the standard deviation of
the perceived realism of the ground truth and the generated
trees. The overall perceived realism metrics of all generated
trees is 0.47 & 0.11 which is 4.3% different from the ground
truth of 0.49 £+ 0.11.

Runtime Performance: Tab. 2 shows the comparison
of the runtime performance of procedurally generated tree
models and DeepTree. The reported numbers represent the
average measurements of each method for ten models for
each species. we report the measured time that the two
algorithms take to generate the branching structure of a tree
model. As shown, our method outperforms the procedural
algorithm for tree models of the same species and similar
complexity. While the procedural model is implemented
with a recursive algorithm to construct the branch graph,
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our method queries the neural network pipeline of classifi-
cation and a cascade of regression networks to generate the
branch graph iteratively.

Network Comparison: To validate our cascaded neural
network architecture (Fig. 3c), we compare it with a simpler
architecture that jointly trains the classification and regres-
sion networks. The architecture for this experiment is the
same as in Fig.3a, except the two additional heads on top
of the joined embedding to generate thickness and length
as well as the quaternion. We trained both architectures on
all species with the same setup for loss functions and data
processing. With the cascaded network architecture, we are
able to obtain a classification result of 83 - 93%, an MSE of
1.2e-4 - 3e-4, and a cosine similarity of 0.04 - 0.20, whereas,
for the joint model, we obtain a classification result of 89% -
90%, an MSE of 0.28 - 0.51, and a cosine similarity of 1.03 -
0.51. While the classification head is trained with similar ac-
curacy, the regression results are inferior. The jointly trained
network immediately predicted erroneous branching that
caused the termination of the tree generation.

7 DISCUSSION AND LIMITATIONS

Our focus was on exploring the capabilities of neural net-
works to predict branching structures by only training them
on local branching patterns. Training a neural network this
way learns a situated latent space - a representation that can
encode the necessary topological and geometric information
to mimic branch growth. As we have shown, a trained
situated latent space can serve as a powerful representation
capable of generating a wide range of complex branching
patterns and encoding the environmental response of trees
to obstacles in their environment.

Using situated latent spaces, our approach is orthogonal
to approaches that aim to learn graph structures end-to-end.
In contrast to these approaches, our method is driven by the
idea of only encoding local distributions, e.g., local varia-
tions of branching patterns. DeepTree intriguingly shows that
locally learned representations can provide an interesting
modeling alternative.

Our work is also similar to graph neural networks
(GNNs) in that we also focus on predicting the topolog-
ical and geometric properties of graphs. Research toward
GNNss has recently gained a lot of momentum, and many
approaches aim to predict graphs and their properties in
different ways [54], [55], [56], [57]. GNNs leverage the con-
nectivity of vertices to their neighbors in a graph by simulta-
neously predicting vertex properties and their connectivity
information. Most of these methods focus on making pre-
dictions for local properties in graphs to solve classification
tasks. Our work aims to estimate graph nodes’ topology
and geometric properties simultaneously. Regressing mul-
tiple geometric attributes remains a challenging problem
we addressed by training a cascade of individually trained
regression networks.

Our method is currently limited in three ways: first, we
rely on using data generated by a procedural model. We
decided to showcase our method on procedurally generated
tree models as this is the only way to successfully generate
a large dataset to train our neural network pipeline. To the
best of our knowledge, large collections of reconstructed
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models from scans or images do not exist. DeepTree depends
on data produced by biologically motivated models, which
need to be tuned to generate training data. At present, the
main advantage of the method appears to be the ability to
provide a reduced representation of tree species, which al-
lows for compression, improved runtimes, and constrained
generation of trees (via point clouds or a sub-tree). The
second limitation is that our method is currently unable
to model tree-tree or branch-branch interactions. Procedural
models can distinguish between the intrinsic plant environ-
ment (the plant itself) and the extrinsic (obstacles). However,
as we rely on a coarse voxel space to encode the environ-
ment, we cannot solve intricate tree-tree or branch-branch
collisions during tree generation. Finally, we observed that
our method has difficulties correctly predicting the termi-
nation of branches for some node configurations, which
generates artificial-looking branching structures (Fig. 16).
While this leads to unrealistic branching structures for some
tree models, we observed that this is highly correlated with
the size of the dataset and the training duration. Related to
the dataset is the problem of having a training set for each
scenario (such as Fig. 15). While our method can replicate
the form-controlled models, we treats them as special cases.
Also, the density of the reconstructed canopy from point
clouds may vary depending on the density of point clouds.

8 CONCLUSIONS AND FUTURE WORK

We have advanced tree modeling in computer graphics
by introducing DeepTree, a deep-learning-based method for
automatic and adaptive tree form generation. Instead of
manually defining parameters and rules —commonly done
in procedural modeling— DeepTree learns branching patterns
locally as they can be observed for a single node in a branch
graph. We have shown that a situated latent space that is
evaluated for a single node in a tree graph, somewhere in
the growth space of a tree model, can generate complex
tree models with similar topological and geometric features
as contemporary procedural and developmental modeling
techniques.

We have shown that our method can generate a diverse
set of branching structures from different species. Adding
additional information to each node’s signature (e.g., a
species identifier) shows that our method can even be
trained in a generalized manner, i.e., we can jointly train
our networks on multiple species and successfully generate
tree models. Furthermore, by encoding the environment, we
have shown that our situated latent space can even support
mimicking the environmental response of tree models when
they grow next to walls or other trees.

A novel way of encoding tree form opens multiple
avenues for future work. First, it would be interesting to
explore how a situated latent space can be used to support
the authoring of branching structures. In our current frame-
work, we only automatically use our network pipeline.
However, we could also control our network pipeline by
user-defined sketches or adapt it to dynamically changing
scenes. Second, our current architecture does not avoid
inter-branch collisions. To this end, it would be interesting
to explore additional global or semi-global encodings for
the generated branches when querying the networks for
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Fig. 17. Random sampling: a set of tree models of the same species generated by our neural network pipeline shown from the front (top row) and

top (bottom).

producing new nodes. For example, encoding the neighbor-
ing nodes of a node could provide an additional feature
for producing branching structures that do not collide. It
also seems promising to use our proposed algorithm of
iteratively querying a neural network pipeline to generate
other objects, e.g., road networks or buildings.
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