
LLM-Assisted Synthesis of High-Assurance C
Programs

Prasita Mukherjee
Department of Computer Science

Purdue University
West Lafayette, USA
mukher39@purdue.edu

Minghai Lu
Department of Computer Science

Purdue University
West Lafayette, USA
lu1074@purdue.edu

Benjamin Delaware
Department of Computer Science

Purdue University
West Lafayette, USA

bendy@purdue.edu

Abstract—We present SYNVER — a novel, general purpose
synthesizer for C programs equipped with machine-checked proofs
of correctness using the Verified Software Toolchain. To do so,
SYNVER employs two Large Language Models (LLMs): the first
generates candidate programs from user-provided specifications,
and the second helps automatically construct formal proofs
of their correctness in the Rocq proof assistant. To facilitate
verification, SYNVER places a set of syntactic restrictions on
candidate programs that make them amenable to automated
reasoning. SYNVER uses a hybrid verification strategy that
combines symbolic reasoning with LLM-powered proof generation
to discharge proof obligations that the symbolic engine cannot
handle on its own. We demonstrate the applicability of SYNVER
using a diverse set of benchmarks drawn from the program
synthesis and verification literature.

Index Terms—Formal Verification, Automatic Programming,
and Large Language Models

I. INTRODUCTION

The goal of program synthesis is to automatically generate
a program from a high-level specification of its intended
behavior [1]. While the form of these specifications can vary,
e.g., input-output examples that describe a subset of the target
program’s functionality, or a logical formula that fully captures
the desired behavior, traditional program synthesis techniques
typically guarantee that generated programs satisfy the input
specification. Deductive synthesis techniques in particular aim
to provide strong guarantees by framing synthesis as a deductive
inference problem, and employ a rule-based search to find a
program that meets the target specification. These systems often
repurpose program verification rules to ensure that each step is
justified, resulting in programs that are correct by construction.
Deductive techniques have been successfully applied to a
diverse set of domains, including SQL-style queries [2], heap-
manipulating programs [3], [4], serializers and deserializers [5],
clients of APIs with strong specifications [6], and concurrent
garbage collectors [7]. These rigorous guarantees come at a
cost, however: to keep this search tractable, fully automated
tools are forced to limit the class of specifications and programs
they can handle.

More recently, large language models (LLMs) have shown
a remarkable ability to automatically generate programs from
natural language descriptions, and have quickly become part of
the modern software development toolbox. Unlike traditional

program synthesis techniques, however, LLM-powered code
generation tools do not provide any guarantees about the
behaviors of the programs they produce, leaving that task
entirely to the user. In response, several recent works have
investigated how to provide more assurance about LLM-
generated programs, e.g., by targeting verification-oriented
languages like Dafny [8] and F* [9]. In the case of tools that
target mainstream languages such as C and Rust, several works
have proposed adding annotations to programs that can then
be statically checked by existing automated verifiers [10], [11],
[12]. Unfortunately, these annotation-based approaches target
assertion logics that are not expressive enough to capture the
full range of specifications used by prior deductive synthesizers,
including properties of heap manipulating programs expressed
in separation logic [13].

This work proposes SYNVER , a framework that fills this
gap by combining LLM-powered code and proof generation
with deductive verification. SYNVER synthesizes C programs
from semantically rich specifications, with machine-checked
guarantees about their correctness. Unlike prior deductive
synthesis engines, which are typically domain-specific, our tool
is expressive enough to support multiple application domains.
To do so, we leverage two key insights from prior deductive
synthesis approaches: first, we constrain the space of candidate
solutions by automated verification. Second, we develop custom
proof automation procedures, or tactics, tailored to programs
meeting this bias, enabling automated verification using an
existing (interactive) verification framework [14] implemented
in the Rocq/Coq proof assistant [15]. Due to the richness of
our specification language, our tactic-based automation is nec-
essarily incomplete; we address this limitation by introducing a
novel LLM-powered proof synthesis technique [16], [17] that
discharges proof obligations that our tactic cannot resolve on
its own.

We evaluate SYNVER on three synthesis problems drawn
from three distinct application domains previously targeted
by separate deductive synthesis engines. While each of those
tools can only handle problems from their particular domain,
our tool is flexible enough to synthesize high-assurance C
programs for all three domains. Our experiments also show
that our combination of custom proof automation and LLM-
based proof synthesis outperforms existing LLM-based proof

1 /* {h1 7→ l1 * h2 7→ l2} */
2 struct sll* append(struct sll* h1, struct sll* h2)
3 {
4 struct sll *current = h1;
5 if (h1 == NULL) {
6 return h2;
7 }
8 while (current->next != NULL) {
9 current = current->next;

10 }
11 current->next = h2;
12 return h1;
13 }
14 /* {h 7→ (l1 ++ l2)} /*

Fig. 1: C function that concatenates two singly-linked lists

automation techniques when reasoning about the correctness
of programs generated by SYNVER.

In summary, this paper presents the following contributions:
• We propose a novel LLM-powered program synthesis

framework that generates high-assurance C programs from
rich logical specifications, with machine-checked proofs
of their correctness in the Rocq proof assistant.

• We show that by biasing the space of candidate programs
and combining custom proof automation and LLM-based
proof synthesis, we can repurpose an existing interactive
program verification framework to automatically verify
LLM-generated programs.

• We demonstrate the flexibility of our framework by
evaluating it on a suite of benchmarks drawn from three
distinct domains from the deductive synthesis literature,
and show that our hybrid proof automation approach
outperforms prior LLM-based proof techniques when
reasoning about these programs. An artifact containing the
source code of SYNVER and our experiments is publicly
available [18].

II. BACKGROUND

We begin by briefly reviewing the Verification Software
Toolchain (VST) [14], the Rocq/Coq-based program verification
framework that SYNVER uses to reason about the C programs
it generates. In VST, program properties are expressed using
Hoare triples [19] of the form ⊢ {P} c {Q} which claims
that when the program c is executed in a state satisfying the
precondition P , it will either run forever or terminate in a
state satisfying the postcondition Q. VST is equipped with
a separation logic for proving that such triples are valid. It
also includes a set of tactics [20] that developers can use to
interactively build up proofs of program correctness using the
rules of the underlying separation logic.

To illustrate this process, consider the append function shown
in Fig. 1. When given pointers to two valid singly linked lists,
append concatenates them together and returns a pointer to
the head of the resulting (singly linked) list. The comments
on lines 1 and 14 give pre- and post-conditions that specify
this behavior. To verify that append meets this specification
using VST, a user first defines a theorem stating a Hoare
triple with these pre- (P) and postconditions (Q), as shown
on lines 2-3 of Fig. 2. Processing this definition causes Rocq

1 Theorem append_correct :
2 ⊢ - {SEP(listrep l1 h1; listrep l2 h2)} append
3 {Exists h: val, SEP(listrep (l1 ++ l2) h)}.
4

5 forward_if. forward.
6 assert (11 = @nil z). apply H0. reflexivity.
7 subst. Exists h2.
8 entailer!!. simpl. entailer!!
9 rewrite (listrep_nonnull _ h1) by auto. Intros h hs y.

10 forward.
11 forward_loop
12 (EX sla: list Z, EX b: Z, EX sic: list Z,
13 EX t: val, EX u: val,
14 PROP (Int.min_signed <= b <= Int.max_signed;
15 11 = sla ++ b :: s1c)
16 LOCAL (temp _h1 h1; temp_h2 h2; temp_head t)
17 SEP (lseg sla pl t;
18 data_at Ish t_list (Vint (Int. repr b), u) t;
19 listrep sic u; listrep 12 h2))%assert

Fig. 2: A partial proof of correctness of append in VST

to enter its interactive proof mode, displaying an initial goal,
or proof obligation— in this case, the top-level correctness
statement for append. The user then writes a proof script, a
sequence of tactics that explain how to build a proof of this
goal; lines 5-19 of Fig. 2 show the first part of a proof script
for append_correct. Processing a tactic replaces the current
goal with a (possibly empty) set of new subgoals, again shown
to the user; the proof is complete when no subgoals remain.

The proof script in Fig. 2 includes both VST-specific and
Rocq’s built-in tactics, which are highlighted in purple and
green, respectively. Some tactics take arguments: rewrite on
line 9, for example, takes a fact of the form x = y, and replaces
all occurrences of x in the current goal with y. VST-provided
tactics often require richer inputs: the forward_loop tactic on
line 11, for example, takes an inductive loop invariant that
specifies the behavior of each iteration of the loop on lines 8-10
of append. Automatically coming up with loop invariants is one
of the most challenging problems in program verification [21],
and VST thus expects users to supply them manually. Tactics
can fail if applied to goals that do not have the expected
shape. Oftentimes, users will apply tactics to change a goal
into one that a specific tactic can handle: the tactics on lines
5-7, for instance, transform the goal into a form supported by
entailer!!. The tactics on line 9 similarly produce a goal
which forward can process.

As this example illustrates, VST is a powerful tool for
constructing a formal proof about rich behaviors of C programs.
The framework is designed to be used interactively, with a
user inspecting the current goal and supplying a tactic that
moves the proof forward, e.g., by providing loop invariants
or transforming goals into a form that VST-supplied tactics
can automatically discharge. SYNVER builds on top of the
foundation provided by VST to verify generated programs, but
attempts to remove the user from the loop. The next section
describes how SYNVER constrains the shape of generated
programs to make them amenable to automated verification,
uses custom proof automation to discharge many of the
resulting proof obligations, and deploys LLM-guided proof
synthesis to handle the rest.

Fig. 3: Overview of our approach

III. APPROACH

Fig. 3 depicts the high-level workflow of our synthesis
pipeline, which is divided into two phases: generation and
verification. Our system takes four inputs that describe the
target function: its signature, its separation logic specification,
a natural language description of its behavior, and a couple of
input-output examples. In the first phase, these inputs are used
to prompt a coder LLM to synthesize a candidate program.
The candidate program is then checked for syntax errors and
conformance with our syntactic biases. If either check fails,
the coder LLM is re-prompted upto a threshold.

Otherwise, our pipeline proceeds to the second phase,
which attempts to verify that the candidate program meets
its separation logic specification using VST. This phase works
by iteratively attempting to discharge a set of outstanding
proof obligations; this set initially consists of only the top-
level statement of correctness for the candidate. Each iteration
of this phase first applies SEPAUTO, our custom automation
proof tactic, to the current set of proof obligations, producing
a new (possibly empty) set of obligations. If all obligations
are satisfied, the system returns the verified program and the
complete proof script. Otherwise, a prover LLM is asked
to either a) suggest tactics that will make progress on the
remaining obligations or b) identify a goal as unsolvable. These
suggestions are used to further refine the current proof script,
and the loop continues. To ensure termination, this phase places
an upper bound on the number of iterations; if this threshold
is reached, the candidate program and the current (incomplete)
proof script are returned.

The remainder of this section describes the generation and
verification phases of our pipeline in more detail, using the
input from Fig. 3 as a running example.

A. Phase 1: Program Generation

SYNVER generates an initial candidate C program by
querying the coder LLM using the prompt template shown

Translate the given specification to a C program. Only include the C program
in the content. No need to include a main function in the translated C program.
There should not be loops in the program. All loops must be replaced by
recursion. The only helper functions permitted are the ones provided under
’Helper functions:’. There should not be any novel helper functions used in the
program. Generate recursive code if and only if non-loopy code generation is
not possible. The code must compile using CLightGen. The user provides the
specification,followed by the function name, signature, English description, and
two input output examples of the function behaviour.

Here are a couple of examples of how generated C
programs look given the input specifications:
[swap-spec, void swap(int *a, int *b) {..},..] (elided for spaces)

Please provide the specifications as asked below:
Specification: ⟨Spec⟩
Function Name: ⟨Name⟩
Function Signature: ⟨Signature⟩
English Description: ⟨English⟩
Input Output Examples: ⟨Example1⟩⟨Example2⟩
Helper Functions: ⟨Signature, English, Spec⟩

Fig. 4: The initial prompt template for the coder LLM

in Fig. 4. This prompt includes a few examples of input
specifications along with their expected output C programs.
The placeholders in the prompt, e.g., ⟨Spec⟩ and ⟨Name⟩ are
then instantiated with the arguments provided to SYNVER.
The top of Fig. 3 includes example inputs for synthesizing
a C function that appends two singly linked lists. SYNVER
first checks if the program is a valid C program by attempting
to compile it. If compilation fails, SYNVER re-prompts the
coder LLM using the first template in Fig. 5, instantiating its
placeholder with the compilation error.

The program generated has the syntax error: ⟨Error⟩. Please re-generate the
program such that it compiles with CLightGen.

−−

The program generated violated the syntactic bias: ⟨Bias-Type⟩. Please re-
generate the program adhering to the syntactic biases.

Fig. 5: Templates used to re-prompt the coder LLM

As Section II discussed, in VST (and Rocq more broadly)
proofs of program correctness are typically constructed inter-
actively. VST provides a set of specialized tactics for working
with the proof obligations that arise when reasoning about
C programs in its logic, some of which, e.g. forward_if,
and forward_loop, can require additional input from the user
driving the process. To limit the need for user interaction when
reasoning about the programs it synthesizes, SYNVER places
two key restrictions, or biases, on the syntax of candidate
programs.

a) No calls to functions without specifications: VST
requires logical specifications for any functions used by the
program being verified. Function specifications are stored in
a context; if a function is missing from the context, a user
must manually supply its specification. To avoid this situation,
the initial generator prompt (Fig. 4) instructs the LLM to not
to introduce any intermediate helper functions, and SYNVER
checks that a candidate program only calls functions whose

specifications are included in the global context. As an example,
swap in Fig. 6, is not a candidate for verification, as it introduces
and calls the helper function add, which lacks a corresponding
specification. When this occurs, SYNVER re-prompts the coder
LLM using the second template in Fig. 5, filling in the ⟨Bias-
Type⟩ placeholder instantiated with a message noting that add
lacks a specification.

b) No loops: As is standard in program logics, reasoning
about loops in VST requires users to supply a loop invariant.
When dealing with separation logic assertions, such invariants
can be quite involved, often requiring complex operators like
the separating implication [22]. Recursive function calls, in
contrast, can reuse the function’s top-level specification and
do not require additional user input. Thus, the prompt used by
SYNVER stipulates that the generated program should avoid
loops and use recursion instead. Including this restriction in
the prompt causes the coder LLM to generate the program on
the left of Fig. 6: while semantically equivalent to the function
in Fig. 1, reasoning about this version does not require any
logical specifications on top of the one in Fig. 1. When the
coder LLM generates a program with loops, SYNVER will
re-prompt it using the second template in Fig. 5, filling in
the ⟨Bias-Type⟩ placeholder with a message to instructing the
LLM to avoid using loops.

sll *append (sll *h1,
sll *h2)

{
if (h1 == NULL) {
return h2;
} else {
h1->next =
append (h1->next, h2);

}
return h1;
}

void add (int *x){
*x= *x + 1;

}
void swap (int *x,

int *y){
int a = *x;
int b = *y;
if(a < b){
*x= b;
*y = a;
} else {
*y = a;
}
add (x);
}

Fig. 6: A recursive (i.e., bias-correct) version of append, and
a bias-incorrect swap program which calls a helper function
without a specification

B. Phase 2: Program Verification

After it has generated a candidate program that meets these
two restrictions, SYNVER attempts to verify that program is
correct via GENPROOF (Algorithm 1). This algorithm takes
as input a candidate program p, target pre- and postconditions
P and Q, and a bound on the number of interactions with
the prover LLM limit. GENPROOF either returns a complete
proof script showing that ⊢ {P} p {Q} in VST, or as much
of the proof it was able to complete within the interaction
bound. At a high level, GENPROOF mimics the standard
proof development process in which a developer examines
the current goal to decide the next proof step, tells the theorem
prover to process the corresponding tactic, and then repeats
this loop until no subgoals remain. Alongside the current
proof script, GENPROOF maintains a set of unsolved proof

Algorithm 1: Proof Generation
1 Procedure GENPROOF(Cp, P,Q, limit)

Inputs :Cp: candidate C program
P,Q: target pre- and postconditions

Output : Complete Proof or Partial Proof
2 ptree ← initProofTree(SEPAUTO({ ⊢ {P} Cp {Q}}))
3 curGoal ← nextGoal(ptree)
4 curPrompt ← initialStepsPrompt(Cp, P , Q, curGoal)
5 for 1 . . . limit do
6 if curGoal = ⊥ then return ptree /* Complete proof */
7
8 switch GenNxtStep(curPrompt) do
9 case UNSOLVABLE do

10 curPrompt ← nextStepsPrompt(curGoal)
11 curGoal← Parent(curGoal)
12 DeleteAllChildren(curGoal)

13 case TRY Ctac do
14 resp ← ∅
15 while Ctac ̸= ∅ do
16 curTactic ← Pop(Ctac)
17 switch takeStep(g, curTactic) do
18 case PROGRESS subGoals do
19 subGoals′ ← SEPAUTO(subGoals)
20 if subGoals′ ̸= ∅ then
21 curGoal ←AddGoals(ptree, subGoals′)

22 else
23 curGoal ← RemoveGoal(ptree, curGoal)

24 curPrompt ← nextStepsPrompt(curGoal)
25 break

26 case FAIL msg do
27 resp ← resp ∪ {(curTactic,msg)}
28 if Ctac = ∅ then
29 curPrompt ←

nextStepsAfterFailurePrompt(curGoal, resp)

30 return ptree /* Partial proof */

obligations as a tree, ptree, where each node represents a goal
and its children correspond to subgoals generated by a tactic
application. Intuitively, the leaves of ptree represent the goals
remaining after processing the current proof script; the proof
is completed when ptree is empty.

GENPROOF first uses SEPAUTO (Algorithm 2), a custom
tactic that simplifies and discharges VST-specific proof obliga-
tions, to simplify the top-level goal. It then uses any subgoals
generated by SEPAUTO to construct an initial proof tree (line
2) and chooses one of these goals to work on next (line
3). GENPROOF uses the selected subgoal to construct the
initial prompt for the prover LLM (line 4). This prompt uses
the template shown in Fig. 7 to suggest a prioritized list of
five tactics that could help resolve this goal. This template
begins with a set of helper definitions and lemmas and some
example proofs in VST; its placeholders are instantiated with
the candidate program and its CompCert AST (⟨Cand-Prog⟩
and ⟨C-AST⟩, its formal specification and top-level statement
of correctness (⟨VST-Spec⟩ and ⟨Thm-Stmnt⟩), and the current
proof obligation (⟨Cur-Goal⟩).

GENPROOF next enters a loop that attempts to iteratively
verify the candidate program meets its specification. This loop
continues until all proof obligations are discharged or the
interaction limit with the prover LLM has been reached. In
the latter case, GENPROOF returns the partial proof up to that
point (line 30). If no goals remain, GENPROOF returns the

You are an expert in Coq, specifically in Separation Logic and the Verified
Software Toolchain module. Please help me prove the correctness of CompCert
C programs in VST (version 2.14) and Coq (version 8.19.2), against the
specification in VST. It is recommended to use VST Floyd tactics like forward,
forward if, entailer!! etc. to advance most of the proofs in this setting. Here
are some additional definitions and lemmas you may need to use that are not
included in the VST codebase:
[Definition t list := .., Lemma nullBST := BST E ,..] (elided for spaces)

Here are 4 examples of how VST proofs look like given the CompCert AST and
specification:
[Definition swap spec : ident * funspec := .., Definition f swap := .. ,..] (elided
for spaces)

Given the C-code: ⟨Cand-Prog⟩, corresponding CompCert AST: ⟨C-AST⟩ and
VST specification: ⟨VST-Spec⟩, your task is to prove the lemma: ⟨Thm-Stmnt⟩
by specifying a set of up to 5 tactics to advance the current goal, in order of
highest probability of success. The interpreted state would then be returned
back to you, and you will predict the next set of tactics, till a fixpoint is reached,
or the proof is completed. All tactics you predict, must be only relevant to the
current goal.

Current Goal: ⟨Cur-Goal⟩

Fig. 7: Template used to construct initial prompt to the prover
LLM

complete proof (line 6). Each iteration of the loop first queries
the prover LLM with the current prompt. The prover LLM may
flag the current goal as unsolvable, which can happen when an
earlier iteration chose the wrong tactic, e.g., applying a lemma
whose assumptions are not provable from the current set of
hypotheses. When this occurs, GENPROOF backtracks to the
parent of the current goal in ptree , i.e., the goal that spawned
the current (unsolvable) proof obligation (lines 10-12), and
attempts a different proof strategy.

Given the goal: ⟨current-goal⟩, predict the next set of tactics to advance the
goal.You must predict at most five tactics, all of whom only advance this goal by
one step, in order of highest probability of success. If the goal cannot be solved,
please respond with Unsolvable.

Fig. 8: Prompt template used after a successful tactic applica-
tion, or after backtracking one level up the proof tree

Alternatively, GENPROOF calls the takeStep subroutine to
each tactic proposed by GenNxtStep (line 17). This subrou-
tine decides whether to apply the current tactic curTactic to
curGoal . First, takeStep checks if the current tactic has been
tried before. If not, it then asks Rocq to apply curTactic to
curGoal ; if Rocq reports an error or the goal is unchanged, the
tactic is rejected. Otherwise, takeStep examines the subgoals
that result from applying curTactic. If any of the new subgoals
are equivalent to an unsolved goal in ptree, there is a cycle
in the current proof, and takeStep rejects curTactic. Next, if
the conclusion of any of the new subgoals is more than twice
the size of the conclusion of curGoal , curTactic is rejected.
When neither of these situations occur, GENPROOF accepts
the current tactic, and adds the resulting subgoals to ptree
(line 21). If no subgoals have been generated, the current proof
obligation has been discharged and it is removed from ptree,
as are any of its ancestors that have been solved (line 23). In
both cases, the prompt for the prover LLM is updated using
the template in Fig. 8 instantiated with a new subgoal (line

Algorithm 2: SEPAUTO - Proof automation for VST
1 Procedure SEPAUTO(Go)

Inputs : Go: Initial set of outstanding goals
Output : Set of unresolved goals

2 Gu ← ∅ /* Unresolved goals */
3 while Go ̸= ∅ do
4 g ← firstGoal(Go)
5 Go ← Go \ {g}
6 switch g do
7 case H ⊢ {P} if b then c1 else c2 {Q} do
8 Go ← Go ∪ {forward_if(g)}

9 case H ⊢ {P} (if b then c1 else c2);c3 {Q} do
10 g ← H ⊢ {P} if b then c1;c3 else c2;c3 {Q}
11 Go ← Go ∪ {forward_if(g)}

12 case H ⊢ {P} f(x1, x2, ..., xn) {Q} do
13 fp ← inferCallParams (g)
14 g′ ← {forward_call(g, fp)}
15 if g′ ̸= g then Go ← Go ∪ {g′} /* Progress */
16 else Gu ← Gu ∪ {g′}

17 case H ⊢ {P} c {Q} do
18 g′ ← forward_withauto(g)
19 if g′ ̸= g then Go ← Go ∪ {g′} /* Progress */
20 else Gu ← Gu ∪ {g′}

21 case H ⊢ /* Side Condition */
22 do
23 g′ ← resolve_withauto(g)
24 if g′ ̸= g then Go ← Go ∪ {g′} /* Progress */
25 else Gu ← Gu ∪ {g′}

26 return Gu

24), and the main loop continues. If all proposed tactics are
rejected, the prover LLM is prompted again using the fallback
template in Fig. 9 (line 29), which includes information about
the failing tactics.

The tactics: ⟨tactic1,..,tactic5⟩ failed because of the following reasons:
⟨reason1,...,reason5⟩. Please re-generate the tactics for the current goal:
⟨current-goal⟩. If the goal cannot be solved, please respond with Unsolvable.

The proof generated by you so far is: ⟨all-tactics-tried⟩. The correct proof
generated so far is: ⟨current-proof⟩.

Fig. 9: Prompt template used after application of all predicted
tactics resulted in failure

Algorithm 2 presents SEPAUTO, the symbolic reasoning
subroutine that GENPROOF uses to simplify and solve VST-
specific proof obligations. This function maintains sets of
outstanding and unresolved goals, Go and Gu respectively.
SEPAUTO attempts to iteratively simplify or solve each goal in
Go using a combination of custom and VST-provided tactics.
Goals that cannot be simplified or solved are added to Gu,
which SEPAUTO returns when no goals remain in Go. In each
iteration its main loop, SEPAUTO identifies the current goal
as either a Hoare triple (lines 7-20) or a side condition (lines
21-25). In the former case, SEPAUTO uses the shape of the
program in the triple to decide how to proceed.

If the goal is a hoare triple involving a conditional statement
(lines 7-8), SEPAUTO applies VST’s built-in forward_if tactic,
creating new subgoals for the then and else branches. If
the conditional is sequenced with another statement, i.e.,
(if b then c1 else c2); c3, however, applying forward_if

would create a third goal for the trailing statement c3. In this
case, the tactic expects the user to provide a precondition
capturing the program state after the conditional is executed.
Since SEPAUTO is meant to be fully automatic, it first rewrites
a goal of this form into an equivalent one by moving c3 inside
each of the branches. This allows forward_if to be applied
as before, without any additional input (lines 10-11).

The built-in VST tactic for function calls, forward_call,
expects users to explicitly provide arguments for each parameter
of the called function. To automate this step, SEPAUTO uses
a custom subroutine inferCallParams that extract these
arguments from the current goal (lines 13-14). Alternatively,
when the current goal is a Hoare triple that is not covered
by one of these three cases, e.g. it is c1; c2 or x := a,
SEPAUTO applies forward_withauto, an enhanced version of
VST’s forward tactic. This custom tactic tries to automatically
discharge side conditions related to memory safety, e.g.,
ensuring that a pointer is not null before it is dereferenced.
To discharge these sorts of side conditions, forward_withauto
combines the current set of assumptions with a custom library
of helper lemmas. As a simple example, when reasoning about
line 11 of Fig. 1, SEPAUTO needs to ensure that current

is non-null, which it does by rewriting the goal using the
lemma listrep_nonnull. Applying this lemma generates a
new subgoal, similar to the proof on line 9 of Fig. 2, which SEP-
AUTO attempts to solve automatically. If forward_withauto

cannot make progress, the current goal is added to Gu. Finally,
SEPAUTO uses a custom resolve_withauto tactic to resolve
goals that are side conditions (line 23) using a combination
of standard, e.g., list_solve and rep_lia, and VST-specific
tactics, e.g., entailer. Any goals that are not completely solved
by resolve_withauto are added to Gu (line 25).

In summary, SYNVER implements a two-phase approach
to synthesizing formally verified C programs from high-level
specifications. The first phase uses a coder LLM to generate
a program whose shape facilitates automated verification.
The second phase then attempts to build a formal proof
that the program satisfies a user-provided separation logic
specification using VST. To automate this proof, SYNVER
uses a complementary combination of symbolic reasoning
(SEPAUTO) and LLM-aided proof generation (GenNxtStep).
The former handles proof obligations generated by VST, while
the latter handles goals that SEPAUTO cannot.

IV. EVALUATION

Our evaluation investigates three key research questions
about our approach:

• RQ1: How effective is SYNVER? Is it able to automati-
cally generate fully verified C programs for a diverse set
of synthesis tasks?

• RQ2: How much does each component of our prompt
contribute to its ability to generate bias-correct programs
that satisfy their separation logic specification?

• RQ3: How does GENPROOF compare to other proof
automation approaches?

All of our experiments were carried out on an Apple M2
Max Macbook Pro with 32GB RAM, except for our Rango
evaluation [23], which was carried out on a NVIDIA 5500 GPU
with 24GB RAM. SYNVER uses GPT-5mini for both its coder
and prover LLMs, and limits the number of LLM interactions
in the first and second phases to 10 and 50, respectively.

A. Benchmark Construction

To evaluate our approach, we developed a suite of specifi-
cations for a set of programs of varying complexity. Each
of the benchmarks used in our evaluation falls into three
distinct categories. The first category (Basic) consists of
programs that only use simple built-in datatypes, e.g., int

and char, and arrays. This category includes 19 programs
of varying complexity that were adapted from a collection
of formally verified Dafny programs [8]. The second set of
benchmarks (Heap) includes 24 programs that manipulate
heap-allocated data structures like singly linked lists and trees;
these were drawn from the evaluation suite of a prior deductive
synthesizer [4]. The final class (API) consists of adaptations
of standard textbook algorithms [24], and is made up of 5
programs that make function calls and use structured datatypes,
e.g., arrays, lists, and trees. To ensure that programs in this
class can be automatically verified, each callable function is
equipped with a formal specification. The specifications for the
API manipulating programs were derived from their textbook
specification by a verification expert.

B. RQ1: Effectiveness of SYNVER

Table I and II presents the results of SYNVER for each
of the input specifications in our benchmark suite. SYNVER
was able to successfully generate programs of varying lengths,
ranging from 3 to 31 lines of code, with an average length
of 10 lines. On average, it took GPT-5mini 11.23 seconds to
produce a candidate program. In all cases, GPT-5mini was able
to generate a syntactically valid candidate program meeting
our biases on the first try— reprompting was never needed.

Table I shows the results for the 70% (34/48) of our bench-
marks that GENPROOF was able to fully and automatically
verify. These include both simple programs (e.g., mulTwo
simply multiplies two integers) and more complex ones (e.g.,
insertBST is a recursive function that inserts an element into
a binary search tree and has a complex specification). Of these
34 programs, GENPROOF was able to automatically verify 10
programs with just its initial call to SEPAUTO. Since it did
not have to query the prover LLM, the time needed to verify
each of these benchmarks was quite short, under 5 seconds.
For the remaining 24 programs, GENPROOF produced proof
scripts of varying lengths, ranging from 2 to 35 proof lines,
with an average length of 9, where each line consists of a tactic
suggested by GPT-5mini followed by a call to SEPAUTO. When
generating 11 of these 24 proofs, GENPROOF did not discard
any tactics or backtrack; for the remaining 13, GENPROOF
did one of these actions an average 38.7% of the time. The
total time needed to generate these proofs corresponds to the
number of tactics tried by GENPROOF, and ranged from 1.2

TABLE I: The results of SYNVER on the benchmarks it was
able to completely verify. The three groups of rows correspond
to the Basic, Heap, and API categories, respectively. The Rec
column indicates whether the target program makes a recursive
call, and LoC gives the length of the generated program. GP
reports the number of proof obligations generated by the initial
call to SEPAUTO — a value of 0 means SEPAUTO was able
to fully verify the candidate program. LoP is the number of
lines in the generated proof script. PT and GT report the time
needed to fully verify and generate a program, respectively.
MS gives the number of tactics discarded and the number of
times GENPROOF backtracked. TE gives the total number of
tactics takeStep evaluated.

Benchmark Rec LoC GP LoP PT GT MS TE
isEven ✖ 7 2 5 2m 54s 9.29s 0 4
getElement ✖ 11 3 12 10m 9.08s 15 26
isDivBy11 ✖ 7 2 3 1m 36s 7.05s 2 4
minTwo ✖ 7 0 1 1.8s 3.67s 0 0
mulTwo ✖ 3 0 1 1.2s 4.24s 0 0
minThree ✖ 9 0 1 4.4s 8.20s 0 0
lastDigit ✖ 3 0 1 1.5s 5.65s 0 0
nIsGreater ✔ 12 3 26 53m 17.02s 53 78
arrayModify ✔ 9 0 1 3.6s 7.95s 0 0
addBy1 ✔ 9 1 2 29.40s 8.70s 0 4
allSame ✔ 11 3 21 14m 48s 15.86s 7 27
swap ✖ 5 0 1 2.6s 5.26s 0 0
swapdAdd ✖ 7 0 1 2.3s 5.80s 0 0
swapIf ✖ 11 2 7 4m 13.70s 4 10
assignX ✖ 3 0 1 2s 4.85s 0 0
assignYAdd ✖ 3 0 1 3.5s 6.66s 0 0
listLength ✔ 8 2 6 2m 8.92s 0 5
listFree ✔ 9 1 3 43.1s 8.61s 0 2
isListEmpty ✖ 11 2 10 4m 30s 7.77s 2 11
listAppend ✔ 11 2 7 2m 54s 7.70s 0 6
listInsBeg ✖ 6 1 4 59s 10.36s 0 3
listDelEnd ✔ 12 4 15 32m 30s 11.45s 13 27
listLookup ✔ 9 3 24 10m 54s 11.20s 2 25
listCopy ✔ 10 2 9 3m 42s 10.19s 0 8
listInsEnd ✔ 11 2 9 3m 48s 12.00s 0 8
listFilter ✔ 15 3 14 6m 24s 14.55s 0 13
listAdd1 ✔ 9 2 5 1m 36s 7.72s 0 4
listDelBeg ✖ 13 2 20 29m 54s 12.65s 41 60
bstFree ✔ 8 0 1 3.6s 6.70s 0 0
bstLookup ✔ 15 3 35 32m 12s 14.19s 20 54
bstInsert ✔ 24 4 22 17m 24s 16.81s 7 28
bstMinValue ✔ 7 3 11 6m 36s 7.90s 0 10
bstSkewed ✖ 3 2 12 7m 22.77s 6 17
popHighest ✖ 5 3 8 3m 24s 18.87s 2 9

seconds to 53 minutes, with an average time of roughly 7.5
minutes.

Based on a manual analysis, SYNVER generated correct
programs for each of the remaining benchmarks, even though
GENPROOF was only able to partially verify these programs
within its interaction limit. These programs tend to be longer
and have more complex specifications than those GENPROOF
was able to fully verify. Table II shows the results for these
14 benchmarks. As the table shows, takeStep discards many
more tactics and backtracks more often in these benchmarks, on
average 80% of the time. This suggests that GENPROOF spent
much of its time on these benchmarks exploring unproductive
proof directions. As a consequence, the proof generation
time for these benchmarks was considerably slower than

TABLE II: The results for the benchmarks SYNVER was only
able to partially verify. SP reports how many of the initial
subgoals from SEPAUTO that GENPROOF completely solved.

Benchmark Rec LoC GP SP LoP PT GT MS TE
checkSorted ✔ 19 3 2 34 1h 18m 19.23s 80 115
checkZ ✔ 11 4 1 17 1h 9.54s 100 117
consecNums ✔ 11 4 3 26 1h 18m 18.02s 108 134
firstOddIndex ✔ 11 4 3 33 1h 24m 9.98s 76 109
arrayMember ✔ 9 3 1 12 1h 6m 7.75s 167 180
OddAtOdd ✔ 14 5 1 13 1h 6m 22.93s 134 152
lastPosition ✔ 11 2 1 5 40m 48s 14.87s 200 204
compArrays ✔ 11 4 3 41 2h 36m 15.69s 68 108
listArrayEq ✔ 16 4 1 31 1h 30m 13.78s 86 119
bstMinNode ✔ 10 3 0 34 4h 18m 10.35s 119 154
bstMinKey ✔ 7 3 2 42 1h 36m 6.15s 70 113
countValue ✖ 10 5 0 27 1h 42m 12.51s 138 164
bstDel ✔ 31 6 1 30 4h 24m 20.55s 127 156
addLast ✖ 12 3 0 28 2h 15.76s 106 133

the for the fully verified benchmarks, with an average time
of nearly 2 hours. Note that our current implementation of
GENPROOF asks Rocq to reprocess the current proof script in
its entirety each time takeStep tries a new tactic— thus, the
overall proving time increases substantially with the number of
tactics takeStep evaluates. This overhead could be substantially
reduced by implementing via a more incremental interaction
loop with the theorem prover.

A manual inspection of the proof scripts generated by GEN-
PROOF suggests that GPT-5mini can effectively compensate for
gaps in SEPAUTO’s automation. As one example, SEPAUTO
does not attempt to instantiate existential variables, a key part of
correctness proofs in VST for functions with a non-void return
type. GPT-5mini was able to identify the right instantiation
in all but three of our benchmarks. This investigation also
indicates that GPT-5mini was able to effectively identify and
apply lemmas that help the proof make progress.

We also performed a manual analysis of the 14 proofs
GENPROOF could only partially complete. Based on this
analysis, we categorized each program into one of four
categories:

• Faulty Suggestions: The partial proofs for checkZ,
OddAtOdd and lastPosition feature a large number of
tactics (86%, 88% and 98%) that were discarded due to
Rocq-reported errors or failure to make progress.

• Cyclic Reasoning: The partial proofs for consecNums,
checkSorted, and lastPosition all repeatedly try se-
quences of tactics that modify the goal in some way
before eventually arriving at the original goal, effectively
not making progress. Incorporating better cycle detection
in takeStep could help ameliorate these sorts of failures.

• Superfluous Tactic Suggestions: The partial proofs for
firstOddIndex, listArrayEq, bstMinNode, countValue,
and bstDel repeated call unnecessary tactics that, e.g.,
perform superfluous case analysis or induction.

• Backtracking Failure: The partial proofs for the three
remaining benchmarks all incorrectly instantiate an exis-
tential variable at some point, but GENPROOF is unable to
either detect this, in the case of addLast, or it detects the

TABLE III: The result of using different variations of the coder
prompt with GPT-5mini. The first column (Var) lists the prompt
variant, followed by five columns indicating which components
of the prompt were included. The first four of these indicate
whether the prompt includes explicit instructions to follow the
syntactic biases (Bias), a separation logic specification (Spec), a
natural language description (Desc), and input-output examples
(Ex). The next column lists the kind of function name that was
included in the prompt: Original uses the name from Tables I
and II; Verbose uses a long but meaningful function name; and
Arbitrary is a random name with no relation to the function’s
intent. The next two groups of columns list the number of
programs meeting the syntactic bias (B) and the number of
correct programs (C) generated in response to each prompt
variations for the (Basic) and (Heap) benchmark categories.

Var Bias Spec Desc Ex Name Basic (19) Heap (24)
B C B C

P1 ✖ ✔ ✔ ✔ Original 7 9 11 24
P2 ✔ ✖ ✖ ✖ Verbose 19 18 24 22
P3 ✔ ✔ ✖ ✖ Verbose 19 19 24 24
P4 ✔ ✖ ✔ ✖ Arbitrary 19 19 24 24
P5 ✔ ✔ ✖ ✖ Arbitrary 19 19 24 20

problem much further later in the proof script and is unable
to quickly revert to the point at which the flawed reasoning
occured, in the case of arrayMember and bstMinKey. For
these last two benchmarks, allowing GENPROOF to revert
to an arbitrary earlier point in the proof could help lead
to better results.

C. RQ2: Composition of the coder LLM Prompt

As discussed in Section III, GENPROOF is designed to be
applied to semantically correct programs that conform to a
set of syntactic biases. This section presents an ablation study
of how much the individual components of the prompt given
to the coder LLM contributes to the ability of SYNVER to
generate programs meeting those biases. For this experiment,
we have constructed five variants of the prompt from Fig. 4
and use these to prompt GPT-5mini for programs for the 43
specifications belonging to the first two benchmark categories.
The API benchmark is omitted from this experiment because
their prompt includes additional information in the form of the
additional functions (with specifications) that the synthesized
program is allowed to call.

Table III reports the results of manually checking whether
the resulting programs were correct and conformed to our
biases. Each of these variations investigates a different aspect
of the coder prompt:

• P1: This variation investigates the shape of the programs
that the coder LLM generates without additional instruc-
tions. Without explicit guidance, GPT-5mini generates
programs following our syntactic bias less than half of
the time, using loops instead of recursion in all but 4
cases; of these, 3 are tree programs that naturally admit
recursive solutions.

• P2 and P3: When provided with only a descriptive func-
tion name and instructions about our biases, GPT-5mini
responds with a correct program for all but three of our
specifications, suggesting that GPT-5mini is particularly
sensitive to this prompt component. The programs in
the three failing cases— consecNumbers, assignX and
assignYAdd— had ambiguous names, further supporting
this hypotheses. Providing additional semantic information
in the form of separation logic specifications (P3), enables
GPT-5mini to generate all correct programs, suggesting
that including specifications can help the LLM when only
part of the target functionality is encoded in the function
name.

• P4: This variant probes how well the LLM responds
to informal specifications. In contrast to P2 and P3,
however, all of the natural language descriptions used
in this experiment are able to completely capture the
behavior of the target program. GPT-5mini is able to
generate correct programs for all our benchmarks with
this variant, suggesting that it can effectively interpret
mathematically imprecise specifications.

• P5: This final prompt variant tests how well GPT-5mini
is able to interpret mathematically rigorous specifications
written in separation logic. GPT-5mini was less effective
when provided with just these sorts of specifications,
however, failing to generate correct programs for four
of our benchmarks using this prompt. Three of these—
listAdd1, listAppend, and listDelEnd— make a copy
of the input list, which is inconsistent with the target
specification. The last incorrect program generated by
GPT-5mini, bstFree, fails to properly deallocate the target
list, simply returning null instead.

Taken together, these results suggest that it is important
to include explicit instructions about our syntactic biases. In
addition, while GPT-5mini can effectively interpret natural
language components, it is less effective at interpreting more
formal specifications of target program behaviors.

D. RQ3: Alternative Proof Automation Strategies

To evaluate the effectiveness of SYNVER’s approach to
proof automation, we have conducted a comparative study of
GENPROOF with other proof automation approaches. Our set
of alternative approaches includes two state-of-the art learning-
based theorem provers, Tactician [25] and Rango [23], three
simplified variants of GENPROOF, and SA++, an enhanced
version of SEPAUTO equipped with additional tactic-based
proof automation. SA++ is meant to serve as a roofline for
how well purely symbolic proof automation can work for VST-
style proofs of program correctness. This tactic was developed
by a verification expert who first manual wrote proof scripts for
a subset of our benchmarks, and then generalized the high-level
proof strategies used into a crush-style tactic [26], a process
that took about 100 person-hours.

We divide the benchmarks used in these experiments into two
groups. The first group consists of 42 benchmarks and admits
a total ordering based on the number of proofs each approach

TABLE IV: The results of using alternative proof automation ap-
proaches to verify a subset of candidate programs. Framework
lists the prover, and the remaining columns report the number
of benchmarks from the Basic, Heap, and API categories each
framework was able to completely verify. SA only applies
SEPAUTO to the top-level theorem. GP-SA-H is a limited
version of GENPROOF that only calls SEPAUTO on the top-
level theorem, and tries to discharge all subsequent proof
obligations using just the prover LLM, does not backtrack, and
uses a version of takeStep that does not filter tactics based on
the size of the goals they generate. GP+SA-H is a variant of
GP-SA-H that also applies SEPAUTO to new subgoals. SA++
is an enhanced version of SEPAUTO that is equipped with
additional tactic-based automation.

Framework Basic (18) Heap (22) API (2)
Rango 0 3 0
Tactician 2 4 0
SA 5 5 0
GP-SA-H 9 14 0
GP+SA-H 9 18 0
GENPROOF 11 19 0
SA++ 14 21 1

was able to completely solve (shown in Table IV): Rango ⊂
Tactician ⊂ SA ⊂ GP-SA-H ⊂ GP+SA-H ⊂ GENPROOF ⊂
SA++.

In general, the two learning-based proof automation ap-
proaches performed quite poorly, with Tactician finishing
slightly more (6) proofs than Rango (3). We attribute this
to the specialized nature of proofs of program correctness in
VST: there are not many publicly available examples of such
proofs, and the training data for both provers is thus unlikely to
include such proofs; Tactician supports on-the-fly learning, and
is thus able to perform better. We provide the four examples
of VST proofs used in our prompt to the prover LLM when
evaluating both tools, and Tactician seems to learn from these
examples.

Of the 42 benchmarks that admit a total order on approaches,
the three limited variants of GENPROOF all perform better
than Rango and Tactician, but are only able to solve a
subset of the proofs that GENPROOF and SA++ can. The
proofs that only SA++ is able to solve completely, all feature
specifications with nested quantifiers and boolean predicates;
showing the corresponding programs correct requires correctly
instantiating these quantifiers. The other proof generation
approaches struggle with this task, generating a large number
of discarded tactics and repeatedly backtracking. We also note
there are 6 programs that none of the approaches are able
to completely verify; all of these have particularly complex
specifications, e.g., combination of nested quantifiers and
boolean operators, and the separating implication operator.

Table V presents the results of each approach for the 6
benchmarks that violate our total ordering. The verification
failures on these benchmarks can be divided into two categories.
First, some approaches failed to correctly instantiate an
existential variable, as discussed in Section IV-B (arrayMember,

TABLE V: The results of verifying the 6 benchmarks not
included in Table IV. Results for Rango, Tactician, and SA
are omitted, as all three are unable to completely verify any of
these programs. The columns after Framework correspond to
these 6 benchmarks: arrayMember, listDelEnd, listDelBeg,
addLast, bstSkewed, popHighest.

Framework arMem addL bstS lDelE lDelB popH
GP-SA-H ✖ ✔ ✖ ✔ ✖ ✔
GP+SA-H ✔ ✖ ✖ ✔ ✔ ✔
GENPROOF ✖ ✖ ✔ ✔ ✔ ✔

SA++ ✔ ✔ ✖ ✖ ✖ ✖

addLast, bstSkewed). Second, the remaining failures were
due to an inability to identify and apply the helper lemma
(listDelBeg, listDelEnd and popHighest). The failures of
SA++ are due to its reliance on a fixed set of heuristics to
perform both of these tasks — in the case of popHighest,
for example, the tactic did not include a necessary helper
lemma in its built-in database of auxiliary facts. The LLM-
based approaches, in contrast, were able to identify the lemma
needed to completely verify this program. On the other hand,
these approaches were less effective at supplying the right
existential witnesses in some cases. Interestingly, in some cases
the simpler approaches were able to find witnesses that the
more powerful GENPROOF could not. This is most likely due
to the nondeterministic nature of LLMs, causing GPT-5mini to
occasionally fail to find the right witness.

E. Discussion

1) Performance of Generated Code: As with most deductive
synthesizers, SYNVER prioritizes verifiability over performance
when generating candidate programs, and our experiments
suggest that it achieves this goal. That said, the performance
of synthesized programs remains an important concern. To
better understand the performance of the programs generated
by SYNVER, we investigated the impact of our requirement
that candidate programs use recursion instead of loops. For the
21 specifications that admit tail recursive implementations, we
found that SYNVER consistently generated tail recursive pro-
grams. Manual inspection of the compiled programs indicates
that GCC [27] was able to optimize all of these into versions
that were equivalent to those produced by an implementation
using loops. This suggests that modern compilers can be
effective at mitigating the performance impact of SYNVER’s
preference for recursive programs.

2) Comparison with SUSLik: SUSLik [3] is a state-of-the-
art deductive synthesizer for generating heap-manipulating
C-like programs. SUSLik takes as input the signature and
separation-logic pre- and post-conditions of the target program,
written as {pre}⇝ {post}, and searches for a corresponding
implementation. This search is carried out by applying a series
of deductive synthesis rules which decompose the current
synthesis task into subtasks. At each search step, the synthesizer
examines the current goal and uses heuristics to select the next
rule to apply. The space of programs that SUSLik considers
is thus constrained both by its set of synthesis rules and

the heuristics used to apply those rules. To compare these
two approaches, we applied SUSLik on our basic and heap-
manipulating benchmarks— SUSLik does not include rules
for reasoning about functions calls and thus can not handle
any program from the API benchmark. Of these benchmarks,
SUSLik was able successfully synthesize implementations of
9 of our basic and 22 of our heap-manipulating benchmarks.1

To illustrate some of the differences between SUSLik and
SYNVER, we highlight two of the programs that SUSLik was
not able to solve:

a) Allocate a block of n elements: The following specifi-
cation describes a function that allocates a set of n blocks.

{0 ≤ n}⇝ {0 ≤ n ; ret 7→ x ∗ sll(x, n)}

Solving this goal requires performing case analysis on n, but
SUSLik’s rule for case splitting requires the precondition to
include at least one heap predicate. Since the precondition here
only contains pure predicates, SUSLik cannot apply its case
analysis rule, and fails to synthesize a solution.

b) List membership: When attempting to synthesize a
program that checks whether a set s with n elements contains
the integer mem, SUSLik will encounter the following subgoal:

{mem = v ∧ 0 ≤ n1 ∧ n = 1 + n1 ∧ x ̸= null ∧ s = v1 ∪ s1;

ret 7→ a ∗ x 7→ v ∗ x 7→ nxt ∗ list mem(nxt,mem, n1, s1)}
⇝ {ret 7→ (1 + n1 = 0 ? 0 : 1) ∗ list mem(nxt,mem, n, v ∪ s1)}

Here, SUSLik fails to infer that the function should return 1,
as (1+n1 = 0) must be false. SUSLik has limited support for
reasoning about the pure fragment of specifications, and tries
to heuristically instantiate the return value of the function with
either a constant drawn from a predetermined set or one of
the variables in scope, e.g., mem and v. None of these are the
correct choice, and SUSLik fails to solve the synthesis goal.

3) Threats to Validity:
a) Internal validity: We cannot guarantee the absence of

data leak - i.e., the training set GPT-5mini used by SYNVER
excludes the target implementation (specifically the programs)
of our benchmark specifications. In fact, many of our data
points are based on standard and widely used data structure
implementations; therefore resulting in all the programs being
generated correctly on the first try.

SYNVER uses LLMs to generate and verify programs that
are inherently non-deterministic. Although our evaluation uses
fixed seeds to support reproducibility, we cannot guarantee that
our results are robust to changes in those seeds. This contrasts
with traditional program synthesizers, which typically produce
deterministic results.

b) External validity: SYNVER uses VST to verify gener-
ated programs. Thus, both SEPAUTO and the tactics predicted
by the prover LLM are geared to VST specifically and Rocq
more broadly. Alternative Rocq-based verification frameworks
for C programs also exist, e.g., Iris [28] and RefinedC [29].
Since proofs in these frameworks are similar to those in VST,

1These results use slightly weaker specifications for the insert and
delete programs than SYNVER, as they do not guarantee the order of
the elements in the resulting list.

our approach should naturally generalize to those settings,
although the prompts for the prover LLM and SEPAUTO would
need to be adapted to account for proof idioms and the custom
tactics provided by those frameworks.

4) Limitations: VST has built-in support for basic types,
arrays, and pointers to a single memory location. Reasoning
about data structures that reside in non-contiguous memory
locations requires manual effort to encode the data type in
separation logic and to prove helper lemmas for reasoning about
values of that type. At present, we have manually encoded
and verified Singly Linked Lists (SLL) and Binary Search
Trees (BST); SEPAUTO is equipped with helper lemmas for
discharging obligations related to those data structures. In
order to support other data structures, SYNVER would need
to be extended with the required specifications and helper
lemmas. Similar helper lemmas would be needed to reason
about composite data types, e.g., a graph data structure that
uses adjacency list implemented as an array of singly linked
lists.

V. RELATED WORK

A. Machine Learning for Interactive Theorem Proving

Many of the initial learning-based proof automation tech-
niques for interactive theorem provers focused on the problems
of premise selection [30], [31], [32], [33], i.e., identifying
lemmas that are relevant to a given theorem or proof state,
and tactic prediction, i.e., choosing the best tactic to apply in
a given proof state. Early tactic predication works explored
different neural encodings of an in-progress proof, including
GNNs [25] RNNs [34], [35] and Tree-LSTMs [36], [37], [38],
as well as how to enhance the proof state with additional
information, e.g., the current partial proof [37], the identifiers
currently appearing in a goal [39], and recent proof scripts [25].

More recent works have also explored the use of LLMs
for tactic prediction: Copra [40], for example, asks GPT-4
to predict the next tactic in a Rocq proof script, given the
current proof state, previous proof steps, and any relevant error
messages. LeanDojo [16] similarly queries an LLM to suggest
the next step in a proof in Lean [41]; both approaches attempt
to generate complete proofs by combining tactic prediction
with a heuristic search that explores different proof directions.
Other LLM-based approaches attempt to generate a complete
proof by first generating a candidate proof script and then
repairing any errors reported by the proof assistant [17], [42].
Prior LLM-based approaches also leverage purely symbolic
automation [43], [42] when generating proofs, although these
works rely on hammers [43], [44], tactics that attempt to
completely discharge subgoals in the proof assistant by calling
out to external automated theorem provers. Unlike SEPAUTO,
which is designed to handle VST-specific goals, hammers
are general-purpose tools meant to discharge arbitrary proof
conditions. Similarly, all of these prior works are trained
and evaluated on corpuses of generic theorems [36], [45],
[46] drawn from a diverse set of problem domains, including
pure mathematics, programming language metatheory, and
verification of pure functional programs.

B. Machine Learning for Program Verification

Learning-based approaches for program verification have
primarily targeted frameworks that rely on explicit annotations,
e.g., loop invariants, to enable automated reasoning, e.g.,
Dafny [47], Frama C [48], VeriFast [49], and Verus [50].
These annotations are used to generate verification conditions—
formulas in a decidable logic whose validity guarantees the
correctness of the original program— that can be discharged
by a automated theorem prover like Z3. A key challenge when
using these tools is identifying the right set of annotations
needed to verify a program. This task has traditionally fallen
to the user, but a number of tools have recently been proposed
for automatically generating these annotations. Code2Inv [51],
for example, combines Graph Representation Learning and
reinforcement learning to automatically infer loop invariants
for C programs. In the past few years, several tools have relied
on LLMs to generate annotations for program written in both
C [12], [11] and Rust [10], [52]. A recent study suggests that
LLMs struggle with inferring specifications in full separation
logic [53], resulting in hundreds of compilation and verification
errors across different prompts. As a consequence, most of
these tools use simpler assertion languages than separation
logic, preventing them from reasoning about the full range of
specifications that SYNVER currently supports — Frama C, for
example, cannot handle the separating implication operator, and
requires increasingly complex annotations for non-contiguous
heap allocated structures. A verification case study [54] of the
linked list module of Contiki [55] in Frama C, for example,
required 1400 lines of annotations to verify 176 lines of C
code.

C. Program Synthesis

Like SYNVER, traditional deductive synthesizers also gener-
ate correct-by-construction from formal specifications [56], [7],
[57], [2], [5], [3], [6], but unlike SYNVER, these works either
target specific application domains to achieve automation or
rely on user guidance to synthesize a program. Recent work has
shown that LLMs are effective at synthesizing programs with
less rigorous specifications, e.g., input-output examples [58],
[59]. LLMs have also shown potential to simultaneously
generate programs and their specifications in solver-aided
languages from natural language descriptions [8], [9], although
the LLM-generated specifications tend to be weaker than those
used by SYNVER, however. Even when the resulting programs
can be verified against their generated specifications there is
no guarantee that those specifications accurately capture the
user’s intent.

VI. CONCLUSION

We have presented SYNVER, a program synthesis framework
that is capable of generating high-assurance C programs for a
diverse range of problem domains. Each synthesized program
is accompanied by a formal proof— built using the Rocq-based
VST framework— that ensures it satisfies its target separation
logic specification. To accomplish this, SYNVER employs two
LLMs: a coder LLM which generates candidate programs from

user-provided specifications, and a prover LLM which helps
automatically verify the correctness of candidate programs. To
facilitate verification, SYNVER places a set of syntactic biases
on generated programs that make them amenable to automated
reasoning. SYNVER verifies programs using a hybrid strategy
that combines symbolic reasoning with LLM-assisted proof
generation, causing it to discharge proof obligations that neither
approach can handle on its own. We have demonstrated the
applicability of SYNVER on a diverse set of benchmarks drawn
from the program synthesis and verification literature.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their valuable
suggestions and feedback. The authors thank Andrew Appel for
his help with VST and his insights on tail call optimization in
GCC. The authors also thank Robert Thompson for helping us
set up the Rango evaluations. This work was partially supported
by the National Science Foundation under Grant CCF-SHF
2321680 and by a grant from the Purdue Research Foundation.

REFERENCES

[1] Z. Manna and R. Waldinger, “Synthesis: Dreams ⇒ programs,” IEEE
Trans. Softw. Eng., vol. 5, no. 4, p. 294–328, Jul. 1979. [Online].
Available: https://doi.org/10.1109/TSE.1979.234198

[2] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala, “Fiat: Deductive
synthesis of abstract data types in a proof assistant,” SIGPLAN
Not., vol. 50, no. 1, p. 689–700, jan 2015. [Online]. Available:
https://doi.org/10.1145/2775051.2677006

[3] N. Polikarpova, “Suslik: Synthesis of safe pointer-manipulating programs
(invited tutorial),” in 2019 Formal Methods in Computer Aided Design
(FMCAD), 2019, pp. 1–1.

[4] Y. Watanabe, K. Gopinathan, G. Pı̂rlea, N. Polikarpova, and I. Sergey,
“Certifying the synthesis of heap-manipulating programs,” Proc. ACM
Program. Lang., vol. 5, no. ICFP, aug 2021. [Online]. Available:
https://doi.org/10.1145/3473589

[5] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and A. Chlipala,
“Narcissus: correct-by-construction derivation of decoders and encoders
from binary formats,” Proc. ACM Program. Lang., vol. 3, no. ICFP, jul
2019. [Online]. Available: https://doi.org/10.1145/3341686

[6] A. Mishra and S. Jagannathan, “Specification-guided component-
based synthesis from effectful libraries,” Proc. ACM Program.
Lang., vol. 6, no. OOPSLA2, oct 2022. [Online]. Available:
https://doi.org/10.1145/3563310

[7] D. Pavlovic, P. Pepper, and D. R. Smith, “Formal derivation of concurrent
garbage collectors,” in Mathematics of Program Construction. Springer
Berlin Heidelberg, 2010, pp. 353–376.

[8] M. R. H. Misu, C. V. Lopes, I. Ma, and J. Noble, “Towards
ai-assisted synthesis of verified dafny methods,” Proc. ACM Softw.
Eng., vol. 1, no. FSE, pp. 812–835, 2024. [Online]. Available:
https://doi.org/10.1145/3643763

[9] S. Chakraborty, G. Ebner, S. Bhat, S. Fakhoury, S. Fatima, S. K.
Lahiri, and N. Swamy, “Towards neural synthesis for smt-assisted proof-
oriented programming,” in 47th IEEE/ACM International Conference
on Software Engineering, ICSE 2025, Ottawa, ON, Canada, April
26 - May 6, 2025. IEEE, 2025, pp. 1755–1767. [Online]. Available:
https://doi.org/10.1109/ICSE55347.2025.00002

[10] C. Yang, X. Li, M. R. H. Misu, J. Yao, W. Cui, Y. Gong, C. Hawblitzel,
S. K. Lahiri, J. R. Lorch, S. Lu, F. Yang, Z. Zhou, and S. Lu, “Autoverus:
Automated proof generation for rust code,” CoRR, vol. abs/2409.13082,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2409.13082

[11] M. Sevenhuijsen, K. Etemadi, and M. Nyberg, “Vecogen: Automating
generation of formally verified c code with large language models,”
2025. [Online]. Available: https://arxiv.org/abs/2411.19275

[12] C. Wen, J. Cao, J. Su, Z. Xu, S. Qin, M. He, H. Li, S.-C. Cheung, and
C. Tian, “Enchanting program specification synthesis by large language
models using static analysis and program verification,” in Computer
Aided Verification, A. Gurfinkel and V. Ganesh, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 302–328.

https://doi.org/10.1109/TSE.1979.234198
https://doi.org/10.1145/2775051.2677006
https://doi.org/10.1145/3473589
https://doi.org/10.1145/3341686
https://doi.org/10.1145/3563310
https://doi.org/10.1145/3643763
https://doi.org/10.1109/ICSE55347.2025.00002
https://doi.org/10.48550/arXiv.2409.13082
https://arxiv.org/abs/2411.19275

[13] J. Reynolds, “Separation logic: a logic for shared mutable data structures,”
in Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, 2002, pp. 55–74.

[14] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “Vst-floyd:
A separation logic tool to verify correctness of C programs,” J. Autom.
Reason., vol. 61, no. 1-4, pp. 367–422, 2018. [Online]. Available:
https://doi.org/10.1007/s10817-018-9457-5

[15] The Coq Development Team, “The Coq reference manual – release
8.19.0,” https://coq.inria.fr/doc/V8.19.0/refman, 2024.

[16] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil,
R. Prenger, and A. Anandkumar, “LeanDojo: Theorem proving with
retrieval-augmented language models,” in Neural Information Processing
Systems (NeurIPS), 2023.

[17] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra,
K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 1229–1241. [Online].
Available: https://doi.org/10.1145/3611643.3616243

[18] P. Mukherjee, M. Lu, and B. Delaware, “LLM-Assisted Synthesis
of High-Assurance C Programs,” sep 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.17219749

[19] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, Oct. 1969.

[20] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “Vst-floyd:
A separation logic tool to verify correctness of c programs,” Journal of
Automated Reasoning, vol. 61, pp. 367–422, 2018.

[21] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Analysis,
classification, and examples,” ACM Computing Surveys (CSUR), vol. 46,
no. 3, pp. 1–51, 2014.

[22] Y. Xiao, “Hyperwand: Extending the magic wand operator in separation
logic,” j, 2023.

[23] K. Thompson, N. Saavedra, P. Carrott, K. Fisher, A. Sanchez-Stern,
Y. Brun, J. F. Ferreira, S. Lerner, and E. First, “Rango: Adaptive
retrieval-augmented proving for automated software verification,” ICSE,
2025. [Online]. Available: https://people.cs.umass.edu/∼brun/pubs/pubs/
Thompson25icse.pdf

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[25] L. Blaauwbroek, J. Urban, and H. Geuvers, “The tactician: A seamless,
interactive tactic learner and prover for coq,” in International Conference
on Intelligent Computer Mathematics. Springer, 2020, pp. 271–277.

[26] A. Chlipala, Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press, 2013.

[27] B. J. Gough and R. Stallman, An Introduction to GCC. Network Theory
Limited Bristol, UK, 2004.

[28] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and
D. Dreyer, “Iris from the ground up: A modular foundation for higher-
order concurrent separation logic,” Journal of Functional Programming,
vol. 28, p. e20, 2018.

[29] M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and
D. Garg, “Refinedc: automating the foundational verification of c
code with refined ownership types,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, 2021, pp. 158–174.

[30] J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban,
“Premise selection for mathematics by corpus analysis and kernel
methods,” J. Autom. Reason., vol. 52, no. 2, p. 191–213, Feb. 2014.
[Online]. Available: https://doi.org/10.1007/s10817-013-9286-5

[31] T. Gauthier and C. Kaliszyk, “Premise selection and external provers
for hol4,” in Proceedings of the 2015 Conference on Certified
Programs and Proofs, ser. CPP ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 49–57. [Online]. Available:
https://doi.org/10.1145/2676724.2693173

[32] M. Wang, Y. Tang, J. Wang, and J. Deng, “Premise selection for
theorem proving by deep graph embedding,” in Proceedings of the
31st International Conference on Neural Information Processing Systems,
ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p.
2783–2793.

[33] B. Piotrowski, R. F. Mir, and E. Ayers, “Machine-learned premise
selection for lean,” in Automated Reasoning with Analytic Tableaux and
Related Methods: 32nd International Conference, TABLEAUX 2023,
Prague, Czech Republic, September 18–21, 2023, Proceedings. Berlin,

Heidelberg: Springer-Verlag, 2023, p. 175–186. [Online]. Available:
https://doi.org/10.1007/978-3-031-43513-3 10

[34] D. Huang, P. Dhariwal, D. Song, and I. Sutskever, “Gamepad: A learning
environment for theorem proving,” arXiv preprint arXiv:1806.00608,
2018.

[35] A. Sanchez-Stern, Y. Alhessi, L. Saul, and S. Lerner, “Generating
correctness proofs with neural networks,” in Proceedings of the
4th ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, ser. MAPL 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–10. [Online].
Available: https://doi.org/10.1145/3394450.3397466

[36] K. Yang and J. Deng, “Learning to prove theorems via interacting with
proof assistants,” in International Conference on Machine Learning
(ICML), 2019.

[37] E. First, Y. Brun, and A. Guha, “Tactok: semantics-aware proof synthesis,”
Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 231:1–231:31,
2020. [Online]. Available: https://doi.org/10.1145/3428299

[38] E. First and Y. Brun, “Diversity-driven automated formal verification,”
in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 749–761. [Online]. Available:
https://doi.org/10.1145/3510003.3510138

[39] A. Sanchez-Stern, E. First, T. Zhou, Z. Kaufman, Y. Brun, and T. Ringer,
“Passport: Improving automated formal verification using identifiers,”
ACM Trans. Program. Lang. Syst., vol. 45, no. 2, pp. 12:1–12:30, 2023.
[Online]. Available: https://doi.org/10.1145/3593374

[40] A. Thakur, G. Tsoukalas, Y. Wen, J. Xin, and S. Chaudhuri, “An
in-context learning agent for formal theorem-proving,” 2024. [Online].
Available: https://arxiv.org/abs/2310.04353

[41] L. De Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer,
“The Lean theorem prover (system description),” in Automated Deduction-
CADE-25: 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings 25. Springer, 2015,
pp. 378–388.

[42] M. Lu, B. Delaware, and T. Zhang, “Proof automation with large language
models,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 1509–1520.
[Online]. Available: https://doi.org/10.1145/3691620.3695521

[43] A. Jiang, K. Czechowski, M. Jamnik, P. Milos, S. Tworkowski, W. Li,
and Y. T. Wu, “Thor: Wielding hammers to integrate language models
and automated theorem provers,” in NeurIPS, 2022.

[44] z. Czajka and C. Kaliszyk, “Hammer for coq: Automation for dependent
type theory,” J. Autom. Reason., vol. 61, no. 1–4, p. 423–453, Jun. 2018.
[Online]. Available: https://doi.org/10.1007/s10817-018-9458-4

[45] K. Zheng, J. M. Han, and S. Polu, “Minif2f: a cross-system benchmark for
formal olympiad-level mathematics,” arXiv preprint arXiv:2109.00110,
2021.

[46] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings, A. Thakur,
and S. Chaudhuri, “Putnambench: evaluating neural theorem-provers
on the putnam mathematical competition,” in Proceedings of the 38th
International Conference on Neural Information Processing Systems, ser.
NIPS ’24. Red Hook, NY, USA: Curran Associates Inc., 2025.

[47] K. R. M. Leino, “Dafny: an automatic program verifier for functional
correctness,” in Proceedings of the 16th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, ser.
LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010, p. 348–370.

[48] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-c: A software analysis perspective,” Formal aspects of computing,
vol. 27, no. 3, pp. 573–609, 2015.

[49] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens, “Verifast: A powerful, sound, predictable, fast verifier for
c and java,” in NASA formal methods symposium. Springer, 2011, pp.
41–55.

[50] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,
J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying rust programs
using linear ghost types,” Proceedings of the ACM on Programming
Languages, vol. 7, no. OOPSLA1, pp. 286–315, 2023.

[51] X. Si, A. Naik, H. Dai, M. Naik, and L. Song, “Code2inv: A deep learning
framework for program verification,” in Computer Aided Verification:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21–24, 2020, Proceedings, Part II 32. Springer, 2020, pp. 151–164.

[52] T. Chen, S. Lu, S. Lu, Y. Gong, C. Yang, X. Li, M. R. H. Misu,
H. Yu, N. Duan, P. Cheng, F. Yang, S. K. Lahiri, T. Xie, and L. Zhou,

https://doi.org/10.1007/s10817-018-9457-5
https://coq.inria.fr/doc/V8.19.0/refman
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.5281/zenodo.17219749
https://people.cs.umass.edu/~brun/pubs/pubs/Thompson25icse.pdf
https://people.cs.umass.edu/~brun/pubs/pubs/Thompson25icse.pdf
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1007/978-3-031-43513-3_10
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1145/3428299
https://doi.org/10.1145/3510003.3510138
https://doi.org/10.1145/3593374
https://arxiv.org/abs/2310.04353
https://doi.org/10.1145/3691620.3695521
https://doi.org/10.1007/s10817-018-9458-4

“Automated proof generation for rust code via self-evolution,” in The
Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. [Online].
Available: https://openreview.net/forum?id=2NqssmiXLu

[53] M. Rego, W. Fan, X. Hu, S. Dod, Z. Ni, D. Xie, J. DiVincenzo, and L. Tan,
“Evaluating the ability of gpt-4o to generate verifiable specifications in
verifast,” in 2025 IEEE/ACM Second International Conference on AI
Foundation Models and Software Engineering (Forge). IEEE, 2025, pp.
246–251.

[54] A. Blanchard, N. Kosmatov, and F. Loulergue, “Ghosts for lists: A critical
module of contiki verified in frama-c,” in NASA Formal Methods, A. Dutle,
C. Muñoz, and A. Narkawicz, Eds. Cham: Springer International
Publishing, 2018, pp. 37–53.

[55] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible
operating system for tiny networked sensors,” in 29th annual IEEE
international conference on local computer networks. IEEE, 2004, pp.
455–462.

[56] D. Smith, “Kids: a semiautomatic program development system,” IEEE
Transactions on Software Engineering, vol. 16, no. 9, pp. 1024–1043,
1990.

[57] F. Franchetti, T.-M. Low, T. Popovici, R. Veras, D. G. Spampinato,
J. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “SPIRAL:
Extreme performance portability,” Proceedings of the IEEE, special issue
on “From High Level Specification to High Performance Code”, vol.
106, no. 11, 2018.

[58] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, “Program synthesis
with large language models,” 2021.

[59] S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, and S. K. Lahiri, “Llm-
based test-driven interactive code generation: User study and empirical
evaluation,” IEEE Trans. Software Eng., vol. 50, no. 9, pp. 2254–2268,
2024. [Online]. Available: https://doi.org/10.1109/TSE.2024.3428972

https://openreview.net/forum?id=2NqssmiXLu
https://doi.org/10.1109/TSE.2024.3428972

	Introduction
	Background
	Approach
	Phase 1: Program Generation
	Phase 2: Program Verification

	Evaluation
	Benchmark Construction
	RQ1: Effectiveness of SynVer
	RQ2: Composition of the coder LLM Prompt
	RQ3: Alternative Proof Automation Strategies
	Discussion
	Performance of Generated Code
	Comparison with SUSLik
	Threats to Validity
	Limitations

	Related Work
	Machine Learning for Interactive Theorem Proving
	Machine Learning for Program Verification
	Program Synthesis

	Conclusion
	References

