
ROCAS: Root Cause Analysis of Autonomous Driving Accidents
via Cyber-Physical Co-mutation

Shiwei Feng
Purdue University
West Lafayette, USA
feng292@purdue.edu

Yapeng Ye
Purdue University
West Lafayette, USA
ye203@purdue.edu

Qingkai Shi∗
The State Key Laboratory for
Novel Software Technology,

Nanjing University
Nanjing, China

qingkaishi@nju.edu.cn

Zhiyuan Cheng
Purdue University
West Lafayette, USA

cheng443@purdue.edu

Xiangzhe Xu
Purdue University
West Lafayette, USA
xu1415@purdue.edu

Siyuan Cheng
Purdue University
West Lafayette, USA

cheng535@purdue.edu

Hongjun Choi
DGIST

Daegu, South Korea
hongjun@dgist.ac.kr

Xiangyu Zhang
Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

ABSTRACT
As Autonomous driving systems (ADS) have transformed our daily
life, safety of ADS is of growing significance. While various test-
ing approaches have emerged to enhance the ADS reliability, a
crucial gap remains in understanding the accidents causes. Such
post-accident analysis is paramount and beneficial for enhancing
ADS safety and reliability. Existing cyber-physical system (CPS)
root cause analysis techniques are mainly designed for drones and
cannot handle the unique challenges introduced by more complex
physical environments and deep learning models deployed in ADS.
In this paper, we address the gap by offering a formal definition of
ADS root cause analysis problem and introducing Rocas, a novel
ADS root cause analysis framework featuring cyber-physical co-
mutation. Our technique uniquely leverages both physical and cy-
ber mutation that can precisely identify the accident-trigger entity
and pinpoint the misconfiguration of the target ADS responsible for
an accident. We further design a differential analysis to identify the
responsible module to reduce search space for the misconfiguration.
We study 12 categories of ADS accidents and demonstrate the effec-
tiveness and efficiency of Rocas in narrowing down search space
and pinpointing the misconfiguration. We also show detailed case
studies on how the identified misconfiguration helps understand
rationale behind accidents.

ACM Reference Format:
Shiwei Feng, Yapeng Ye, Qingkai Shi, Zhiyuan Cheng, Xiangzhe Xu, Siyuan
Cheng, Hongjun Choi, and Xiangyu Zhang. 2024. ROCAS: Root Cause Anal-
ysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation. In
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3691620.3695530

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10.
https://doi.org/10.1145/3691620.3695530

https://futurism.com/the-byte/tesla-slamming-brakes-sees-stop-sign-
billboard

Figure 1: A real-world emergency braking case reported
by [7], as the Tesla autopilot recognizes the stop sign from
the road-side billboard. Billboards are common and benign,
but such scenarios can be accident-inducing.

1 INTRODUCTION
Autonomous driving has achieved remarkable breakthroughs [34,
59] and becomes closer and closer to our daily life [41, 82]. From
self-driving cars to delivery robots, autonomous driving techniques
are revolutionizing the way we live and work. A typical modern
autonomous driving system (ADS) employs perception modules
to interpret and understand the surrounding environment, predic-
tion and planning algorithms to interact with other vehicles, and
controllers to maintain stability and propulsion. These modules
can each be incorporated with Deep Learning algorithms, which
enhance the ADS’s intelligence and adaptability over time.

However, as with any complex system, ADS are always prone to
errors, which may lead to runtime failures. Due to the inherent un-
certainty in Deep Learning models, the complexity of the physical
world, and the imprecision in control software [23], ADS accidents
have been witnessed [9–12, 15], many of them having devastating
consequences. However, the underlying reasons behind these acci-
dents are not readily apparent. For example, as shown in Figure 1,
the Tesla autopilot recognizes the vague stop sign pattern from a
road-side billboard, leading to an emergency braking. While the
billboard means no harm, such a scenario can be confusing to ADS
and potentially induce accidents. Therefore, post-accident analysis
that identifies accident causes is of increasing importance for ADS
companies and developers to improve ADS safety and reliability.

Traditionally, post-accident analysis has been performed either
in the physical domain, e.g., physical crime scene investigation [60],
or in the cyber domain, focusing on disclosing trails and prove-
nance of cyber attacks [48, 65, 86]. However, ADS is essentially a
cyber-physical system (CPS) that requires co-analysis of both the

ar
X

iv
:2

40
9.

07
77

4v
1

 [
cs

.S
E

]
 1

2
Se

p
20

24

https://orcid.org/0000-0001-6959-4327
https://orcid.org/0000-0001-7232-0650
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0001-7280-6079
https://orcid.org/0000-0001-6619-781X
https://orcid.org/0009-0006-0903-6917
https://orcid.org/0000-0003-4706-934X
https://orcid.org/0000-0002-9544-2500
https://doi.org/10.1145/3691620.3695530
https://doi.org/10.1145/3691620.3695530

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

cyber and physical worlds. While there are a number of pioneering
post-accident analysis techniques in CPS domain, they mainly focus
on drone systems rather than ADS. For instance, MAYDAY [53]
employs program analysis to diagnose accidents caused by con-
troller bugs and mission command bugs using a pre-constructed
dependency graph between controllers. RVPlayer [22] decouples
aggregated environmental disturbances during logging and applies
them to drones for faithful replay. Although these techniques are
effective in their targeted scopes, they can hardly be applied to
the ADS domain. Firstly, ADS introduces more complex modules
such as perception, prediction, and planning modules. MAYDAY
relying on the domain specific knowledge of controller programs
cannot support other complex modules in ADS. Furthermore, deep
learning models are widely used in ADS, which introduce a signifi-
cant amount of inherent uncertainty for such traditional program
analysis based techniques. Secondly, ADS operates in much more
complicated and interactive physical environments, including a lot
of external entities such as other vehicles, pedestrians, traffic lights.
Thus, it is not straightforward for RVPlayer to decouple and reapply
these indirect environment influences, and thus the accident replay
on ADS is highly challenging.

As far as we know, there is no existing root cause analysis de-
signed for ADS. In this paper, we define ADS root cause analysis as a
post-accident analysis to identify the triggering entity (e.g., external
physical objects) and themisconfiguration (e.g., configurable param-
eters used by ADS) that causes the accident. We propose Rocas, a
novel ADS root cause analysis framework via cyber-physical co-
mutation. Given an accident, our technique can precisely pinpoint
the triggering entity and the misconfiguration of the target ADS.
Specifically, Rocas first faithfully replay the accident execution
inside the simulator, using the recorded locations of ADS and other
entities during runtime. Then it performs physical mutation to iden-
tify the trigger entity, by finding the minimal environmental entity
mutation that suppresses the accident, without changing the ADS’s
configuration. Finally, Rocas conducts cyber mutation to pinpoint
the misconfiguration, by searching for the minimal ADS config-
uration mutation, without changing the ADS’s trajectory before
the accident. In practice, cyber mutation proves to be highly time-
consuming, primarily due to two reasons. Firstly, the search space is
extensive, as exemplified by Baidu Apollo [2], which encompasses
over 1100 configurations. Deciding which subsets of configurations
to mutate and determining the magnitude of the mutated values
requires considerable effort. Secondly, this search process is not
easily parallelizable. Despite the availability of a decent GPU with
8 GB graphical memory, it can only run one simulator and one
ADS concurrently. As a result, we further propose a differential
analysis algorithm on ADS execution records to reduce the search
space for cyber mutation. Details can be found in Section 5. Our
contributions are summarized as follows.

• We formally define the problem of ADS root cause analysis
and propose Rocas, a novel ADS root cause analysis frame-
work, which incorporates both physical and cyber mutation.
These techniques accurately identify the triggering entity
and pinpoint the misconfiguration, respectively.

• We introduce a differential analysis algorithm that effec-
tively reduces the search space for the misconfiguration by
comparing two execution records.

Communication Layer (ROS/CyberRT)
Autonomous Driving System

Sensing

Camera

GPS

LiDAR

Prediction

Obstacle
Prediction

Perception

Lane
Detection

Object
Detection

Planning

Global
Planner

Local
Planner

Input (Vehicle States,
Environm

ent, etc)

O
utput (C

ontrol C
om

m
ands)

Obstacle
Priority

Figure 2: A general architecture of ADS with major modules.

• We implement a prototype of Rocas and evaluate its effec-
tiveness on 12 different types of ADS accidents, including a
total of 144 accident cases. Through extensive experiments,
we demonstrate that Rocas can precisely pinpoint the mis-
configuration responsible for each accident with high effi-
ciency. The code, video demos, and supplementary materials
are available at [6].

2 BACKGROUND
We introduce the typical ADS architecture (Section 2.1) and ADS
communication framework (Section 2.2).

2.1 ADS Architecture
ADS architecture contains multiple modules, while the four most
closely linked to ADS decision-making are: sensing, perception,
prediction, and planning, as shown in Figure 2.

These modules operate in a cascaded fashion, transforming from
the initial hardware sensor input (e.g., video stream and LiDAR
point cloud) to the final driving controls (e.g., steering, acceleration,
and braking). Specifically, (1) Sensing utilizes a variety of sensors
(cameras, LiDARs, RADARs, etc.) to gather raw environmental data.
(2) Perception interprets this data to understand the environment
using deep learning for tasks like traffic sign recognition and ob-
ject tracking. (3) Prediction assesses current object statuses to
predict future movements and prioritize actions, aiding in acci-
dent avoidance. (4) Planning comprises a global planner for route
determination and a local planner for real-time trajectory adjust-
ments based on environmental conditions. (5) Control executes
the driving plan by controlling vehicle movements and adjusting
to real-time conditions to ensure adherence to the trajectory.

Each module has hundreds of configurable parameters, such as
the obstacle buffer or the reactive braking distance. While these
configurations add flexibility to ADS, they simultaneously increase
the difficulty of testing and debugging.

2.2 ADS Communication Framework
ADS relies on communication frameworks for data transmission
among modules, which help decouple the functions of diverse mod-
ules and facilitate system development. ADS communication frame-
works are typically based on Robot Operating System (ROS). ROS
employs a publish-and-subscribe mechanism, whereby each ROS
node can publish data under a specific topic, ensuring that all nodes
subscribing to this topic obtain the published data. For example,
Baidu Apollo [2], as one of the most popular ADS, utilized ROS as
its communication framework in the first few versions and later
developed CyberRT[3] based on ROS, with optimized efficiency.

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3 MOTIVATION
This section presents an accident example to illustrate ADS root
cause analysis challenges and showcase our technique.

3.1 Motivating Example
LAV. LAV [21] is an open-source ADS that won the champion of
the 2021 CARLA AD Challenge [13]. Figure 3 depicts its high-level
code logic. It is a representative design of a modularized ADS, fol-
lowing the diagram of perception-prediction-planning-control. The
function run_step() at Line 4 is regularly executed inside the
main loop at a frequency of 20Hz. At Lines 6-9, the ADS retrieves
location information (e.g., gps), perception raw data (e.g., lidar
and tel_rgb), and vehicle states (e.g., speed) from sensors. The
location information gps is used to determine the road option opt,
e.g., turning right or moving forward (Line 13). LiDAR is used to
plan ADS’s trajectory ego_plan_traj and predict other vehi-
cles’ trajectories other_pred_traj (Lines 15-16). Telephoto im-
ages tel_rgb are fed into brake_model() to obtain a braking
probability pred_brake based on traffic lights and hazard condi-
tions (Line 18). The controller pid_control() leverages the pro-
cessed data to produce control commands (i.e., steer, throt and
brake) at Lines 22-24. Additionally, post-processings are necessary
to ensure adherence to the constraints, such as collision avoidance
(function plan_collide), hazard stop (BRAKE_THRESHOLD),
and speed limit (MAX_SPEED) at Lines 25-32.

Accident Example. Figure 4 illustrates the scenario wherein an
emergent braking accident is unexpectedly triggered. In this in-
stance, the ADS (shown as the blue car) is following the mission to
navigate through the roundabout. However, during its execution,
the AD vehicle unexpectedly comes to a stop within the roundabout
(at the red point). This unforeseen emergency braking within the
roundabout could lead to serious rear-end collisions.

Accident Explanation. In this example, a red truck aheadADS trig-
gers a misconfiguration BRAKE_THRESHOLD and leads to an acci-
dent. As shown at Line 27 in Figure 3, the variable pred_brake
is compared with a fixed threshold BRAKE_THRESHOLD, whose
value is set to 0.1 at Line 2, to determine if a brake is necessary.
pred_brakemeans the probability of braking, computed by a DL
model brake_model (Line 18) which takes as input the images
from ADS’s camera with telephoto lens . Figure 5a shows the cap-
tured images when the AD vehicle stops within the roundabout. In
normal cases, without a red light, the brake_model() outputs
a value (i.e., pred_brake) close to zero, which is smaller than
the BRAKE_THRESHOLD. However, in this example, there is a red
struck positioned at this particular angle, which shares partial fea-
ture with a red traffic light and makes the variable pred_brake
fluctuate around 0.2. Note that this is still a relatively small braking
probability. However, after comparison with the fixed threshold,
the variable brake is set to 1 at Line 28 and passed to the controller
at Line 34, resulting in an emergency braking.

3.2 Limitation of Existing Works
After an accident happens, post-accident analysis must be con-
ducted to identify the underlying root causes, including both the
external triggering entities (e.g., the red truck in Figure 4) and the

internal misconfigurations (e.g., the variable pred_bake), and
improve the reliability of the ADS.

Unlike traditional software root cause analysis, ADS is a cyber-
physical system (CPS), which requires the joint analysis of both the
cyber and physical domains. Existing CPS post-accident analysis
frameworks mainly focus on drone systems. There are two main
types of techniques, i.e., program analysis based and what-if reason-
ing based. These post-accident analysis for drone systems usually
focus on the controller components and primarily address simple
environmental factors such as weather conditions (e.g., wind gust).
However, ADS has a much more complex architecture, equipped
with sophisticated modules such as perception, prediction, and
planning modules, and also with deep learning models. In addition,
ADS operates in much more complicated physical environments,
including external entities such as vehicles, pedestrians, and traf-
fic lights. These factors make it difficult to directly apply existing
methods for drone systems to ADS scenarios.
Program analysis based method. MAYDAY [53] utilizes pro-
gram analysis to help diagnose accidents caused by controller bugs
and mission command bugs. It leverages a pre-constructed depen-
dency graph between controllers to find the state deviation. Thus,
MAYDAY can only identify a potentially problematic basic block in
control program, without pinpointing a specific line of code or a
configuration. Also, it is based on the domain specific knowledge of
controller programs and cannot support other complex modules in
ADS, such as the perception, prediction, and planning. Furthermore,
deep learning models are widely used in ADS, which introduce a
significant amount of inherent uncertainty for traditional program
analysis based techniques.
What-if reasoning based method. Due to the limitation of pro-
gram analysis based techniques, some works investigate the acci-
dent root causes by storing the environmental disturbances and
replaying the execution. RVPlayer [22] decouples the aggregated en-
vironmental disturbances during logging and reapplies this distur-
bance on drones to enable faithful replay. However, ADS operates in
much more complicated and interactive physical environments, in-
cluding a lot of external entities such as other vehicles, pedestrians,
traffic lights. Different from drone systems that are primarily reac-
tive to environmental disturbances, ADS is required to be proactive
to handle these intricate situations. Thus, it is not straightforward
to decouple and reapply these indirect environment influences, and
the accident replay on ADS is highly challenging.

3.3 Our Approach
In this paper, we propose an ADS root cause analysis featuring
cyber-physical co-mutation to identify the accident causes. To apply
themutation, we first need to reconstruct the accident in a simulator
(we call it the accident execution). We instrument the ADS to record
its own locations fromGPS and the bounding box (including relative
locations with respect to ADS) of other vehicles. Given the map
file, all the locations can be transformed into simulator locations,
enabling the simulator to replay the accident execution.

After replaying the accident execution in the simulator, we apply
two steps of mutation to identify the triggering entities and miscon-
figurations, separately. First, we keep all ADS configurations (i.e.,
the cyber space) unchanged, only mutate the physical conditions,

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

1 const MAX_SPEED = 35 // km/h
2 const BRAKE_THRESHOLD = 0.1
3 MISSION = read_config_file()
4 def run_step(input_data) {
5 // Get sensor data and vehicle states
6 gps = input_data.get('GPS')
7 lidar = input_data.get('LIDAR')
8 tel_rgb = input_data.get('TEL_RGB')
9 speed = input_data.get('ego_speed') // m/s
10 ...
11 // Get road option from global planner,
12 // e.g., RIGHT/LEFT/FORWARD/STOP.
13 opt = waypointer(MISSION, gps)
14 // Motion prediction & local planning
15 ego_plan_traj, other_pred_traj = \
16 infer_model(lidar, opt)
17 // Brake prediction from telephoto lens images
18 pred_brake = brake_model(tel_rgb)
19 ...
20 // Control command
21 steer, throt, brake = 0, 0, 0
22 if not has_none_val(ego_plan_traj):
23 steer, throt, brake = \
24 pid_control(ego_plan_traj, speed, opt)
25 collide_flag = plan_collide(\
26 ego_plan_traj, other_pred_traj)
27 if pred_brake > BRAKE_THRESHOLD:
28 throt, brake = 0, 1
29 elif collide_flag:
30 throt, brake = 0, 1
31 if speed ∗ 3.6 > MAX_SPEED:
32 throt = 0
33 ...
34 return steer, throt, brake
35 }

Figure 3: High-level Code Logic of LAV [21]

Planned
Trajectory

Mission
Waypoints

Emergency
Braking

Range of
Camera

Figure 4: An accident example for LAV. The vehicle unexpectedly
stops within the roundabout, triggered by the red truck ahead.

Motivation Case

(a) Emergency Braking.

Motivation Case

(b) No Emergency Braking.

Figure 5: Subfig (a) shows the image captured by ADS’s cameras
when it stops within the roundabout. Subfig (b) removes the red
truck in the middle region and prevents the accident.

replay the execution in the simulator, and observe if the accident
still occurs. We call this process as physical mutation, aiming to find
the minimal mutation (in physical space) to suppress the accident.
The example in Section 3.1 demonstrates an emergency braking
accident. It is possible that a specific physical condition may fool
deep learning models used by ADS and cause them to mistake a red
light or an obstacle on the path, resulting in an emergency braking
decision. Figure 5a displays the images captured by the ADS’s cam-
era at the emergency braking point within the roundabout. If we
disable the red truck appearing in the middle region of the cameras
(as shown in Figure 5b), while keeping all configurations and other
physical conditions unchanged, the subject vehicle will not stop
within the roundabout during replay. Thus, we know that the red
truck is the triggering entity that leads to the accident.

In the second mutation, we search for the misconfiguration.
Unlike physical mutation, in this step, we only mutate the configu-
rations inside ADS, while keeping the physical space. The mutation
in this process is referred to as cyber mutation. This mutation aims
to find the minimal mutation (in cyber space) to suppress the acci-
dent and outputs the misconfigurations that lead to the accident.
For example, there are two configurations shown in Figure 3, i.e.,
MAX_SPEED and BRAKE_THRESHOLD (Line 1-2). When we in-
crease the value of BRAKE_THRESHOLD to 0.5, the accident is
suppressed during the replay, and the subject vehicle can success-
fully pass through the roundabout. However, if we mutate another
configuration, such as MAX_SPEED (e.g., set its value to 50), the ac-
cident still occurs. This reveals that BRAKE_THRESHOLD is highly

likely to be the misconfiguration and helps us identify Line 27,
which is responsible for the accident.

However, a challenge is that cyber mutation can be very time-
consuming due to the large search space of configurations. To
reduce search space, we identify the initial deviating module that is
likely to cause the accident before searching for misconfigurations
in cyber mutation. Specifically, we record the channel messages
communicated among modules to represent an execution record.
Then, we conduct differential analysis on the reference execution
records (obtained from physical mutation) and the accident execu-
tion records, to facilitate the initial deviating module.

To summarize, we propose Rocas, an ADS root cause analysis
framework for post-accident analysis. The overall system design of
Rocas is shown in Figure 6.

In Phase-I, given an accident, Rocas replays the accident exe-
cution in simulation. Then in Phase-II, Rocas conducts physical
mutation on the accident execution, producing the triggering entity
and an accident-free reference execution. In Phase-III, by doing
differential analysis on the two execution records from accident
execution and reference execution, Rocas identifies the initial devi-
ating module in order to reduce search space for Phase-IV. Finally
in Phase-IV, Rocas runs cyber mutation only within the identi-
fied module and outputs the misconfiguration. More details are
elaborated in Section 5.

4 DEFINITION OF ADS ROOT CAUSE ANALYSIS
We formally define ADS execution and accident root cause analysis.

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

4.1 ADS Execution
An execution takes as input a configurable ADS and physical en-
vironment (e.g., map, weather, and other vehicles). The execution
records how the ADS reacts to the environment and reports whether
an accident happens during the execution.
Configurable ADS. Formally, we denote the type of the cyber
configuration as C B C1 × C2 × · · · × C𝑟 , where C𝑖 B R𝜇𝑖 denotes
the type of the configuration for module 𝑖 .
Physical environment. Physical environment consists of two
parts: the actor entities (e.g., moving vehicles) and the map entities
(e.g., traffic cones, traffic lights, and buildings). Formally, we use
A B A1 × A2 × · · · × A 𝑗 and M B M1 × M2 × · · · × M𝑘 , to
denote the type of the states for actor entities and map entities,
respectively. Specifically, supposing that each entity has 𝜎 proper-
ties (e.g., location, orientation, velocity), A𝑖 B R

𝜎 andM𝑖 B R
𝜎

denotes the type of the states the 𝑖th actor entity and that for the
𝑖th map entity, respectively.
ADS execution. One complexity of ADS execution is that proper-
ties of an actor entity may change over time. We thus utilize 𝐴𝑖@𝑡 ,
where 𝐴𝑖 ∈ A𝑖 , to represent the state of the 𝑖-th actor entity at
timestamp 𝑡 . Moreover, we adopt 𝐴𝑖@[𝑡1, 𝑡2] to denote a sequence
of states of the 𝑖-th actor entity during the time span [𝑡1, 𝑡2]. For
simplicity, we use 𝐴@𝑡 , where 𝐴𝑖 ∈ A, to denote the state of all
actor entities at the timestamp 𝑡 and 𝐴@[𝑡1, 𝑡2] the state sequences
of all actor entities during the time span [𝑡1, 𝑡2].

Formally, we use E to denote the type of an execution: E : C ×
M × A → List[A] × B. Intuitively, an execution takes as input
the configuration of the ADS, the states of the map entities and
actor entities, and outputs the states of every actor entity at all
timestamps. Moreover, it also outputs a boolean value indicating
whether an accident happens (i.e., collision or emergency braking).

To facilitate discussion, we use 𝐶 to denote a concrete instance
of the cyber configuration; Similarly, 𝐴 for actor entities, 𝑀 for
map entities and 𝐸 for an execution. Note that we assume the first
element in 𝐴 always denotes the AD vehicle, namely 𝐴0.

4.2 ADS Accident Root Cause Analysis
Root cause analysis for ADS accident aims to identify the triggering
entities and the misconfigurations. We formally define an accident
execution as 𝐸

(
𝐶,𝑀,𝐴@𝑡0

)
→ ⟨𝐴@[𝑡0, 𝑡0 +𝑇],𝑇𝑟𝑢𝑒⟩.We further

assume the accident happens after a time period of 𝑑 after starting.

Triggering entities identification. We define the triggering enti-
ties as a set of actor and map entities such that minimal changes to
their states (noted as Δ𝑀 ∈ M and Δ𝐴 ∈ A) would:
(1) suppress the accident. Formally,

𝐸

(
𝐶,𝑀 ⊕ Δ𝑀,𝐴@𝑡0 ⊕ Δ𝐴

)
→ ⟨𝐴@[𝑡1, 𝑡1 +𝑇], 𝐹𝑎𝑙𝑠𝑒⟩,

where ⊕ denotes applying changes to the states values.
(2) and introduce limited changes to the actor entities before entering
the accident scene. Formally,

Σ𝑡 ∈[0,𝑑−𝛿]
(����𝐴@(𝑡0 + 𝑡) −𝐴@(𝑡1 + 𝑡)

����) < 𝜖,
where 𝛿 denotes a short time period before the accident occurs, and
∥·∥ denotes 𝐿2 norm.

Table 1: Physical Mutation Space.
Domain Category Configuration Data Type

Actor
Entities

Vehicles

Model {Sedan, Truck, ...}
Color {Red, Blue, Black, ...}

Location [x y z]
Rotation [yaw pitch roll]
Speed S (m/s)

Cyclists/
Pedestrians

Location [x y z]
Rotation [yaw pitch roll]
Speed S (m/s)

Map
Entites

Traffic Cones/
Boxes

Location [x y z]
Rotation [yaw pitch roll]

Buildings Enable {True, False}

Vegetations Enable {True, False}

Traffic Lights Policy {Red, Yellow, Green}
Enable {True, False}

Weather

Cloudiness [0, 100]
Precipitation [0, 100]

Sun Azimuth Angle [0, 360] (deg)
Sun Altitute Angle [-90, 90] (deg)

Fog Density [0, 100]

Misconfiguration identification. After finding triggering enti-
ties, we further search for misconfigurations. Formally, we search
for minimal changes of configurations, noted as Δ𝐶 ∈ C, such that
(1) the accident is suppressed. Formally,

𝐸

(
𝐶 ⊕ Δ𝐶,𝑀,𝐴@𝑡0

)
⇒ ⟨𝐴@[𝑡2, 𝑡2 +𝑇], 𝐹𝑎𝑙𝑠𝑒⟩,

where ⊕ denotes applying changes to the original configurations.
(2) the AD vehicle does not change its behavior before entering the
accident scene. Formally,

Σ𝑡 ∈[0,𝑑−𝛿]
(����𝐴0@(𝑡0 + 𝑡) −𝐴0@(𝑡2 + 𝑡)

����) < 𝜖,
where 𝛿 denotes a short time period before the accident occurs
and ∥·∥ denotes the 𝐿2 norm. This requirement ensures the AD
vehicle encounters a similar scenario before and after the configu-
ration changes. Otherwise, one can always freeze the AD vehicle to
suppress the accident, which is meaningless for the investigation.

5 SYSTEM DESIGN
In this section, we discuss the design details of Rocas. First, Rocas
replays the accident execution by applying coordinate transfor-
mation on execution records. Then it conducts physical mutation
(Section 5.1) to find the accident-triggering entities. Moreover, the
physical mutation further yields a reference execution without ac-
cident. To search for the misconfigurations, Rocas first pinpoints
the initial deviating module (Section 5.2) to reduce search space via
differential analysis between the accident execution record and the
reference execution record. Finally Rocas performs cyber mutation
to identify the misconfigurations (Section 5.3).

5.1 Physical Mutation
Physical mutation serves two purposes: (1) it helps produce the ac-
cident root cause results by finding the accident-triggering entities;
(2) it outputs a reference execution that is similar to the original
execution but accident-free. An accident-free reference execution
indicates that the accident could have been avoided in a similar
scenario. The differential analysis in the later stage will compare

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

1

2

3

4

Phase-II: Physical Mutation

Execution
Candidates

Mutants Prioritization Minimal Mutation

Phase-I: Accident Replay

Accident
Execution

Reference
Execution

Validation
Execution

Record Channel Messages Record Channel Messages
Accident

Channel 1

Channel 2

Channel 3

Channel 5

Module 1

Module 2

Module 3

Channel 4
Differential

Analysis

Channel 1

Channel 3

Channel 5

Module 1

Module 2

Module 3

Channel Module Graph Reversed Channel Module Graph

Phase-III: Initial Deviating Module Identification

Time

Channel 1 Record

Channel 2 Record

......

Channel 5 Record

Execution Record

Time

Channel 1 Record

Channel 2 Record

......

Channel 5 Record

Execution Record

Execution
Candidates

Phase-IV: Cyber Mutation

<v1,v2,v3,...,vn>

<v1,v2,v3',...,vn>

Ln Distance
Configs

Configs
Trajectory Similarity Minimal Mutation

Accident
Execution

Initial Deviating Module

Misconfigs

Figure 6: System design of Rocas

these two execution records to facilitate localizing the module that
has accident-inducing behaviors.

To search for an accident-free execution, the physical mutation
stage mutates the surrounding entities (i.e., 𝐴, 𝑀 defined in Sec-
tion 4.1) without modifying the configuration of the AD vehicle.
The entity space, which is also Rocas’s mutation space, is shown
in Table 1.

We formulate the physical mutation stage as a Multi-object Opti-
mization Problem (MOP) [27]. The MOP algorithm takes as input a
set of objective functions, a set of constraints, and a set of variables
from the solution domain. It employs a genetic algorithm and out-
puts an optimal set of variables with the minimal objective values
and meanwhile satisfy the constraints. In this stage, we leverage
the MOP algorithm to search for a set of properties for the sur-
rounding entities with minimal changes to the original execution
and eliminate the accident.

Our fitness function requires that (a) the replay execution yields
false. (i.e., the accident is suppressed); (b) the mutated entity is
highly related to the triggering condition; (c) the replay scenario
should be similar to the original one; (d) the set of mutated physical
conditions is small; and (e) their value changes are small.

Following the notations discussed in Section 4.1, 𝐸 (·) returns
whether the accident happens. Given an initial physical condition
𝑝0 ∈ C × A ×M such that 𝐸 (𝑝0) = 1, finding the triggering entity
(i.e., minimum mutation) can be formulated as:

minimize F (𝑝) = {𝑓1 (𝑝), 𝑓2 (𝑝), 𝑓3 (𝑝)},
subject to G(𝑝) = {𝐸 (𝑝) = 0}. (1)

F represents the function we aim to minimize, while G denotes
the constraint that must be satisfied. Specifically, 𝑓1 (·) defined in
Eq. 2 quantifies the suspiciousness of the mutated entity and satis-
fies the requirement (b); 𝑑𝑖𝑠𝑡𝑖 and 𝜃𝑖 refer to the distance and angle
from mutated entity 𝑖 to the ADS; 𝐾 is a parameter that balances
between distance and angle. Intuitively, the entity that is close to
and in front of the ADS are more likely to be accident-inducing
than those far away or behind the ADS. As visualized in the “Mu-
tants Prioritization” figure in Figure 6 “Phase-I” block, darker blue
denotes higher relevance, while white denotes not relevant.

𝑓1 (𝑝) = −
∑︁

𝑖∈𝑝−𝑝0

(
𝐾/𝑑𝑖𝑠𝑡𝑖 + 𝑐𝑜𝑠 (𝜃𝑖)

)
(2)

The 𝑓2 (·) satisfies the requirement (c) that the replay scenario
should be similar to the original one. We quantify the scenario
similarity using the trajectory similarity (computed by MSE, mean
squared error) of all actor entities. 𝑇𝑟𝑎 𝑗𝑝 (𝑗) denotes the trajectory
of actor entity 𝑗 under the physical condition 𝑝 . This objective
function is necessary, otherwise we can just set all actor entities’
speed to zero and the accident can be suppressed.

𝑓2 (𝑝) = −
∑︁
𝑗∈𝐴

𝑆𝑖𝑚

(
𝑇𝑟𝑎 𝑗𝑝0 (𝑗),𝑇𝑟𝑎 𝑗𝑝 (𝑗)

)
(3)

Function 𝑓3 defines the distance of an offspring from the initial
physical configuration 𝑝0, satisfying the requirements (d) and (e).
The first term measures that the set of mutated physical conditions,
which should be small. The second and the third terms quantify
that the value changes of mutated physical conditions should be
small. We use 𝐿1-Norm to compute the edit distance of enumerate

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

and boolean type configurations and use 𝐿2-Norm for other types.

𝑓3 (𝑝) = #(𝑝 − 𝑝0) +
∑︁

𝑘∈𝐸𝑛𝑢𝑚
𝐿1 (𝑘0, 𝑘) +

∑︁
𝑘∉𝐸𝑛𝑢𝑚

𝐿2 (𝑘0, 𝑘) (4)

5.2 Initial Deviating Module Identification
After finding an accident-free reference execution, Rocas differen-
tiates the reference execution and the original execution to localize
the module that potentially has misconfigurations. There are two
major challenges in differentiating two executions records. First,
due to the noise in the physical world, even two executions with the
same setup may have differences. It is thus important to distinguish
the differences that lead to different behaviors of the ADS and the
differences that are caused by noise. Moreover, since the reference
execution and the original execution have slightly different setup,
Rocas may observe differences in multiple modules of the system.
For example, if a position of an actor car is slightly changed, both
vision module and planning module may output different results.
It is thus essential to locate the accident-inducing differences.

We propose to represent an ADS as a channel module graph
(CMG), and use the messages in channels to represent an execution.
Rocas differentiates the messages to locate the problematic module
and traverse the CMG to identify the root cause.

5.2.1 Graph representation for ADS. Modules in an ADS use chan-
nels to communicate with each other. A channel represents a seg-
ment of shared memory within the ADS. A module reads messages
from other modules via channels and writes its computational
outcomes to output channels. Different modules run in parallel
to achieve better real-time performance. Traditional program rep-
resentations, like control flow graph or data dependency graph,
cannot handle the temporal (e.g., variable values are updated tens
or hundreds of times at each second) and heterogeneous (e.g., involve
multiple modules and deep learning models) features of ADS. We
thus propose channel module graph (CMG) defined in Definition 5.1
to represent ADS programs. We use an example from Apollo [2] to
illustrate how Rocas leverages CMG to represent ADS structure.

Definition 5.1 (Channel Module Graph). Given an ADS, we use a
directed bipartite graph, Channel Module Graph (CMG), to represent
ADS topology structure, denoted as 𝐺 = ⟨𝑉𝐶 ,𝑉𝑀 , 𝐸⟩.
(1) Two disjoint vertices set 𝑉𝐶 and 𝑉𝑀 represent channels and
modules of ADS, respectively.
(2) 𝑒 = ⟨𝑣𝑀 , 𝑣𝐶 ⟩ ∈ 𝐸, 𝑣𝑀 ∈ 𝑉𝑀 , 𝑣𝐶 ∈ 𝑉𝐶 ⇐⇒ 𝑣𝑀 writes to 𝑣𝐶 .
(3) 𝑒 = ⟨𝑣𝐶 , 𝑣𝑀 ⟩ ∈ 𝐸, 𝑣𝑀 ∈ 𝑉𝑀 , 𝑣𝐶 ∈ 𝑉𝐶 ⇐⇒ 𝑣𝑀 reads from 𝑣𝐶 .

A concrete example is shown in Figure 7a. Note that the CMGs
of the original execution and the reference execution are the same
since the reference execution only mutates the surrounding envi-
ronments without altering ADS code.

5.2.2 Message as execution records. We use messages that commu-
nicated in channels as the records of ADS execution, considering
its two advantages: (1) the messages naturally capture the temporal
feature of ADS since a typical message contains the timestamp. (2)
the message is agnostic of the possibly heterogeneous implementa-
tion of multiple modules.

Figure 7b shows (simplified) message definition for the plan-
ning channel. Each planning channel message consists of (1) a

lane_id field, denoting the lane that AD vehicle should be on; (2)
a traj_point field, containing a sequence of trajectory points
that represents the expected position of the AD vehicle. Due to the
nested structure of messages, one piece of message can be easily
transformed into its corresponding tree representation (Figure 7c).

5.2.3 Differential analysis on execution records. Recall that we now
have two records, one obtained from the replay accident execution,
the other from the accident-free reference execution. We conduct
differential analysis on these two execution records to locate the
responsible module for the accident occurrence.

We introduce the metric Message Difference Ratio (MDR) to quan-
tify the difference between two messages. Given two execution
records, Rocas computes MDR for each channel at each timestamp.

Definition 5.2 (Message Difference Ratio). Given two messages
𝑚1,𝑚2 (with tree representations 𝑡𝑟1, 𝑡𝑟2), their message difference
ratio (MDR) are computed as follows:

MDR(𝑡𝑟1, 𝑡𝑟2) =

1 if 𝑡𝑟1 ≠ 𝑡𝑟2 else 0, |𝑡𝑟1 .𝑐ℎ𝑑 | = |𝑡𝑟2 .𝑐ℎ𝑑 | = 0
1, |𝑡𝑟1 .𝑐ℎ𝑑 | ≠ |𝑡𝑟2 .𝑐ℎ𝑑 |
|𝑡𝑟1 .𝑐ℎ𝑑 |∑

𝑖=0
MDR(𝑡𝑟1 .𝑐ℎ𝑑 [𝑖], 𝑡𝑟2 .𝑐ℎ𝑑 [𝑖])

|𝑡𝑟1 .𝑐ℎ𝑑 |
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Intuitively, MDR takes as input two trees, and outputs a difference
score from 0 (same) to 1 (different). The first case means both
input trees are leafs. The two leafs are then directly compared. The
second case indicates that two input trees have different numbers
of children. We simply consider them as different. For two non-
leaf tree nodes with the same number of children, we recursively
compare each child, and use the average MDR scores of all children
as the MDR score of the two input trees.

As the output of differential analysis, for each channel, we obtain
a series of MDR at each timestamp. These MDR series are further
leveraged to pinpoint the initial deviating module.

5.2.4 Pinpoint initial deviating module. Our insight is that: (1) the
timestamp that control channel has a sudden change of MDR is
the occurrence time of the accident. (2) the channels that has sudden
changes of MDR before the accident occurrence time are likely to be
responsible for the accident.

Rocas leverages the PELT [49] change point detection algo-
rithm to detect when MDR changes significantly for each channel.
The PELT algorithm detects significant change points from a se-
quence of values. The rationale is that the first few seconds of
compared executions are expected to be similar, thus MDR in the
first few seconds can be considered as the baseline noise of a chan-
nel. A significant change on MDR value indicates that the difference
among channel messages significantly goes beyond noise.

Detailed pinpoint algorithm is shown in Alg. 1. It takes 2 inputs,
the CMG𝐺 and the MDR series of all channels channel2mdr obtained
from differential analysis in Section 5.2.3. Output is the identified
initial deviating module that are responsible for the accident.

Specifically, given channel2mdr, Alg. 1 first uses PELT to com-
pute a list of changing time points for each channel (Line 3). Then 𝑡∗
is used to store the earliest changing time points for each node (Line
4-8). After that, we remove the edge (𝑢, 𝑣) from𝐺 if the sudden MDR
change of 𝑢 does not lead to the MDR change of 𝑣 (Line 9-11). Rocas

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

Obstacles

Prediction

Planning

Vision

Prediction

Planning

Control

Chassis

Sim_control

Control

(a) Channel Module Graph (b) Message definition of
the Planning channel

(c) Tree representation
for a message

Channel

Module

message Planning {
int lane_id;
repeated TrajPoint

traj_point;
}

message TrajPoint {
int locx, locy;
uint timestp;

}

Planning

lane_id traj_point

0 1 2 n

TrajPoint

locx locy

...

timestp

Figure 7: How Rocas represents one execution. In (a), yellow ovals denote modules
and blue boxes denote channels.

Obstacles

Prediction

Planning

Vision

Prediction

Planning

Control

Chassis

Sim_control

Control

Figure 8: Reversed CMG in Alg. 1.

Algorithm 1: Pinpoint initial deviating module
1 Function Find_Init_Module (G, channel2mdr)

// channel2mdr: map from channels to MDR series
// 𝑡∗: map from node to its earliest changing point

2 𝑡∗ = ∅
3 channel2chng_pt = PELT(channel2mdr)
4 for node ∈ G.nodes do
5 if node is Channel then
6 𝑡∗[node] = channel2chng_pt[node][0]

7 if node is Module then
8 𝑡∗[node] = min(𝑛𝑜𝑑𝑒,𝑐ℎ) ∈𝐺.𝑒𝑑𝑔𝑒𝑠 𝑡

∗[ch]

9 for (u,v) ∈ G.edges do
10 if 𝑡∗ (𝑢) ∉ [𝑡∗ (𝑣) − 𝛿, 𝑡∗ (𝑣)] then
11 G.remove_edge(𝑢, 𝑣)

12 𝑐𝑡𝑟𝑙𝑛𝑜𝑑𝑒 = Control channel node
13 𝐷 = {𝑚 |𝑚 is Module and reachable from 𝑐𝑡𝑟𝑙𝑛𝑜𝑑𝑒 in reversed𝐺 }
14 return argmin𝑚∈𝐷 𝑡∗ (𝑚)

use 𝛿 = 3 because 3 seconds is a common reaction time in driv-
ing. Finally, starting from 𝑐𝑡𝑟𝑙𝑛𝑜𝑑𝑒 , the algorithm traverses from
the reversed CMG 𝑟𝑒𝑣𝐺 , shown in Fig. 8, and stores all reachable
nodes in set 𝐷 (Line 12-14). The algorithm returns the module in 𝐷
that has the earliest time changing point of MDR, namely the initial
deviating module.

5.3 Cyber Mutation
After Alg. 1, we have obtained the initial deviating module. As
the final phase to localize the accident-inducing cyber parameter
setting, Rocas aims to find a minimal mutation on the parameter
space within the identified module so that the original accident
can be suppressed. We use a similar approach as Section 5.1. Note
that the difference from Section 5.1 is that Rocas only mutates the
internal cyber parameters in this phase.

The main motivation for modifying multiple configurations is
that modifying only one configuration per iteration is much slower.
In practice, the majority of the thousands of ADS configurations
are irrelevant to the accident. Modifying multiple configurations
simultaneously is more likely to hit the responsible configurations
in a shorter time.

Our fitness function requires (1) the replay execution yields false.
(i.e., accident suppressed); (2) the ADS’s trajectory after mutation
should be similar to the original one; (3) the set of mutated physical
configurations is small; and (4) their value changes are small.

Given an initial cyber configuration 𝑐0 ∈ 𝐶 such that 𝐸 (𝑐0) =
1, finding the misconfiguration (i.e., minimum mutation) can be

formulated as:
minimizeH(𝑐) = {ℎ1 (𝑐), ℎ2 (𝑐)},
subject to K(𝑐) = {𝐸 (𝑐) = 0} (5)

H represents the function we aim to minimize, whileK denotes
the constraint that must be satisfied. ℎ1 (·) defined in Eq. 6 measures
the trajectory similarity (computed by MSE), and𝑇𝑟𝑎 𝑗𝑐 denotes the
trajectory of ADS with the cyber configuration 𝑐 . This objective
function is necessary, otherwise one can just set the ADS’s speed
to zero and the accident can be suppressed.

ℎ1 (𝑐) = −𝑆𝑖𝑚(𝑇𝑟𝑎 𝑗𝑐0 ,𝑇𝑟𝑎 𝑗𝑐) (6)

ℎ2 (·) has the same purpose as 𝑓3 (·) in Eq. 4. We do not repeat
details here due to space concerns.

ℎ2 (𝑐) = #(𝑐 − 𝑐0) +
∑︁

𝑘∈𝐸𝑛𝑢𝑚
𝐿1 (𝑘0, 𝑘) +

∑︁
𝑘∉𝐸𝑛𝑢𝑚

𝐿2 (𝑘0, 𝑘) (7)

6 EVALUATION
We introduce our evaluation setup (Section 6.1) and present results
by answering the following research questions (RQs):
RQ1: How effective is Rocas on finding triggering entities and
misconfigurations? (Section 6.2)
RQ2: How effective is the proposed metric MDR? (Section 6.3)
RQ3: How efficient is Rocas and each phase? (Section 6.4)
RQ4: How does AD root cause analysis help the accident investi-
gation? (Case studies in Section 6.5)

6.1 Setup
Implementation. Rocas includes several components: (1) The
replay engine that can replay actor trajectories inside simulator; (2)
The physical mutator that can change the behaviors of actor entities
and map entities; (3) The graph extractor that dynamically extracts
CMG. (4) The execution differentiation algorithm that identifies
the initial deviating module; (5) The cyber mutator that pinpoints
the misconfiguration of the subject ADS. We run experiments on
Ubuntu 20.04, with 96 GB RAM and Nvidia GPU 3090.
Subject Systems.We evaluate Rocas on two open-source ADSs,
Baidu Apollo [2] and LAV [21], both designed in a modularized par-
adigm. Apollo is representative for industry-grade ADS, as Baidu
has obtained permits to operate fully autonomous taxis without any
human assistance in China since August 2022. LAV is a research-
oriented ADS. We use it to show that Rocas can be generalized to

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Accident Types Summary. Fig. 14 illustrates scenarios. Link [14] shows accident videos.

Type Src.† #Inst. SUT Description Conseq. Scenario

A1 CA/DF/DT 37 Apollo 7.0 Incorrectly takes a slowly moving car as a static object Collision Intersection

A2 PF 3 Apollo 7.0 Blocked by 2 stopped vehicles ahead although there is enough space in between EB Following

A3 CA/AT 3 Apollo 7.0 Turns left at junction and collides with a truck from opposite direction when trying to overtake it Collision Intersection

A4 AT/DF/DT 43 Apollo 7.0 Over-aggressively overtakes a left-turning vehicle Collision Merging

A5 CA/AT 36 Apollo 7.0 Oscillates between overtake and yield and cannot stop in time when finally deciding to yield Collision Intersection

A6 DF 2 Apollo 7.0 Fails to avoid collision with a large truck drifting on wet ground Collision Intersection

A7 DF 4 Apollo 7.0 Collides with other vehicles from lateral or rear direction Collision Merging

A8 DF 3 LAV Collides with road-side curbstone or vegetation Collision Following

A9 DF/DT 5 LAV Takes a red truck as red light and suddenly stops in roundabout EB Intersection

A10 DF 2 LAV Recognizes the wrong traffic light due to special road shape and suddenly stops on the road EB Turning

A11 DF 2 LAV Turns right and fails to avoid collision with a wide truck Collision Merging

A12 DF/PF 4 LAV Predicts the wrong trajectories of a cyclist on the side of AD vehicle EB Turning

Src: Accident Source, #Inst.: Instance Number, SUT: System Under Test, Conseq.: Consequences, EB: Emergency Braking.
† Accident Sources. CA: CAT [71], AT: ATLAS [73], DF: DriveFuzz [52], DT: DoppelTest [42], PF: PlanFuzz [77].

other modularized ADS, even if it is not based on ROS-like com-
munication frameworks. Specifically, we manually isolate different
modules by inspecting the code and instrument the data transmitted
between modules. Such data approximates the channel messages
in an ROS-like framework. The manual work is a one-time effort
and affordable (2 man-hours). For simulation, we use the simulator
supported by the corresponding ADS, namely LGSVL [5] for Apollo
and CARLA [4] for LAV.
Logging and Replay. During ADS’s execution, it is crucial that
Rocas records the information of other actor entities. During the
post-accident replay, Rocas needs to extract the locations and ro-
tations of each actor entity from the recorded messages. Since
these values are usually in the AD system’s coordinates, Rocas
transforms them into the simulator’s world coordinates, using the
transformation matrices of respective simulators.
Accident Cases. We investigate 184 accident cases from recent
literature [42, 52, 71–73, 77]. These cases had been confirmed and
hence can serve as the ground truth. We consider our tool correctly
identifies a root cause if it locates the same misconfiguration. We
categorize them via 3 perspectives: ❶ whether it can be exploited by
leveraging external scenario , ❷ whether the accident consequence
is severe (i.e., collision or emergency braking) or just efficiency
degradation (e.g., taking longer routes),❸what the driving scenario
is at accident moment. Detailed statistics are shown in Table 7 (in
Supplementary Material of [6]). In order to eliminate non-safety-
related incidents, we filter out cases that are not exploitable and
solely related to performance issues. After the filtering process, as
shown in Table 5 (in Supplementary Material of [6]), 144 cases are
left, which we further categorize into 12 types based on similarities
in ADS’s behaviors, accident consequences, and driving scenarios.
Table 2 shows a comprehensive overview of these categorized cases.

6.2 Effectiveness of Root Cause Analysis
AccidentRootCauseAnalysis.Table 4 consists of several columns
that provide essential information regarding the accidents and the

Table 3: Scope reduction of configurations in Baidu Apollo.

Main Modules # Config. Proportion

Perception 171 15.35%
Prediction 183 16.53%
Planning 222 19.93%
Control 55 4.94%

All Modules 1114 100%

corresponding investigation results from each phase. There are
three main categories based on the identified deviating module. (1)
Prediction related accidents. In A1, the ADS incorrectly predicts
a moving car as static, and in A10 the ADS predicts the wrong
trajectory of a right-side cyclist. (2) Planning related accidents. A2,
A6, and A11 are different scenarios where the ADS has the wrong
decision on whether other entities have overlap with the ADS’s
planned trajectory. A3, A4, and A5 are different scenarios where the
ADS has the wrong decision on whether it should overtake or yield
to other entities. (3) Perception related accidents. In A9, the ADS
fluctuates the braking probability when seeing a red truck ahead.
In A12, due to the special road shape, the ADS recognizes the traffic
light from the wrong direction. We further illustrate the accident
scenarios for the cases in Table 2 in Figure 14 in the Supplementary
Material of [6] (A7 in Table 2 has been illustrated in Figure 4).
Regression Test.We conduct regression tests to ensure that our
mutated configurations do not introduce new hazardous behaviors.
We constructed a regression dataset with 200 cases by adding small
perturbations to the original executions. In our evaluation, all mod-
ified configurations achieved higher mission success rates than the
original configurations.
Failure Cases. Rocas has certain limitations when dealing with
two specific accident types, namely Type A7 and A8. Type A7
involves collisions with other vehicles approaching the stationary
ADS from lateral or rear directions. In such cases,Rocas can identify
the triggering entity during the physical mutation phase but is
unable to modify a configuration value in the cyber mutation phase

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

Table 4: Root Cause Analysis Results. Physical Mutation 4 columns, display Phase-I output (i.e., the mutated value of entity
properties v.s. original values). Deviating Module column shows Phase-II output. Cyber Mutation 3 columns, display Phase-III
output (i.e., the mutated value of configurations v.s. original values).

Type System
Physical Mutation Deviating

Module
Cyber Mutation

Triggering Entity Property Ori. Val. Mut. Val. Misconfiguration Ori. Val. Mut. Val.

A1 Apollo 7.0 Collided Sedan Speed 0.98 1.2 Prediction still_obstacle_speed_threshold 0.99 0.50

A2 Apollo 7.0 Right-front Sedan Location.x 14.42 14.37 Planning obstacle_lat_buffer 0.60 0.20

A3 Apollo 7.0 Collided Truck Rotation.yaw
Location.y

275
-27.1

285
-27.3 Planning kMinOvertakeDistance 10.0 40.0

A4 Apollo 7.0 Collided Sedan Speed 6.0 4.0 Planning yield_distance 5.0 2.0

A5 Apollo 7.0 Collided Sedan Location.x -234.5 -235.2 Planning kOvertakeTimeBuffer 3.0 2.0

A6 Apollo 7.0 Collided Truck Rotation.yaw 310 300 Planning kADCSafetyLBuffer 0.1 1.0

A7 Apollo 7.0 Collided Sedan Location.x 13.5 13.0 Perception - - -

A8 LAV Collided Building - Enabled Disabled Perception - - -

A9 LAV Front-side truck – Enabled Disabled Perception brake_threshold 0.10 0.20

A10 LAV Left-side
Traffic Light Policy Red Green Perception brake_threshold 0.10 0.90

A11 LAV Left-front Truck Rotation.yaw 32 25 Planning dist_threshold_moving 2.50 3.50

A12 LAV Right-side cyclist Speed 1.0 0.0 Prediction dist_threshold_static 1.00 0.50

to prevent the accident. This limitation arises because most ADSs
do not incorporate features to prevent collisions from lateral or rear
directions, as such collisions are generally considered inevitable
and not within the typical expectations for ADSs to handle. As
for Type A8, it pertains to collisions with road-side curbstones or
vegetation that occur when the ADS follows abnormal trajectories.
Upon manual investigation, we found that these collisions occur
when there is no feasible path from the current AD’s location to
the routing destination. As a result, the ADS randomly deviates
from its original trajectories. This situation may arise when the AD
vehicle is spawned at a junction or roads with opposite directions,
or when the AD vehicle is blocked at certain corners where the
ADS lacks a back-up feature to navigate out of the situation. In
summary, the collision incidents in Type A7 and A8 are primarily
linked to the lack of feature implementation, such as the absence
of measures to avoid lateral collisions or handle infeasible routing,
rather than being caused by misconfigurations.

6.3 Effectiveness of MDR
Table 3 shows Rocas in average reduces search space of config-
urations by 85.8%. Table 3 provides a detailed breakdown of the
number of configurable parameters in Apollo’s four main mod-
ules, including the perception, prediction, planning, and control
module (Rows 2-5). The sum of configurable parameters across all
modules is also presented in Row 6. We can see that, due to the
complexity of the Apollo system, there are a significant number
of configurable parameters, which can lead to misconfigurations
and subsequent failures. However, Rocas has proven to be an ef-
fective tool for narrowing down the search space and identifying
these misconfigurations. By leveraging its execution diff algorithm,
Rocas successfully reduces the misconfiguration search space to

Phys. M
ut.

Chal. D
iff.

Chng. Pts.

Cyber M
ut.

100

101

102

103

104

Ti
m

e
(s

, l
og

sc
al

e) 1288.6
520.6

50.1

5981.2

(a) Runtime Breakdown (b) Runtime Cost
Cyber M

ut.

w/o Phase-II
0

2

4

6

8

10

12

14

Ti
m

e
(h

)

1.7

Timeout

Figure 9: Runtime. (a) shows runtime of each phase. (b) shows
the benefit of search scope reduction.

below 20% of the original whole search space. This significant re-
duction in search space contributes to the runtime efficiency of
Phase-III (cyber mutation). We also include a concrete example in
Supplementary Material of [6] Section A to illustrate how Rocas
narrows down the search space.

6.4 Efficiency of Runtime
Because the length of an execution can impact the investigation
runtime (for instance, a longer execution can result in a larger mu-
tation search space and more execution records to analyze), we trim
executions to the last 30 seconds before the occurrence of accidents.
By doing so, we can limit the amount of data we need to analyze
while still capturing the critical period leading up to the accidents.
The average storage size for a 30-second execution is around 30
MB. The experimental results show that Phase-III (i.e., the cyber
mutation) represents 76.3% of the total time. It demonstrates that
the scope reduction of Phase-II is necessary to make the root cause
analysis affordable. On the other hand, a baseline method without
scope reduction cannot find any misconfiguration within a time

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

budget of 12 hours. Details are discussed below.
Time Breakdown. Figure 9a displays the average runtime cost for
each step during an accident investigation. Phase-I (physical muta-
tion) takes up 16.4% of the total runtime, while Phase-II (including
channel message differential analysis and change point detection)
accounts for 7.3%. The most time-consuming part is Phase-III (cyber
mutation) which takes up 76.3% of the total time.

The reason why Phase-I is much faster than Phase-III is that it
is easier to identify a mutation that can prevent accidents when
modifying physical entities (e.g., changing the location or speed
of other vehicles). However, in Phase-III, Rocas must identify the
responsible mis-configuration among many possible parameters
to avoid the accident. Therefore, the scope reduction of Phase-II is
necessary to make the root cause analysis affordable.
Compare with Baseline. Since there is no existing work that can
be directly applied on the ADS root cause analysis task, we compare
Rocas with a naive brute force method that searches among all
ADS modules. Figure 9b shows the average runtime comparison
for cyber mutation, with and without the scope reduction. The
naive brute force method cannot find a misconfiguration within a
reasonable budget (12 hours).

6.5 Case Studies
We present the details of two cases (A4 and A6 in Table 2) to demon-
strate the benefits of Rocas and how the found misconfiguration
can shed light on the mystery behind the accidents. Case Study I
and II are in Supplementary Material of [6] Section B.

7 DISCUSSIONS
Practicality.We use simulated accidents instead of real-world acci-
dents for the following reasons. Firstly, accidents data of real-world
deployed ADS are typically considered proprietary by companies
and not publicly available. Secondly, conducting real-world exper-
iments on accident investigation is often prohibitively expensive.
Additionally, recent advances in high-fidelity simulators [4, 5, 8]
enable simulations to closely reflect real-world conditions.
Limitations. Rocas is limited to modularized ADS and cannot be
applied to the end-to-end (e.g., reinforcement learning) ADS. In
the latter case, Rocas can only identify the triggering entity, but it
cannot pinpoint the specific module or misconfiguration.
Validation. Rocas outputs a misconfiguration, but it still requires
human to inspect misconfiguration usages to finally understand the
rationale behind accidents. Also, Rocas can help finetune, but not
fix misconfigurations of ADS. Fixing configuration issues is com-
plimentary to Rocas and still an open challenging problems in SE
community [26, 33, 36, 37, 39, 57, 74, 75]. We leave it as future work.

8 RELATEDWORK
CPS Fuzzing. Inspired by traditional fuzzingmethods [1, 16, 63, 81],
recently many CPS fuzzing techniques have been proposed to ad-
dress unique challenges in CPS including drone systems [35, 50, 54],
ADS [28, 29, 43, 52, 69, 77, 84, 88, 89], ROS [51, 80], DNN con-
trollers [45], and other systems [19, 61, 64, 66]. Our post-accident
analysis is complementary to the fuzzing methods mentioned above.
Root Cause Analysis. Root cause analysis is critical for debugging
program failures. Numerous techniques have been proposed, such

as log-based causality analysis [31, 55, 56, 58, 62]. Some use program
instrumentation to generate execution logs [68, 83], while others
focus on recording OS events during runtime and performing offline
analysis. Techniques like taint analysis [17, 25, 47] and record-and-
replay provenance analysis [20, 30–32, 55, 67, 70, 76] are also widely
used for accident investigation. However, these approaches induce
heavy overhead, and are not suitable for resource-constrained CPS.
Fault localization. Fault localization techniques [79] vary widely,
including slice-based [78], spectrum-based [38], statistics-based [87],
states-based [85], learning-based [18], etc. Our method differs from
existing fault localization methods in two aspects: (1) Fault local-
ization methods typically pinpoint suspicious code element (e.g.,
statements, predicates, functions or files), while our method pin-
points the misconfiguration. (2) Fault localization methods focus
on program bugs, while our focus is on misconfiguration, which
does not necessarily mean that the code logic is buggy.
CPS Root Cause Analysis. Root cause analysis of CPS is a less
investigated area. There are existing efforts focusing on drone
systems [22, 24, 44, 53]. They either fail to capture complex be-
haviors across multiple modules in ADS [22, 24, 44] or requires
heavy-weight program instrumentation and trace collection [53]. A
recent work CARE [40] focuses on mission failures in robots, it can-
not reason environments with moving objects. On the other hand,
Swarmbug [46] focuses on problems in the swarm coordination,
not considering internal logic of individual agents. Compared with
the above techniques, our work is the first to target at AD scenarios
that can handle both more complex physical environments and
internal program configurations.

9 CONCLUSION
In this paper, we first formally define the problem of ADS root cause
analysis and present Rocas, a novel method for ADS root cause
analysis. Our technique leverages both physical and cyber mutation
that can precisely identify the accident-trigger entity and pinpoint
the misconfiguration responsible for an accident. We demonstrate
the effectiveness and efficiency of Rocas through the evaluation of
12 types of ADS accidents, 144 accidents in total.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable comments
and suggestions. We are grateful to the Center for AI Safety for
providing computational resources. This workwas funded in part by
the National Science Foundation (NSF) Awards SHF-1901242, SHF-
1910300, IIS-2416835, DARPA VSPELLS - HR001120S0058, IARPA
TrojAI W911NF-19-S0012, ONR N000141712045, N000141410468
and N000141712947. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

REFERENCES
[1] [n. d.]. American Fuzzy Lop. https://lcamtuf .coredump.cx/afl/
[2] [n. d.]. Baidu Apollo. https://github.com/ApolloAuto/apollo
[3] [n. d.]. Baidu Apollo CyberRT. https://cyber-rt.readthedocs.io/en/latest/
[4] [n. d.]. CARLA simulator. https://carla.org/
[5] [n. d.]. LGSVL simulator. https://www.svlsimulator.com/
[6] [n. d.]. ROCAS Artifact Repo. https://github.com/GiantSeaweed/ROCAS
[7] [n. d.]. TESLA KEEPS "SLAMMING ON THE BRAKES" WHEN IT SEES STOP SIGN

ON BILLBOARD. https://futurism.com/the-byte/tesla-slamming-brakes-sees-
stop-sign-billboard

[8] [n. d.]. Waymo. 2020. Off road, but not offline: How simulation helps advance
our Waymo Driver. https://blog.waymo.com/2020/04/off-road-but-not-offline--
simulation27.html

[9] 2016. BBC News. 2016. Google Self-driving Car Hits a Bus. https://www.bbc.com/
news/technology-35692845

[10] 2016. BBC News. 2016. Uber in Fatal Crash Had Safety Flaws Say US Investigators.
https://www.bbc.com/news/business-50312340

[11] 2019. BBC News. 2019. Tesla Model 3: Autopilot Engaged during Fatal Crash.
https://www.bbc.com/news/technology-48308852

[12] 2020. Associated Press News. 2020. 3 Crashes, 3 Deaths Raise Questions About
Tesla’s Autopilot. https://apnews.com/article/europe-us-news-ap-top-news-in-
state-wire-mi-state-wire-ca5e62255bb87bf1b151f9bf075aaadf

[13] 2021. CARLA AD Challenge. https://leaderboard.carla.org/.
[14] 2023. Accident Videos. https://www.youtube.com/playlist?list=

PLagazsxgy9BD2SdAO66ZR-rmfimeWpsgF
[15] 2023. WIRED. 2023. Dashcam Footage Shows Driverless Cars Clogging San Fran-

cisco. https://www.wired.com/story/dashcam-footage-shows-driverless-cars-
cruise-waymo-clogging-san-francisco/

[16] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344.
https://doi.org/10.1145/3133956.3134020

[17] Erik Bosman, Asia Slowinska, and Herbert Bos. 2011. Minemu: The world’s
fastest taint tracker. In Recent Advances in Intrusion Detection: 14th International
Symposium, RAID 2011, Menlo Park, CA, USA, September 20-21, 2011. Proceedings
14. Springer, 1–20.

[18] Yuriy Brun and Michael D Ernst. 2004. Finding latent code errors via machine
learning over program executions. In Proceedings. 26th International Conference
on Software Engineering. IEEE, 480–490.

[19] Giuseppe Cascavilla, Johann Slabber, Fabio Palomba, Dario Di Nucci, Damian A.
Tamburri, and Willem-Jan van den Heuvel. 2020. Counterterrorism for Cyber-
Physical Spaces: A Computer Vision Approach. In Proceedings of the International
Conference on Advanced Visual Interfaces (Salerno, Italy) (AVI ’20). Association
for Computing Machinery, New York, NY, USA, Article 52, 5 pages. https:
//doi.org/10.1145/3399715.3399826

[20] Ramesh Chandra, Taesoo Kim,Meelap Shah, Neha Narula, and Nickolai Zeldovich.
2011. Intrusion recovery for database-backed web applications. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles. 101–114.

[21] Dian Chen and Philipp Krähenbühl. 2022. Learning from all vehicles. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
17222–17231.

[22] Hongjun Choi, Zhiyuan Cheng, and Xiangyu Zhang. 2022. RVPLAYER: Robotic
Vehicle Forensics by Replay with What-if Reasoning. In 29th Annual Network and
Distributed System Security Symposium, NDSS 2022, San Diego, California, USA,
April 24-28, 2022. The Internet Society. https://www.ndss-symposium.org/ndss-
paper/auto-draft-215/

[23] Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and Dongyan Xu. 2020.
Cyber-Physical Inconsistency Vulnerability Identification for Safety Checks in
Robotic Vehicles. https://doi.org/10.1145/3372297.3417249

[24] Devon R Clark, Christopher Meffert, Ibrahim Baggili, and Frank Breitinger. 2017.
DROP (DRone Open source Parser) your drone: Forensic analysis of the DJI
Phantom III. Digital Investigation 22 (2017), S3–S14.

[25] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. 196–206.

[26] Raphael Pereira de Oliveira, Paulo Anselmo da Mota Silveira Neto, Qi Hong Chen,
Eduardo Santana de Almeida, and Iftekhar Ahmed. 2022. Different, Really! A
comparison of Highly-Configurable Systems and Single Systems. Information
and Software Technology 152 (2022), 107035.

[27] Kalyanmoy Deb and Deb Kalyanmoy. 2001. Multi-Objective Optimization Using
Evolutionary Algorithms. USA.

[28] Hina Anwar Dietmar Pfahl Fauzia Khan, Laima Dalbina. 2023. How Can
Simulation-based Safety Testing Help Understand the Real-World Safety of Au-
tonomous Driving Systems? WORKS in PROGRESS in EMBEDDED COMPUTING
(WiPiEC) (2023).

[29] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, Chen, and Qi
Alfred. 2020. A Comprehensive Study of Autonomous Vehicle Bugs. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 385–396. https://doi.org/10.1145/3377811.3380397

[30] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
2007. Friday: Global Comprehension for Distributed Replay.. In NSDI, Vol. 7.
285–298.

[31] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal De Lara. 2005. The
taser intrusion recovery system. In Proceedings of the twentieth ACM symposium
on Operating systems principles. 163–176.

[32] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M Frans
Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record
and Replay.. In OSDI, Vol. 8. 193–208.

[33] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network. In Proceedings of the
41st International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, 1095–1106. https://doi.org/10.1109/ICSE.2019.00113

[34] Gor Hakobyan and Bin Yang. 2019. High-performance automotive radar: A
review of signal processing algorithms and modulation schemes. IEEE Signal
Processing Magazine 36, 5 (2019), 32–44.

[35] Ruidong Han, Chao Yang, Siqi Ma, JiangFeng Ma, Cong Sun, Juanru Li, and
Elisa Bertino. 2022. Control parameters considered harmful: Detecting range
specification bugs in drone configuration modules via learning-guided search. In
Proceedings of the 44th International Conference on Software Engineering. 462–473.

[36] Xue Han and Tingting Yu. 2016. An Empirical Study on Performance Bugs for
Highly Configurable Software Systems. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(Ciudad Real, Spain) (ESEM ’16). Association for Computing Machinery, New
York, NY, USA, Article 23, 10 pages. https://doi.org/10.1145/2961111.2962602

[37] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from Bug
Reports to Understand and Generate Performance Test Frames. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE ’18). Association for Computing Machinery, New York,
NY, USA, 17–28. https://doi.org/10.1145/3238147.3238204

[38] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. 2000.
An empirical investigation of the relationship between spectra differences and
regression faults. Software Testing, Verification and Reliability 10, 3 (2000), 171–
194.

[39] Haochen He, Zhouyang Jia, Shanshan Li, Erci Xu, Tingting Yu, Yue Yu, Ji Wang,
and Xiangke Liao. 2020. CP-Detector: Using Configuration-related Performance
Properties to Expose Performance Bugs. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 623–634.

[40] Md Abir Hossen, Sonam Kharade, Bradley Schmerl, Javier Cámara, Jason M
O’Kane, Ellen C Czaplinski, Katherine A Dzurilla, David Garlan, and Pooyan
Jamshidi. 2023. CaRE: Finding Root Causes of Configuration Issues in Highly-
Configurable Robots. IEEE Robotics and Automation Letters (2023).

[41] Daniel Howard and Danielle Dai. 2014. Public perceptions of self-driving cars:
The case of Berkeley, California. In Transportation research board 93rd annual
meeting, Vol. 14. The National Academies of Sciences, Engineering, and Medicine
Washington, DC, 1–16.

[42] Yuqi Huai, Yuntianyi Chen, Sumaya Almanee, Tuan Ngo, Xiang Liao, ZiwenWan,
Qi Alfred Chen, and Joshua Garcia. 2023. Doppelganger Test Generation for
Revealing Bugs in Autonomous Driving Software. In ACM/IEEE 45th International
Conference on Software Engineering. Melbourne, Australia.

[43] Dmytro Humeniuk, Foutse Khomh, and Giuliano Antoniol. 2022. A search-based
framework for automatic generation of testing environments for cyber-physical
systems. Information and Software Technology 149 (2022), 106936.

[44] Upasita Jain, Marcus Rogers, and Eric T Matson. 2017. Drone forensic framework:
Sensor and data identification and verification. In 2017 IEEE Sensors Applications
Symposium (SAS). IEEE, 1–6.

[45] Chijung Jung, Ali Ahad, Yuseok Jeon, and Yonghwi Kwon. 2022. Swarm-
FlawFinder: Discovering and Exploiting Logic Flaws of Swarm Algorithms. In
43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA,
23-26 May 2021. IEEE, 1447–1464. https://doi.org/10.1109/SP46214.2022.00084

[46] Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon. 2021.
Swarmbug: Debugging Configuration Bugs in Swarm Robotics. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
868–880. https://doi.org/10.1145/3468264.3468601

[47] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: dynamic taint analysis with targeted control-flow propagation.. In
NDSS.

[48] Ranjita Pai Kasturi, Yiting Sun, Ruian Duan, Omar Alrawi, Ehsan Asdar, Victor
Zhu, Yonghwi Kwon, and Brendan Saltaformaggio. 2020. TARDIS: Rolling back
the clock on CMS-targeting cyber attacks. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1156–1171.

https://lcamtuf.coredump.cx/afl/
https://github.com/ApolloAuto/apollo
https://cyber-rt.readthedocs.io/en/latest/
https://carla.org/
https://www.svlsimulator.com/
https://github.com/GiantSeaweed/ROCAS
https://futurism.com/the-byte/tesla-slamming-brakes-sees-stop-sign-billboard
https://futurism.com/the-byte/tesla-slamming-brakes-sees-stop-sign-billboard
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
https://www.bbc.com/news/technology-35692845
https://www.bbc.com/news/technology-35692845
https://www.bbc.com/news/business-50312340
https://www.bbc.com/news/technology-48308852
https://apnews.com/article/europe-us-news-ap-top-news-in-state-wire-mi-state-wire-ca5e62255bb87bf1b151f9bf075aaadf
https://apnews.com/article/europe-us-news-ap-top-news-in-state-wire-mi-state-wire-ca5e62255bb87bf1b151f9bf075aaadf
https://leaderboard.carla.org/
https://www.youtube.com/playlist?list=PLagazsxgy9BD2SdAO66ZR-rmfimeWpsgF
https://www.youtube.com/playlist?list=PLagazsxgy9BD2SdAO66ZR-rmfimeWpsgF
https://www.wired.com/story/dashcam-footage-shows-driverless-cars-cruise-waymo-clogging-san-francisco/
https://www.wired.com/story/dashcam-footage-shows-driverless-cars-cruise-waymo-clogging-san-francisco/
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3399715.3399826
https://doi.org/10.1145/3399715.3399826
https://www.ndss-symposium.org/ndss-paper/auto-draft-215/
https://www.ndss-symposium.org/ndss-paper/auto-draft-215/
https://doi.org/10.1145/3372297.3417249
https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1109/ICSE.2019.00113
https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1145/3238147.3238204
https://doi.org/10.1109/SP46214.2022.00084
https://doi.org/10.1145/3468264.3468601

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[49] R. Killick, P. Fearnhead, and I. A. Eckley. 2012. Optimal Detection of Changepoints
With a Linear Computational Cost. J. Amer. Statist. Assoc. 107, 500 (oct 2012),
1590–1598. https://doi.org/10.1080/01621459.2012.737745

[50] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z Berkay Celik, and
Dongyan Xu. 2021. PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[51] Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: Fuzzing Robotic Systems over
Robot Operating System (ROS) for Finding Correctness Bugs. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 447–458.
https://doi.org/10.1145/3540250.3549164

[52] Seulbae Kim, Major Liu, Junghwan "John" Rhee, Yuseok Jeon, Yonghwi Kwon,
and Chung Hwan Kim. 2022. DriveFuzz: Discovering Autonomous Driving Bugs
through Driving Quality-Guided Fuzzing. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (Los Angeles, CA, USA)
(CCS 2022). ACM, 1753–1767. https://doi.org/10.1145/3548606.3560558

[53] Taegyu Kim, Chung Hwan Kim, Altay Ozen, Fan Fei, Zhan Tu, Xiangyu Zhang,
Xinyan Deng, Dave (Jing) Tian, and Dongyan Xu. 2020. From Control Model
to Program: Investigating Robotic Aerial Vehicle Accidents with MAYDAY. In
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 913–930.
https://www.usenix.org/conference/usenixsecurity20/presentation/kim

[54] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFUZZER:
Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Test-
ing. In Proceedings of the 28th USENIX Conference on Security Symposium (Santa
Clara, CA, USA) (SEC’19). USENIX Association, USA, 425–442.

[55] Taesoo Kim, XiWang, Nickolai Zeldovich,M Frans Kaashoek, et al. 2010. Intrusion
Recovery Using Selective Re-execution.. In OSDI. 89–104.

[56] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. In Proceedings
of the nineteenth ACM symposium on Operating systems principles. 223–236.

[57] Rahul Krishna, Md Shahriar Iqbal, Mohammad Ali Javidian, Baishakhi Ray, and
Pooyan Jamshidi. 2020. Cadet: Debugging and fixing misconfigurations using
counterfactual reasoning. arXiv preprint arXiv:2010.06061 (2020).

[58] Srinivas Krishnan, Kevin Z Snow, and Fabian Monrose. 2010. Trail of bytes:
efficient support for forensic analysis. In Proceedings of the 17th ACM conference
on Computer and communications security. 50–60.

[59] Bijun Lee, Yang Wei, and I Yuan Guo. 2017. Automatic parking of self-driving
car based on lidar. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 42 (2017),
241–246.

[60] Henry C Lee and Elaine M Pagliaro. 2013. Forensic evidence and crime scene
investigation. Journal of Forensic Investigation 1, 2 (2013), 1–5.

[61] Jaekwon Lee, Enrico Viganò, Oscar Cornejo, Fabrizio Pastore, and Lionel Briand.
2023. Fuzzing for CPS Mutation Testing. arXiv:2308.07949 [cs.SE]

[62] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In NDSS, Vol. 16.

[63] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai.
2023. PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems. In 32nd
USENIX Security Symposium (USENIX Security 23). USENIX Association, Ana-
heim, CA, 1379–1396. https://www.usenix.org/conference/usenixsecurity23/
presentation/li-wen (artifact evaluated; badges: Available).

[64] Prianka Mandal, Sunil Manandhar, Kaushal Kafle, Kevin Moran, Denys Poshy-
vanyk, and Adwait Nadkarni. 2023. Helion: Enabling Natural Testing of Smart
Homes. arXiv preprint arXiv:2308.06695 (2023).

[65] Rui Mei, Hanbing Yan, Qinqin Wang, Zhihui Han, and Zhuohang Lyu. 2022.
TDLens: toward an empirical evaluation of provenance graph-based approach to
cyber threat detection. China Communications 19, 10 (2022), 102–115.

[66] Claudio Menghi, Enrico Viganò, Domenico Bianculli, and Lionel C Briand.
2021. Trace-checking CPS properties: Bridging the cyber-physical gap. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
847–859.

[67] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2006. Bugnet: Recording
application-level execution for deterministic replay debugging. IEEE Micro 26, 1
(2006), 100–109.

[68] Peter Ohmann and Ben Liblit. 2017. Lightweight control-flow instrumentation
and postmortem analysis in support of debugging. Automated Software Engineer-
ing 24 (2017), 865–904.

[69] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2022. MDPFuzz: Testing Models
Solving Markov Decision Processes. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for ComputingMachinery, New York, NY, USA, 378–390.
https://doi.org/10.1145/3533767.3534388

[70] Sudarshan M Srinivasan, Srikanth Kandula, Christopher R Andrews, Yuanyuan
Zhou, et al. 2004. Flashback: A lightweight extension for rollback and deter-
ministic replay for software debugging. In USENIX Annual Technical Conference,
General Track. Boston, MA, USA, 29–44.

[71] Yun Tang, Yuan Zhou, Yang Liu, Jun Sun, and Gang Wang. 2021. Collision
Avoidance Testing for Autonomous Driving Systems on Complete Maps. In
2021 IEEE Intelligent Vehicles Symposium (IV). 179–185. https://doi.org/10.1109/
IV48863.2021.9575536

[72] Yun Tang, Yuan Zhou, Fenghua Wu, Yang Liu, Jun Sun, Wuling Huang, and Gang
Wang. 2021. Route coverage testing for autonomous vehicles via map modeling.
In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
11450–11456.

[73] Yun Tang, Yuan Zhou, Tianwei Zhang, Fenghua Wu, Yang Liu, and Gang Wang.
2021. Systematic Testing of Autonomous Driving Systems Using Map Topology-
Based Scenario Classification. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1342–1346. https://doi.org/10.1109/
ASE51524.2021.9678735

[74] Pablo Valle, Aitor Arrieta, andMaite Arratibel. 2023. AutomatedMisconfiguration
Repair of Configurable Cyber-Physical Systems with Search: an Industrial Case
Study on Elevator Dispatching Algorithms. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE. https://doi.org/10.1109/icse-seip58684.2023.00042

[75] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian
Kästner. 2022. On Debugging the Performance of Configurable Software Sys-
tems: Developer Needs and Tailored Tool Support. In Proceedings of the 44th
International Conference on Software Engineering (ICSE). ACM Press, New York,
NY, 1571–1583. https://doi.org/10.1145/3510003.3510043

[76] GregoryWalkup, Sriharsha Etigowni, Dongyan Xu, Vincent Urias, andHanWLin.
2020. Forensic Investigation of Industrial Control Systems Using Deterministic
Replay. In 2020 IEEE Conference on Communications and Network Security (CNS).
IEEE, 1–9.

[77] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and
Qi Alfred Chen. 2022. Too Afraid to Drive: Systematic Discovery of Semantic DoS
Vulnerability in Autonomous Driving Planning under Physical-World Attacks.
In Network and Distributed System Security (NDSS) Symposium, 2022.

[78] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[79] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[80] Kai-Tao Xie, Jia-Ju Bai, Yong-Hao Zou, and Yu-Ping Wang. 2022. ROZZ: Property-
based Fuzzing for Robotic Programs in ROS. In 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 6786–6792.

[81] Xiaofei Xie, Hongxu Chen, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019.
Coverage-Guided Fuzzing for FeedForward Neural Networks. In Proceedings of
the 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1162–1165.

[82] Ibrar Yaqoob, Latif U Khan, SM Ahsan Kazmi, Muhammad Imran, Nadra Guizani,
and Choong Seon Hong. 2019. Autonomous driving cars in smart cities: Recent
advances, requirements, and challenges. IEEE Network 34, 1 (2019), 174–181.

[83] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. Sherlog: error diagnosis by connecting clues from run-time logs.
In Proceedings of the fifteenth International Conference on Architectural support
for programming languages and operating systems. 143–154.

[84] Fiorella Zampetti, Ritu Kapur, Massimiliano Di Penta, and Sebastiano Panichella.
2022. An empirical characterization of software bugs in open-source Cyber-
Physical Systems. J. Syst. Softw. 192 (2022), 111425. https://doi.org/10.1016/
j.jss.2022.111425

[85] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering (Charleston, South Carolina, USA) (SIGSOFT ’02/FSE-10). Association
for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/
587051.587053

[86] Jun Zeng, Chuqi Zhang, and Zhenkai Liang. 2022. PalanTír: Optimizing Attack
Provenance with Hardware-enhanced System Observability. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
3135–3149.

[87] Alice X Zheng, Michael I Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. 2006.
Statistical debugging: simultaneous identification of multiple bugs. In Proceedings
of the 23rd international conference on Machine learning. 1105–1112.

[88] Ziyuan Zhong, Zhisheng Hu, Shengjian Guo, Xinyang Zhang, Zhenyu Zhong,
and Baishakhi Ray. 2022. Detecting multi-sensor fusion errors in advanced
driver-assistance systems. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 493–505.

[89] Ziyuan Zhong, Yun Tang, Yuan Zhou, Vania de Oliveira Neves, Yang Liu, and
Baishakhi Ray. 2021. A Survey on Scenario-Based Testing for Automated Driving
Systems in High-Fidelity Simulation. arXiv:2112.00964 [cs.SE]

https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3548606.3560558
https://www.usenix.org/conference/usenixsecurity20/presentation/kim
https://arxiv.org/abs/2308.07949
https://www.usenix.org/conference/usenixsecurity23/presentation/li-wen
https://www.usenix.org/conference/usenixsecurity23/presentation/li-wen
https://doi.org/10.1145/3533767.3534388
https://doi.org/10.1109/IV48863.2021.9575536
https://doi.org/10.1109/IV48863.2021.9575536
https://doi.org/10.1109/ASE51524.2021.9678735
https://doi.org/10.1109/ASE51524.2021.9678735
https://doi.org/10.1109/icse-seip58684.2023.00042
https://doi.org/10.1145/3510003.3510043
https://doi.org/10.1016/j.jss.2022.111425
https://doi.org/10.1016/j.jss.2022.111425
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053
https://arxiv.org/abs/2112.00964

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

SUPPLEMENTARY MATERIAL
A HOW ROCAS REDUCES SEARCH SPACE
As we mentioned in Section 5.2, due to the natural noise of the
physical environment, there always exist some differences when
conducting the differential analysis (in Section 5.2.3). Therefore it
is necessary and crucial to locate the accident-inducing difference.
Figure 16 shows the MDR series of different channels (for accident
A1), corresponding to the CMG in Figure 15. Red dot lines denote
the change points. This accident happens at 7.1s, marked as the red
region in the control channel subfigure.

It is worth noting that different channels have different default
MDR values. For example, the planning channel has a default MDR
of 12.84, while prediction channel has a default MDR of 28.86,
as shown in Table 6. When running Algorithm 1 (with 𝛿 = 3)
to find the deviating module, we can obtain a path in reversed
CMG, namely control→ planning→ prediction. There-
fore module prediction is correctly identified. Although chan-
nel chassis also has a change point at 1.5s, it is not reachable
from channel control because the edge from channel chassis
to module control has been removed at Algorithm 1 Line 11.

B CASE STUDIES

Case Study I: Yield Distance (Accident A4). In A4 (as shown in
Figure 14c), the subject ADS (in blue) is driving ahead and intends
to pass a crossing. At the same time, another vehicle (in red) is
attempting a left turn into the same lane as the ADS. Unexpectedly,
the ADS fails to yield to the red vehicle and collides with it.

To investigate the root cause of this accident, Rocas first mu-
tates the surrounding entities (including the red vehicle) to suppress
the accident. Rocas finds that the collision is prevented when the
speed of the red vehicle is reduced from 6 m/s to 4 m/s. Next, Ro-
cas conducts the differential analysis on the executions with and
without the accident and pinpoint to the planning module. Ro-
cas then mutates configurations within the planning module and
finds that the collision can be suppressed by changing the value
of yield_distance. Figure 10 illustrates different execution
results with different yield_distance values. In the original
execution with the accident, yield_distance is set to 5 (Fig-
ure 10a), and the collision still occurs when the value is increased
to 10 (Figure 10b). However, the collision is avoided when the
yield_distance is decreased to 2 (Figure 10c). It indicates that
this vulnerability is related to the values of yield_distance.

To further investigate the root case, we locate the usage of
yield_distance in source code. Figure 11 shows the code snip-
pet of CreateYieldDecision API, which is used to make the
yield decision. In Line 4, parameter yield_distance is used to
compute the location point at which the AD vehicle plans to stop
for yielding ahead vehicles (e.g., the red one). When the value is
too large, such as in Figure 10a and 10b, the stop location is too
close for the subject AD vehicle to make a full stop. This causes
the vehicle to make a plan of not yielding and thus triggers the
collision. This vulnerability can be fixed by setting the parameter
yield_distance to a smaller value, such as 2 used in Figure 10c.

Case Study II: Drifting Truck (Accident A6). Accident A6 (Fig-
ure 14e) depicts a more complicated accident case. As shown in the
simulator screenshot, this accident occurs on a rainy day. The AD
vehicle is driving ahead and passing a crossing when an external
truck (in red) is turning left at the intersection. However, the ADS
fails to yield the truck and collides with it.

To identify the vulnerability that causes this accident, Rocas first
replays the accident in the simulator and performs the physical mu-
tation. By mutating the property Rotation.yaw from 310 to 300,
Rocas is able to find an accident-free execution. Rotation.yaw
represents the angle between the ahead truck and the path that
the ADS is traveling. Therefore, when the position of the truck is
rotated to be outside the ADS’s path, the collision can be avoided.
Given this accident-free execution, Rocas compares it with the
accident execution that results in the accident and localizes the
planning module as the problematic module. Rocas then performs
the cyber mutation on the configuration space within the planning
module and finds that the accident can be suppressed by increasing
the configuration kADCSafetyLBuffer from 0.1 to 1.

To investigate the root cause of the vulnerability, we exam-
ine the usage of kADCSafetyLBuffer in the source code. As
shown in Figure 13, kADCSafetyLBuffer is used in the API C
omputeObstacleSTBoundary (Line 5), which computes the
boundary of external obstacles. Specifically, it computes the ob-
stacle’s bounding box based on its trajectory (Line 6 and Line 8)
and determines whether the ADS will overlap with the obstacle’s
bounding box obs_box (Line 10). The configurable parameter
kADCSafetyLBuffer is used to extend the overlap detection
area by adding a buffer to its width for increased safety. A larger
kADCSafetyLBuffermeans the ADS detects external obstacles
in a wider range. While we find that increasing kADCSafetyL
Buffer can prevent the accident in this case, it may not be an
optimal solution, as it could potentially trigger other vulnerabilities
in different scenarios, such as making an unexpected stop or yield
for an external obstacle with a safe distance.

Note that kADCSafetyLBuffer is used for additional safety
consideration. Evenwhen its value is set to zero, the collision should
not occur as long as the obstacle is outside the ADS’s path. This
suggests that the vulnerability is likely caused by using an incorrect
obstacle bounding box, i.e., obs_box, another variable considered
in overlap checking (Line 10). The results of physical mutation
also confirm this hypothesis, where Rocas finds that adjusting
the truck’s direction can avoid the accident. obs_box is obtained
by calling GetBoundingBox (Line 8), defined at Line 2. Upon
investigation, we find that a bounding box contains information
such as the position (x and y in Line 3) and the angle (theta in Line
4). However, the code uses the tangent to the path as the angle (i.e.,
path_point().theta() in Line 4), instead of the real angle
of the truck. We illustrate the difference between the two values in
Figure 12a. The red curve shows the trajectory of the truck, and the
red box in dotted line shows the computed bounding box by the
ADS, which has no overlap with the path of the ADS. However, due
to the rainy weather, the large truck drifts on wet ground during
the turn, making its real angle different from the tangent to the
path. Thus, the real bounding box (the black box) is different from
the computed one, which actually overlaps with the path of the
ADS. It indicates that the vulnerability can be fixed by replacing

ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

(a) yd=5. Collision. (b) yd=10. Collision. (c) yd=2.No collision.

Figure 10: Replay Accident A4 with different values for yield_distance (yd for short)

1 const double yield_distance = 5.0
2 bool SpeedDecider::CreateYieldDecision(Obstacle& obstacle,
3 ObjectDecisionType* yield_decision) {
4 yield_decision->set_distance_s(-yield_distance); // set YIELD decision
5 ... }

Figure 11: Simplified code logic for Accident A4.

(a) Illustration. (b) Path.theta. v = 10 km/h. Collision. (c) Obs.theta. v= 0 km/h. No collision.

Figure 12: Replay Accident A6. In Figure 12a, black box is the truck. Red dotted box is what AD vehicle thinks.

1 const double kADCSafetyLBuffer = 0.1
2 Box2d Obstacle::GetBoundingBox(TrajectoryPoint& point) const {
3 return Box2d(point.path_point().x(), point.path_point().y(),
4 point.path_point().theta(), ...); }
5 bool ComputeObstacleSTBoundary(Obstacle& obs, ...) {
6 auto& obs_traj = obstacle.Trajectory();
7 for (auto& obs_tjpt : obs_traj.traj_point()) {
8 Box2d& obs_box = obs.GetBoundingBox(obs_tjpt);
9 // adc_path_points is AD Car's planning path
10 if (GetOverlappingS(adc_path_points, obs_box, kADCSafetyLBuffer)) {...}
11 } }

Figure 13: Simplified code logic for Accident A6

Table 5: Selecting Criteria. From Table 7 we select exploitable
and severe cases (i.e., collision or emergency braking).

Inefficient Severe All

Exploitable 13 144 157
Inexploitable 12 15 27

All 25 159 184

path_point().theta() with obs.theta(). When using
path_point().theta() in the original execution (Figure 12b),
the ADS does not yield and collides with the truck at a velocity of
10 km/h. However, when using obs.theta() (Figure 12c), the
ADS detects the truck successfully and stops completely, waiting
for the truck to bypass.

Table 6: Change time point 𝑡∗ for each channel and the MDR
value before and after MDR.

Channel Name 𝑡∗
MDR

Before After Δ Ratio

/apollo/perception/obstacles - - - -
/apollo/prediction 4.50 28.86 30.72 +1.86
/apollo/planning 7.00 12.84 17.44 +4.60
/apollo/canbus/chassis 1.50 4.28 9.62 +5.35
/apollo/control 7.10 14.52 18.29 +3.78

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA S. Feng, Y. Ye, Q. Shi, Z. Cheng, X. Xu, S. Cheng, H. Choi and X. Zhang

Table 7: Accident Statistics. We classify accidents from three perspectives: ❶ exploitability, ❷ consequences, and ❸ driving
scenarios. We specifically exclude accidents that are not exploitable or only result in minor consequences (e.g., inefficiency
such as taking longer routes), categorizing the remaining cases.

Accident Sources #Accident ❶ Exploitable
❷ Consequence ❸ Driving Scenario

Collision Emergency Braking Inefficiency Intersection Merging Following Turning

CROUTINE [72] 6 3 (50.0%) 1 (16.7%) - 5 (83.3%) - - 3 (50.0%) 3 (50.0%)
CAT [71] 5 5 (100%) 2 (40.0%) 1 (20.0%) 2 (40.0%) 4 (80.0%) - 1 (20.0%) -
ATLAS [73] 10 7 (70.0%) 4 (40.0%) 2 (20.0%) 4 (40.0%) 9 (90.0%) - 1 (10.0%) -
DriveFuzz [52] 31 21 (67.7%) 18 (58.1%) 4 (12.9%) 9 (29.0%) 2 (6.5%) 4 (12.9%) 16 (51.6%) 9 (29.0%)
DoppelTest [42] 123 112 (91.1%) 98 (79.7%) 23 (18.7%) 2 (1.6%) 40 (32.5%) 81 (65.9%) 2 (1.6%) -
PlanFuzz [77] 9 9 (100%) - 6 (66.7%) 3 (33.3%) 3 (33.3%) - 6 (66.7%) -

Summary 184 157 (85.3%) 123 (66.8%) 36 (19.6%) 25 (13.6%) 58 (31.5%) 85 (46.2%) 29 (15.8%) 12 (6.5%)

Stop Here

Stop Here

(a) A1 (b) A3 (c) A4 (e) A6 (f) A10 (g) A11 (h) A12

Stop Here

Brake not
in time

Drift

Stop Here
Stop Here

(d) A5
Figure 14: Illustrations for accident scenarios in Table 2. Top images show simulator screenshots just before or at the accident
moments. Blue vehicles are the ADSs. Solid lines show vehicles’ trajectories. Vehicles without lines mean their speeds are 0.

Figure 15: Extracted (simplified) CMG from Cy-
berRT.

0 2.0 4.0 6.0 8.0 10.0
0.0

0.1

0.2

M
sg

 D
iff

. R
at

io /apollo/perception/obstacles

0 2.0 4.0 6.0 8.0 10.0

0.25

0.30

M
sg

 D
iff

. R
at

io /apollo/prediction
4.50

0 2.0 4.0 6.0 8.0 10.0

0.1

0.2

0.3

M
sg

 D
iff

. R
at

io /apollo/planning

7.00

0 2.0 4.0 6.0 8.0 10.0
0.0

0.1

0.2

M
sg

 D
iff

. R
at

io /apollo/canbus/chassis

1.50

0 2.0 4.0 6.0 8.0 10.0
Time (s)

0.1

0.2

M
sg

 D
iff

. R
at

io /apollo/control

7.10
9.45

Figure 16: MDR series for CMG channels in Fig. 15. Red dot lines
denote MDR change points. The accident happens at 7.1s, shown
as red region in control channel subfigure.

	Abstract
	1 Introduction
	2 Background
	2.1 ADS Architecture
	2.2 ADS Communication Framework

	3 Motivation
	3.1 Motivating Example
	3.2 Limitation of Existing Works
	3.3 Our Approach

	4 Definition of ADS Root Cause Analysis
	4.1 ADS Execution
	4.2 ADS Accident Root Cause Analysis

	5 System Design
	5.1 Physical Mutation
	5.2 Initial Deviating Module Identification
	5.3 Cyber Mutation

	6 Evaluation
	6.1 Setup
	6.2 Effectiveness of Root Cause Analysis
	6.3 Effectiveness of MDR
	6.4 Efficiency of Runtime
	6.5 Case Studies

	7 Discussions
	8 Related Work
	9 Conclusion
	References
	A How Rocas Reduces Search Space
	B Case Studies

