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… built on ...
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▪understand principles behind transport layer services:
• multiplexing, de-multiplexing

• reliable data transfer

• flow control

• congestion control

▪Learn about transport layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable transport

• TCP congestion control

Chapter 3: Our Goals
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Chapter 3: Outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer 
3.5 Connection-oriented transport: 
TCP
3.6 Principles of congestion control
3.7 TCP congestion control
3.8 Evolution of transport-layer 
functionality
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Transport services and protocols

▪ provide logical communication 
between application processes 
running on different hosts

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional ISP

datacenter 
network

content 
provider 
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end 
systems:
• sender: breaks application messages 

into segments, passes to  network layer

• receiver: reassembles segments into 
messages, passes to application layer

▪ two transport protocols available to 
Internet applications
• TCP, UDP

Transport Layer: 3-4
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physical

link
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application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment 

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg
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physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app.  msg ▪ extracts application-layer 
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up 
to application via socket

Transport Layer: 3-6



Transport vs. network layer services and protocols

▪network layer: logical 
communication between 
hosts

▪transport layer: logical 
communication between 
processes 

• relies on, enhances, network 
layer services

household analogy:

12 kids in Ann’s house sending 
letters to 12 kids in Bill’s 
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in 

envelopes
▪ transport protocol = Ann and Bill 

who demux to in-house siblings
▪ network-layer protocol = postal 

service

Transport Layer: 3-8



Two principal Internet transport protocols

mobile network

home network

enterprise
          network

national or global ISP

local or 
regional ISP

datacenter 
network

content 
provider 
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control 
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available: 
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-9



Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:
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How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP 

address, destination IP address

• each datagram carries one 
transport-layer segment

• each segment has source, 
destination port number 

▪ host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-17



Connectionless demultiplexing 

Recall: 

▪ when creating socket, must 
specify host-local port #:

  DatagramSocket mySocket1        
= new DatagramSocket(12534);

when receiving host receives 
UDP segment:
• checks destination port # in 

segment
• directs UDP segment to 

socket with that port #

▪ when creating datagram to 
send into UDP socket, must 
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest. 
port #, but different source IP 
addresses and/or source port 

numbers will be directed to same 
socket at receiving host

Transport Layer: 3-18



Connectionless demultiplexing: an example

DatagramSocket 
serverSocket = new 
DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket1 = 
new DatagramSocket (5775);

DatagramSocket mySocket2 = 
new DatagramSocket

 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428
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Connection-oriented demultiplexing 

▪ TCP socket identified by 
4-tuple: 
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many 
simultaneous TCP sockets:
• each socket identified by its 

own 4-tuple

• each socket associated with 
a different connecting client

▪ demux: receiver uses all 
four values (4-tuple) to 
direct segment to 
appropriate socket

Transport Layer: 3-20



Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP 
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets
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Summary

▪ Multiplexing, demultiplexing: 

▪ based on segment, datagram header field values

▪ UDP: 

▪ demultiplexing using destination port number (only)

▪ TCP: 
▪ demultiplexing using 4-tuple: source and destination IP addresses, 

and port numbers
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Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality

Transport Layer: 3-23



UDP: User Datagram Protocol

▪ “no frills,” “bare bones” 
Internet transport protocol

▪ “best effort” service, UDP 
segments may be:
• lost

• delivered out-of-order to app

▪ no connection 
establishment (which can 
add RTT delay)

▪ simple: no connection state 
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as 

desired!

▪ can function in the face of 
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP 

sender, receiver
• each UDP segment handled 

independently of others
Transport Layer: 3-24



UDP: User Datagram Protocol

▪ UDP used by:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3): 
▪ add needed reliability at application layer

▪ add congestion control at application layer

▪ [RFC 768]: User Datagram Protocol 

Transport Layer: 3-25



UDP segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

data to/from 
application layer

Transport Layer: 3-30



UDP checksum

Transmitted:            5               6                11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received:            4               6                11

1st number 2nd number sum

receiver-computed 
checksum

sender-computed 
checksum (as received)

=

Transport Layer: 3-31



UDP checksum

sender:
▪ treat contents of UDP 

segment (including UDP header 
fields and IP addresses) as 
sequence of 16-bit integers

▪ checksum: addition (one’s 
complement sum) of segment 
content

▪ checksum value put into 
UDP checksum field

receiver:
▪ compute checksum of received 

segment

▪ check if computed checksum equals 
checksum field value:
• Not equal - error detected

• Equal - no error detected. But maybe 
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment
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Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be 
added to the result

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-33
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Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 

1 0 

Even though 
numbers have 
changed (bit 
flips), no change 
in checksum!
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▪ 1st:  0110

▪ 2nd: 0101

▪ 3rd: 1000

▪ Calculate UDP checksum of 1st + 2nd + 3rd 

▪  sum = 10011, -> 0011 + 1 (carryout) = 0100

▪  checksum = 1s complement = 1011 

▪ Check: receiving 1011?

▪ Check: receiving 1001?

▪ Errors if receiving 1011??

In-class practice: UDP checksum

35

Passed the check
Failed. Error for sure.

Maybe(if two bits flipped)



Summary: UDP

▪ “no frills” protocol: 

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer 
(e.g., HTTP/3)

Transport Layer: 3-36



Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality

Transport Layer: 3-37



▪ important @ application, transport, link layers
▪ Reliable transport of packets 
▪ A single sender and a single receiver

▪ Packet delivery imperfect
▪ With bit errors, dropping packets, out-of-order delivery, duplicate copies, 

long delay, ….

Principles of reliable data transfer

Transport Layer: 3-38

sender receiver

packets in queue/buffer

Packet delivery misbehaviors

packets receivedX
errors loss

logical end-end reliable transport



Principles of reliable data transfer 

sending 
process

data

receiving 
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-39



Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol

sending 
process

data

receiving 
process

data

reliable channel

application

transport

reliable service abstraction
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Complexity of reliable data 

transfer protocol  will depend 
(strongly) on characteristics of 

unreliable channel (lose, 
corrupt, reorder data?)
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Sender, receiver do not know 
the “state” of each other, e.g., 
was a message received?
▪ unless communicated via a 

message
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Reliable data transfer protocol (rdt): interfaces

sending 
process

data

receiving 
process

data

unreliable channel

sender-side
implementation of 
rdt reliable data 
transfer protocol

receiver-side
implementation of 
rdt reliable data 
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on receiver side of 
channel

deliver_data(): called by rdt 
to deliver data to upper layer

Bi-directional communication over 
unreliable channel

data

packet
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Reliable data transfer: getting started
We will:
▪ incrementally develop sender, receiver sides of reliable data transfer 

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state” 
next state uniquely 
determined by next 

event
event

actions

▪ use finite state machines (FSM)  to specify sender, receiver

Transport Layer: 3-44



rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for 

call from 

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for 

call from 

above

Transport Layer: 3-45



▪Simple setting: one packet at a time (stop and wait)
• One sender, one receiver
• sender has infinite number of packets to transfer to the receiver
• sender starts one-packet transmission at a time, and will not 

proceed with the next new packet transmission until the current 
packet has been successfully received & acknowledged by the 
receiver.

“Stop and Wait” Scenario 

Transport Layer: 3-46

sender receiver

packets in the buffer
One packet in transit

packets received



▪We progressively consider more complex cases
• Bit errors
• Packet loss
• Duplicate copies of the same packet
• Long delay (thus also out of order)
• ….

▪Designs: rdt2.0  (initial) → rdt3.0 (stop & wait)

“Stop and Wait” Scenario 

Transport Layer: 3-47

sender receiver

packets in the buffer
packets received

Packet delivery misbehaviors

X
errors loss



rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-48



▪How to detect bit errors in packet?
• Internet checksum algorithm

▪How to recover from errors?

• acknowledgements (ACKs): receiver explicitly tells sender that pkt received 
OK

• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt 
had errors

• sender retransmits packet upon receiving NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• Error detection at receiver
• Feedback from receiver: control messages (ACK,NAK) from receiver to 

sender
• Retransmission at the sender upon NAK feedback

rdt2.0: channel with bit errors

Transport Layer: 3-49



rdt2.0: FSM specifications

Wait for 

call from 

above
udt_send(sndpkt)

Wait for 

ACK or 

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 

call from 

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)
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rdt2.0: FSM specification

Wait for 

call from 

above
udt_send(sndpkt)

Wait for 

ACK or 

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 

call from 

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my 
message correctly?) isn’t known to sender unless 
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)
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rdt2.0: operation with no errors

Wait for 

call from 

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)
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rdt2.0: corrupted packet scenario

Wait for 

call from 

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver
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rdt2.0 in action

3-54

sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt2

pkt1

ack

ack

ack

(a) no error

sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt2

ack

ack

ack

(b) packet with bit errors

pkt1
error

pkt1

rcv nack

rcv garbled pkt1, 
drop pkt1

send NACKnack

Resend pkt1
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rdt2.0 has a fatal flaw!

what happens if ACK/NAK 
corrupted?

▪ sender doesn’t know what 
happened at receiver!

▪ can’t just retransmit: possible 
duplicate

handling duplicates: 
▪ sender retransmits current pkt 

if ACK/NAK corrupted

▪ sender adds sequence number 
to each pkt

▪ receiver discards (doesn’t 
deliver up) duplicate pkt

stop and wait
sender sends one packet,  then 
waits for receiver  response
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rdt2.0’s flaw: garbled ACK/NACK
sender receiver

rcv pkt1

send ack

send ack

rcv ack

send pkt2 
how to know? 

send pkt1

send pkt0

rcv pkt0
pkt0

Pkt2

pkt1

ack

ack

(a) Corrupted ack

sender receiver

send ack
rcv ack

send pkt1

send pkt0

rcv pkt0
pkt0

ack

(b) Corrupted NACK

pkt1
errors

Pkt1

resend pkt1
   how to know?

rcv garbled pkt1

send NACK
nack

Sender cannot tell whether the corrupted message is ACK or NACK!
Receiver cannot tell whether the received message is a new packet or a retransmitted packet!

Simply retransmitting upon corrupted ACK/NACK is not sufficient!
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rdt2.1: need seq #!
sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt2

ack

ack

ack

(b) Corrupted NACK

pkt1

pkt1
rcv garbled 

rcv garbled pkt1
drop pkt 1

send NACK
nack

sender receiver

rcv pkt1

send ack

send ack

rcv ack
send pkt1

send pkt0

rcv pkt0
pkt0

pkt1

ack

ack

(a) Corrupted ack

rcv dup pkt1
drop dup pkt1

rcv pkt2

send ack

send ack

send pkt2
rcv ack

pkt2

ack

ack

pkt1

rcv garbled  
resend pkt1  

resend pkt1  
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for 

ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

Wait for

 call 1 from 
above

Wait for 

ACK or 
NAK 1






rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 

0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

   not corrupt(rcvpkt) &&
   has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

  && has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 

1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
  && has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

   not corrupt(rcvpkt) &&
   has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)



rdt2.1: 1-bit seq # is enough!
Sender receiver

rcv pkt1

rcv pkt0

send ack

send ack

send ack

rcv ack

send pkt0
(new pkt!)

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack

ack

ack

(a) no error

sender receiver

rcv pkt1

rcv pkt0

send ack

send ack

send ack

rcv ack

send pkt0
(new pkt!)

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt0

ack

ack

ack

(b) packet with bit errors

pkt1

pkt1
rcv NACK 

rcv garbled pkt1 
drop pkt1

send NACK
NACK

resend pkt1 
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Version Channel Mechanism

rdt1.0 Reliable 
channel

nothing

rdt2.0 bit errors  
(no loss) 

(1)error detection via checksum 
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 handling fatal flaw with rdt 2.0:
(4)need seq #. for each packet
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rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed 

▪ duplicate ACK at sender results in same action as NAK: 
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-66



rdt2.2: NAK-free
sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) dup ack for garbled pkt

pkt1

pkt1

rcv dup ack0

rcv garbled pkt1
drop pkt 1

send ack0
ack0

sender receiver

rcv pkt1

send ack0

send ack1

rcv ack0
send pkt1

send pkt0

rcv pkt0
pkt0

pkt1

ack1

ack0

(a) Corrupted ack

rcv pkt1 (dup)
drop dup pkt1

rcv pkt0

send ack1

send ack0

send pkt0
rcv ack1

pkt0

ack1

ack0

pkt1
rcv garbled   

resend pkt1  

resend pkt1  
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rdt2.2: sender, receiver fragments

Wait for 

call 0 from 
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

  isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0) 

Wait for 

ACK
0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

  && has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 
below

rdt_rcv(rcvpkt) && 

   (corrupt(rcvpkt) ||

     has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment


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Summary: reliable data transfer (so far)

69

Version Channel Mechanism

rdt1.0 Reliable 
channel

nothing

rdt2.0 bit errors  
(no loss) 

(1)error detection via checksum 
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0
(fatal flaw)

(4)seq#  (1 bit, 0/1) for each pkt

rdt2.2 Same as 2.0 A variant to rdt2.1 (no NAK)
Duplicate ACK = NAK
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rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose 
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help … 

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?
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rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK 

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be  duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount 
of time
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rdt3.0 sender

Wait 

for 
ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for 

call 1 from 
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0) 

stop_timer

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1) 

stop_timer

Wait for 

call 0 from 
above

Wait 

for 
ACK1
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rdt3.0 sender

Wait 

for 
ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for 

call 1 from 
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0) 

stop_timer

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1) 

stop_timer

udt_send(sndpkt)
start_timer

timeoutWait for 

call 0 from 
above

Wait 

for 
ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)



udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )


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Example: rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1
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rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1
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Summary: reliable data transfer (so far)

78

Version Channel Mechanism

rdt1.0 Reliable channel nothing

rdt2.0 bit errors  
(no loss) 

(1)error detection via checksum 
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 (4)seq#  (1 bit) for each pkt

rdt2.2 Same as 2.0 A variant to rdt2.1 (no NAK)

Unexpected ACK = NAK 
ACK0 = ACK for pkt0, NAK for pkt1

Rdt3.0 Bit errors + 
loss

(5) retransmission upon timeout
No NAK, only ACK Transport Layer: 3-78



Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT 

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R
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rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT 

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)
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▪ Error detection
• via algorithms such as Internet checksum (in UDP), CRC (later in Chapter 6)

▪ Receiver feedback via (ACK + sequence #)
• Duplicate ACK = negative acknowledgment

▪ Timer & sequence # for each transmitted packet
• Number of seq. #: ≥ 2 for stop & wait protocol

• Timeout not too small, not too big (≈ 𝑅𝑇𝑇)

▪ Retransmission upon timeout or duplicate ACK (i.e., negative ACK)

Mechanisms for reliable data transfer
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rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged 

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

 

U 
sender = 

.0024 

30.008 
= 0.00081  

3L / R 

RTT + L / R 
= 
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Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts 

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n 

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
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Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with 
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet: 
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not  ACKed

Not received

Receiver view of sequence number space:

… …
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Go-Back-N in action: No loss

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

rcv ack0, send pkt4

pkt0 timeout

receive pkt4, send ack4

receive pkt5, send ack5

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5  6 7 8 

0 1 2 3 4 5 6  7 8 

0 1 2 3 4 5 6 7  8 

receive pkt6, send ack6

receive pkt7, send ack7
pkt1 timeout

pkt2 timeout

pkt3 timeout

pkt4 timeout

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt2, send ack2

receive pkt3, send ack3

rcv ack1, send pkt5

rcv ack2, send pkt6
rcv ack3, send pkt7
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Go-Back-N in action: Loss

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, discard, 
           (re)send ack1

send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

pkt 2 timeout

receive pkt4, discard, 
           (re)send ack1
receive pkt5, discard, 
           (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

rcv ack0, send pkt40 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5
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Selective repeat

▪receiver individually acknowledges all correctly received packets
• buffers packets, as needed, for eventual in-order delivery to upper 

layer

▪sender times-out/retransmits individually for unACKed packets

• sender maintains timer for each unACKed pkt

▪sender window
• N consecutive seq #s

• limits seq #s of sent, unACKed packets
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Selective repeat: sender, receiver windows
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Selective repeat: sender and receiver

data from above:

▪ if next available seq # in 
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N]:

▪ mark packet n as received

▪ if n smallest unACKed packet, 
advance window base to next 
unACKed seq # 

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver 
buffered, in-order packets), 
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise: 
▪ ignore 

receiver
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Selective Repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

send  pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

rcv ack0, send pkt40 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, buffer, 
           send ack3

record ack3 arrived

receive pkt4, buffer, 
           send ack4
receive pkt5, buffer, 
           send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?
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▪How many unique seq# may appear in GBN and SR, respectively?
•  N = 2

• GBN: sender [4,5], what is the expected number at the receiver?
• No error

• ACK 4 is lost

• ACK 4 and ACK 5 are lost

• Given the expected number 6, how to infer the sender window?

▪How about SR (expected window)?

▪What if we have N+1 sequence numbers for SR?

In-class Practice: GBN vs SR 

94

4, 5, or 6

GBN: give the expected number x, the sender window 

will be [x-2, x-1], [x-1, x], [x, x+1]

[4,5], [5,6], [6,7]



Selective repeat: 
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 

▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3
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Selective repeat: 
a dilemma!

Q: what relationship is needed 
between sequence # size and 
window size to avoid problem 
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 

▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

▪ receiver can’t 
see sender side
▪ receiver 

behavior 
identical in both 
cases!
▪ something’s 

(very) wrong!
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Selective repeat:
dilemma (N+1)  

example: 

▪ window size=3

▪ seq #’s: 0, 1, 2, 3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X

X

X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

❖ receiver sees no 
difference in two 
scenarios!

❖ duplicate data 
accepted as new in 
(b)

Q: what relationship 
between seq # size 
and window size to 
avoid problem in (b)?

2N
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Summary: reliable data transfer (final)

Transport Layer: 3-9898

Version Channel Mechanism

rdt1.0 No error/loss nothing

rdt2.0 bit errors  
(no loss) 

(1)error detection via checksum 
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 (4)seq#  (1 bit) for each pkt

rdt2.2 Same as 2.0 (no NAK): Unexpected ACK = NAK

Rdt3.0 errors + loss (5)Retransmission upon timeout; ACK-only

Performance issue: low utilization

Goback-N
Same as 3.0 N sliding window (pipeline)

Discard out-of-order pkts (recovery) 

Selective 
Repeat

Same as 3.0 N sliding window, 
selective recovery 



Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
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TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control 

set window size

▪ connection-oriented: 
• handshaking (exchange of control 

messages) initializes sender, 
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver 

▪ reliable, in-order byte 
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in 

same connection
• MSS: maximum segment size
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TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes 

receiver willing to accept

sequence number

segment seq  #: counting 

bytes of data into bytestream 
(not segments!)

application

data 

(variable length)

data sent by 
application into 
TCP socket

A

acknowledgement number

ACK: seq # of next expected 
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection 
management

FSR

Urg data pointer

PUC E

C, E: congestion notification
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TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of 
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent 
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not 
yet sent

not 
usable

window size
 N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected 
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up 
to implementor
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TCP sequence numbers, ACKs

host ACKs receipt 
of echoed ‘C’

host ACKs receipt 
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP round trip time, timeout

Q: how to set TCP timeout 
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout, 
unnecessary retransmissions

▪ too long: slow reaction to 
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time 

from segment transmission until 
ACK receipt
• ignore retransmissions (why?)

▪SampleRTT will vary, want 
estimated RTT “smoother”

• average several recent 
measurements, not just current 
SampleRTT
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TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 1/8
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
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TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in  EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 1/4)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT: 
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TCP Sender (simplified)

event: data received from 
application

▪ create segment with seq #

▪ seq # is byte-stream number 
of first data byte in  segment

▪ start timer if not already 
running 
• think of timer as for oldest 

unACKed segment

• expiration interval: 
TimeOutInterval 

event: timeout
▪ retransmit segment that 

caused timeout
▪ restart timer
 

event: ACK received 

▪ if ACK acknowledges 
previously unACKed segments
• update what is known to be 

ACKed

• start timer if there are  still 
unACKed segments
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TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK, 
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK, 
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92,  8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative 
ACK for 120

Transport Layer: 3-110



TCP: retransmission scenarios

cumulative ACK covers 
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120,  15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120
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TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs 
indicates 3 segments received 
after a missing segment – lost 

segment is likely. So retransmit!

if sender receives 3 additional 
ACKs for same data (“triple 
duplicate ACKs”), resend unACKed 
segment with smallest seq #
▪ likely that unACKed segment lost, 

so don’t wait for timeout

TCP fast retransmit
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Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
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TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

Network layer 
delivering IP datagram 

payload into TCP 
socket buffers

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

from sender

Application removing 
data from TCP socket 

buffers

receive window flow control: # bytes 
receiver willing to accept
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TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by 
transmitting too much, too fast

flow control

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control

▪ TCP receiver “advertises” free buffer 
space in rwnd field in TCP header

• RcvBuffer size set via socket 

options (typical default is 4096 bytes)

• many operating systems autoadjust 
RcvBuffer

▪ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering
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TCP flow control

▪ TCP receiver “advertises” free buffer 
space in rwnd field in TCP header

• RcvBuffer size set via socket 

options (typical default is 4096 bytes)

• many operating systems autoadjust 
RcvBuffer

▪ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format
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Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
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TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)

▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
         server-to-client
rcvBuffer size

   at server,client 
           

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
          server-to-client
rcvBuffer size

   at server,client 
           

application

network

Socket clientSocket =   

  newSocket("hostname","port number");

Socket connectionSocket = 

welcomeSocket.accept();
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Agreeing to establish a connection

Q: will 2-way handshake always 
work in network?
▪ variable delays

▪ retransmitted messages (e.g. 
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-127



How to set SYNC, ACK bit?

source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

ACK: ACK #

valid

RST, SYN, FIN:

connection estab

(setup, teardown

commands)



▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Closing a TCP connection
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Closing TCP connection 
(i.e., two 1-way subconnections)

Transport Layer: 3-130

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB

Makes the client wait for a duration long enough for an ACK to be lost 
and a FIN to arrive. If a FIN arrives, restart the timer 2*max-segment-lifetime
Drop any delayed segments during timer=2*max-segment-time (2min default)



Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Congestion:

▪ informally: “too many sources sending too much data too fast for 
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control: 
too many senders, 

sending too fast

flow control: one sender 

too fast for one receiver

▪ a top-10 problem!
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Causes/costs of congestion: scenario 1 

Simplest scenario:

maximum per-connection 
throughput: R/2

Host A

Host B

throughput: out

large delays as arrival rate 
in approaches capacity

Q: What happens as 
arrival rate in 
approaches R/2? 

original data: in 

R
▪ two flows

▪ one router, infinite buffers 

▪ input, output link capacity: R infinite shared 

output link buffers

R
▪ no retransmissions needed

R/2

d
el

ay

in

R/2

R/2


o
u
t

in

th
ro

u
gh

pu
t:
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▪  More motivation scenarios in the textbook (optional) 
• Queuing theory (Internet as a connected graph, each router with a queue)

Causes/costs of congestion: more scenarios

Transport Layer: 3-143

▪ upstream transmission capacity / buffering 
wasted for packets lost downstream

R/2

R/2

l
o

u
t

lin
’

▪ delay increases as capacity approached 

R/2

d
e

la
y

lin

▪ un-needed duplicates further decreases 
effective throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:
 

R/2

▪ loss/retransmission decreases effective 
throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:
 

R/2

▪ throughput can never exceed capacity 

R/2
lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:
 



#1: End-end congestion control:

▪ no explicit feedback from 
network

▪ congestion inferred from 
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP
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▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

#2: Network-assisted 
congestion control:

▪ routers provide direct feedback 
to sending/receiving hosts with 
flows passing through congested 
router

▪ may indicate congestion level or 
explicitly set sending rate
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Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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❖Idea
▪ Assumes best-effort network 

▪ Each source determines network capacity for itself

▪ Implicit feedback via ACKs or timeout events
▪ Feedback control system in practice

▪ ACKs pace transmission (self-clocking)

❖Challenge
▪ Determining initial available capacity

▪ Adjusting to changes in capacity in a timely manner

TCP Congestion Control
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TCP Congestion Control

▪Assumptions for congestion control
• TCP pipelined reliable data transfer (SR in the common cases)

• Works with TCP flow control

• All losses of TCP segments are due to Internet congestion
• Ignore the transmission errors (since link quality is good in general)

▪Mechanism: Window-based congestion control
• Adjust the window size for SR to change the TCP sending rate

▪ Changes in congestion window size (cwnd)
• Slow increases to absorb new bandwidth

• Quick decreases to eliminate congestion
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TCP Congestion Control
r sender limits transmission:

  LastByteSent-LastByteAcked

                    cwnd

r cwnd is dynamic, function of 
perceived network congestion

How does  sender perceive 
congestion?

r loss event = timeout or 3 
duplicate acks

r TCP sender reduces rate 
(cwnd) after loss event

three mechanisms:

m AIMD: how to grow cwnd

m slow start: startup

m conservative after loss 
(timeout, duplicate ACKs) 
events

last byte
ACKed sent, not-yet 

ACKed
(“in-flight”)

last byte 
sent

cwnd

sender sequence number space 



▪ Approach: increase transmission rate (window size), probing for 
usable bandwidth, until loss occurs
• additive increase: increase  cwnd by 1 MSS every RTT until loss detected

• multiplicative decrease: cut cwnd by 50% after loss

AIMD Rule: 
additive increase, multiplicative decrease
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8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

timec
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e
Saw tooth

behavior: probing
for bandwidth



Two competing sessions:

▪ Additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally 

What AIMD? TCP Fairness

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



How to implement TCP Congestion Control?

Multiple algorithms work together:

▪ slow start: how to jump-start

▪ congestion avoidance: additive increase

▪ fast retransmit/fast recovery: recover from single packet loss: 
multiplicative decrease

▪ retransmission upon timeout: conservative loss/failure handling

TCP Congestion Control (RFC 5681)
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TCP Congestion Control Summary
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion 

Avoidance cwnd > ssthresh

cwnd++ per RTT  (additive 

increase)

cwnd+=(MSS/cwnd) * MSS 

per ACK

fast 

retransmit 3 duplicate ACK

reduce the cwnd by half 

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS) 

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK 

after fast retx

finish the 1/2 reduction of 

cwnd in fast retx/fast 

recovery

cwnd = ssthresh; 

tx if allowed by cwnd

upon a dup ACK after 

fast retx before fast 

recovery

("transition phrase)

cwnd +=1MSS; 

Note: it is different from slow 

start. 

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS) 

cwnd = 1MSS; 

retx the lost packet
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TCP Slow Start

▪When connection begins, cwnd 
 2 MSS,  typically,  set cwnd = 
1MSS
• Example: MSS = 500 bytes & RTT = 

200 msec

• initial rate = 20 kbps

▪ available bandwidth may be >> 
MSS/RTT
• desirable to quickly ramp up to 

respectable rate

• When connection begins, 
increase rate exponentially fast 
until cwnd reaches a threshold 
value: slow-start-threshold 
ssthresh
• cwnd < ssthresh



▪When connection begins, 
increase rate exponentially 
when cwnd<ssthresh
• Goal: double cwnd every RTT 

by setting
• Action: cwnd += 1 MSS for 

every ACK received

▪Summary: initial rate is slow 
but ramps up exponentially 
fast

TCP Slow Start (more)

Host A

R
T

T

Host B

time



Congestion Avoidance

▪Goal: increase cwnd by 1 MSS 
per RTT until congestion (loss)  
is detected

• Conditions: when cwnd > ssthresh 
and no loss occurs

• Actions: cwnd += (MSS/cwnd)*MSS 
(bytes)  upon every incoming non-
duplicate ACK 

Host A

R
T

T

Host B

time

THREE 
segments



TCP Congestion Control
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion 

Avoidance cwnd > ssthresh

cwnd++ per RTT  (additive 

increase)

cwnd+=(MSS/cwnd) * MSS 

per ACK

fast 

retransmit 3 duplicate ACK

reduce the cwnd by half 

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS) 

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK 

after fast retx

finish the 1/2 reduction of 

cwnd in fast retx/fast 

recovery

cwnd = ssthresh; 

tx if allowed by cwnd

upon a dup ACK after 

fast retx before fast 

recovery

("transition phrase)

cwnd +=1MSS; 

Note: it is different from slow 

start. 

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS) 

cwnd = 1MSS; 

retx the lost packet
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▪Detecting losses and reacting to them:

• through duplicate ACKs
• fast retransmit / fast recovery

• Goal: multiplicative decrease cwnd upon loss

• through retransmission timeout
• Goal: reset everything

When loss occurs



Fast Retransmit/Fast Recovery
▪ fast retransmit: to detect and 

repair loss,  based on incoming 
duplicate ACKs

• use 3 duplicate ACKs to infer 
packet loss

• set ssthresh = max(cwnd/2, 
2MSS)

• cwnd = ssthresh + 3MSS

• retransmit the lost packet

▪ fast recovery: governs the 
transmission of new data until a 
non-duplicate ACK arrives

• increase cwnd by 1 MSS upon every 
duplicate ACK

❑ 3 dup ACKs to infer losses 
and differentiate from 
transient out-of-order 
delivery
❑ What about only 1 or 2 
dup ACKs?

❑  Do nothing; this allows for 
transient out-of-order 
delivery

❑ receiving each duplicate 
ACK indicates one more 
packet left the network and 
arrived at the receiver

Philosophy:
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▪ Initially, fastretx = false;
▪ If upon 3rd duplicate ACK

• ssthresh = max (cwnd/2,  2*MSS)
• cwnd = ssthresh + 3*MSS

• why add 3 packets here?
• retransmit the lost TCP packet
• Set fastretx = true; 

▪ If fastretx == true; upon each additional duplicate ACK
• cwnd += 1 MSS
• transmit a new packet if allowed 

• by the updated cwnd and rwnd

▪ If fastretx == true; upon a new (i.e.,  non-duplicate)  ACK
• cwnd = ssthresh
• Fastretx = false;   // After fast retx/fast recovery, cwnd decreases by half

Algorithm for fast rexmit/fast recovery
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when retransmission timer expires
• ssthresh = max ( cwnd/2,  2*MSS)

• cwnd should be flight size to be more accurate

• see RFC 2581

• cwnd = 1 MSS

• retransmit the lost TCP packet

▪why resetting?
• heavy loss detected

Retransmission Timeout
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TCP Congestion Window Trace



TCP Congestion Control Summary
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion 

Avoidance cwnd > ssthresh

cwnd++ per RTT  (additive 

increase)

cwnd+=(MSS/cwnd) * MSS 

per ACK

fast 

retransmit 3 duplicate ACK

reduce the cwnd by half 

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS) 

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK 

after fast retx

finish the 1/2 reduction of 

cwnd in fast retx/fast 

recovery

cwnd = ssthresh; 

tx if allowed by cwnd

upon a dup ACK after 

fast retx before fast 

recovery

("transition phrase)

cwnd +=1MSS; 

Note: it is different from slow 

start. 

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS) 

cwnd = 1MSS; 

retx the lost packet Transport Layer: 3-176



How Selective repeat, congestion control, flow control work together:

▪ use selective repeat to do reliable data transfer for a window of 
packets win at any time

▪ update win = min (cwnd,  rwnd)
• cwnd is updated by TCP congestion control

• rwnd is updated by TCP flow control

▪ Example: cwnd = 20; rwnd = 10
• Then win=10

Putting Things Together in TCP
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Illustrative Example
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▪ Use all following TCP congestion control algorithms:
• Slow start
• Congestion avoidance (CA)
• Fast retransmit/fast recovery
• Retransmission timeout (say, RTO=500ms)

▪ When cwnd=ssthresh, use slow start algorithm (instead of CA)

▪ Assume rwnd is always large enough, then the send window size min(rwnd,cwnd) =cwnd

▪ Assume 1 acknowledgement per packet (i.e., no delayed ACK is used), and we use TCP cumulative ACK (i.e., 
ACK # = (largest sequence # received in order at the receiver + 1) )

▪ Assume each packet size is 1 unit (1B) for simple calculation

▪ TCP sender has infinite packets to send, 1, 2, 3, 4, 5,….

▪ Assume packet #5 is lost once

▪ Assume that the receiver will buffer out of order packets (like selective repeat) 

We will how TCP congestion control algorithms work together

Example Setting
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slow start (upon ack2)

CC algorithm SR after algo runs

1

cwnd =1

ssh =4

slow start (upon ack3)
ssh =4

slow start (upon ack5 )

5 6 87 9

Do nothing upon ack5 (1st dup )
Do nothing upon ack5 (2nd| dup )

Fast retransmit (upon 3 dup ack5 )

5 6 87 9

Fast recovery w/ additional dup ACK (upon 4th dup)

ssh = 2, cwnd = 5 +1 =6
send pkt 10

5 6 87 109

cwnd =1+1=2 2

3

1

1

2

3

3 4

cwnd =2+1=3

2 3

5

4 5

cwnd =3+1=4

6

4

5 4

7

slow start (upon ack4)
ssh =4

6

7

ssh =4
cwnd =4+1=5 8

9

6

7

8

9

5

5

10

10

slow start
ssh =4
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CC algorithm cwnd after algo runs

cwnd = ssh = 2
Fast retx/fast recovery is over

Fast recovery w/ a new ACK (upon ack10)

1011

Slow start also upon ack10

101112

cwnd =2 + 1 = 3
Send new packet 12

Congestion avoidance upon ack11

111213

Congestion avoidance upon ack 12

10

5

11
11

ssh =2

ssh =2
12

13

12

13
ssh =2

ssh =2

121314

14 14

Congestion avoidance upon ack 13

ssh =2

131415

15

cwnd = 3 + 3/3=4

16

Send packets 15, 16

16 15

16

10

Fast recovery w/ additional dup ACK (upon 4th dup)
ssh = 2, cwnd = 5 +1 =6; send pkt 10

5 6 87 109
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Transport layer: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data 
transfers)

Many packets “in flight”; loss shuts down 
pipeline

Wireless networks Loss due to noisy wireless links, mobility; 
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows 
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▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app) 

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP
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QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for 
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC 
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT
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QUIC: Connection establishment

TCP handshake

(transport layer)

TLS handshake

(security)

TCP (reliability, congestion control 

state) + TLS (authentication, crypto 
state)

▪ 2 serial handshakes

data

QUIC handshake

data

QUIC:  reliability, congestion control, 
authentication, crypto state

▪ 1 handshake
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QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.
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(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT
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TLS encryption

error!

HTTP 
GET 

HTTP 
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QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT
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 RDT
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 RDT

QUIC 
encrypt

QUIC 
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UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt
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 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
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error!
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GET HTTP 
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Chapter 3: summary

Transport Layer: 3-192

▪ principles behind transport 
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation 
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network 
“edge” (application, 
transport layers)

▪ into the network “core”

▪ two network-layer 
chapters:

• data plane

• control plane
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