
Applications

… built on ...

Reliable (or unreliable) transport

… built on ...

Best-effort global packet delivery

… built on ...

Best-effort local packet delivery

… built on ...

Physical transfer of bits

Chapter 3: Transport Layer

1

Application

Transport

Network

Link

Physical

Modified from Scott Shenker (UC Berkeley): The Future of Networking, and the Past of Protocols

▪understand principles behind transport layer services:
• multiplexing, de-multiplexing

• reliable data transfer

• flow control

• congestion control

▪Learn about transport layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable transport

• TCP congestion control

Chapter 3: Our Goals

2

Chapter 3: Outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport:
TCP
3.6 Principles of congestion control
3.7 TCP congestion control
3.8 Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

▪ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer

• receiver: reassembles segments into
messages, passes to application layer

▪ two transport protocols available to
Internet applications
• TCP, UDP

Transport Layer: 3-4

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg

Transport Layer: 3-5

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg ▪ extracts application-layer
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up
to application via socket

Transport Layer: 3-6

Transport vs. network layer services and protocols

▪network layer: logical
communication between
hosts

▪transport layer: logical
communication between
processes

• relies on, enhances, network
layer services

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-8

Two principal Internet transport protocols

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-9

Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-10

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msg

Transport Layer: 3-11

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHt

HTTP msg

Transport Layer: 3-12

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHt

HTTP msgHtHn

HTTP msg

Transport Layer: 3-13

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msgHtHn

Transport Layer: 3-14

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client1 client2

P-client1 P-client2

Transport Layer: 3-15

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

Transport Layer: 3-16

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-17

Connectionless demultiplexing

Recall:

▪ when creating socket, must
specify host-local port #:

 DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #

▪ when creating datagram to
send into UDP socket, must
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-18

Connectionless demultiplexing: an example

DatagramSocket
serverSocket = new
DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket1 =
new DatagramSocket (5775);

DatagramSocket mySocket2 =
new DatagramSocket

 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

Transport Layer: 3-19

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-20

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-21

Summary

▪ Multiplexing, demultiplexing:

▪ based on segment, datagram header field values

▪ UDP:

▪ demultiplexing using destination port number (only)

▪ TCP:
▪ demultiplexing using 4-tuple: source and destination IP addresses,

and port numbers

Transport Layer: 3-22

Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-23

UDP: User Datagram Protocol

▪ “no frills,” “bare bones”
Internet transport protocol

▪ “best effort” service, UDP
segments may be:
• lost

• delivered out-of-order to app

▪ no connection
establishment (which can
add RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-24

UDP: User Datagram Protocol

▪ UDP used by:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3):
▪ add needed reliability at application layer

▪ add congestion control at application layer

▪ [RFC 768]: User Datagram Protocol

Transport Layer: 3-25

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-30

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Transport Layer: 3-31

UDP checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• Not equal - error detected

• Equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-32

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-33

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-34

▪ 1st: 0110

▪ 2nd: 0101

▪ 3rd: 1000

▪ Calculate UDP checksum of 1st + 2nd + 3rd

▪ sum = 10011, -> 0011 + 1 (carryout) = 0100

▪ checksum = 1s complement = 1011

▪ Check: receiving 1011?

▪ Check: receiving 1001?

▪ Errors if receiving 1011??

In-class practice: UDP checksum

35

Passed the check
Failed. Error for sure.

Maybe(if two bits flipped)

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Transport Layer: 3-36

Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-37

▪ important @ application, transport, link layers
▪ Reliable transport of packets
▪ A single sender and a single receiver

▪ Packet delivery imperfect
▪ With bit errors, dropping packets, out-of-order delivery, duplicate copies,

long delay, ….

Principles of reliable data transfer

Transport Layer: 3-38

sender receiver

packets in queue/buffer

Packet delivery misbehaviors

packets receivedX
errors loss

logical end-end reliable transport

Principles of reliable data transfer

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-39

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-40

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Transport Layer: 3-41

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
▪ unless communicated via a

message

Transport Layer: 3-42

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Transport Layer: 3-43

Reliable data transfer: getting started
We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver

Transport Layer: 3-44

rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for

call from

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for

call from

above

Transport Layer: 3-45

▪Simple setting: one packet at a time (stop and wait)
• One sender, one receiver
• sender has infinite number of packets to transfer to the receiver
• sender starts one-packet transmission at a time, and will not

proceed with the next new packet transmission until the current
packet has been successfully received & acknowledged by the
receiver.

“Stop and Wait” Scenario

Transport Layer: 3-46

sender receiver

packets in the buffer
One packet in transit

packets received

▪We progressively consider more complex cases
• Bit errors
• Packet loss
• Duplicate copies of the same packet
• Long delay (thus also out of order)
• ….

▪Designs: rdt2.0 (initial) → rdt3.0 (stop & wait)

“Stop and Wait” Scenario

Transport Layer: 3-47

sender receiver

packets in the buffer
packets received

Packet delivery misbehaviors

X
errors loss

rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-48

▪How to detect bit errors in packet?
• Internet checksum algorithm

▪How to recover from errors?

• acknowledgements (ACKs): receiver explicitly tells sender that pkt received
OK

• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt
had errors

• sender retransmits packet upon receiving NAK

▪ new mechanisms in rdt2.0 (beyond rdt1.0):
• Error detection at receiver
• Feedback from receiver: control messages (ACK,NAK) from receiver to

sender
• Retransmission at the sender upon NAK feedback

rdt2.0: channel with bit errors

Transport Layer: 3-49

rdt2.0: FSM specifications

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Transport Layer: 3-50

rdt2.0: FSM specification

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

Transport Layer: 3-51

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Transport Layer: 3-52

rdt2.0: corrupted packet scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Transport Layer: 3-53

rdt2.0 in action

3-54

sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt2

pkt1

ack

ack

ack

(a) no error

sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt2

ack

ack

ack

(b) packet with bit errors

pkt1
error

pkt1

rcv nack

rcv garbled pkt1,
drop pkt1

send NACKnack

Resend pkt1

Transport Layer: 3-54

rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate

handling duplicates:
▪ sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

Transport Layer: 3-55

rdt2.0’s flaw: garbled ACK/NACK
sender receiver

rcv pkt1

send ack

send ack

rcv ack

send pkt2
how to know?

send pkt1

send pkt0

rcv pkt0
pkt0

Pkt2

pkt1

ack

ack

(a) Corrupted ack

sender receiver

send ack
rcv ack

send pkt1

send pkt0

rcv pkt0
pkt0

ack

(b) Corrupted NACK

pkt1
errors

Pkt1

resend pkt1
 how to know?

rcv garbled pkt1

send NACK
nack

Sender cannot tell whether the corrupted message is ACK or NACK!
Receiver cannot tell whether the received message is a new packet or a retransmitted packet!

Simply retransmitting upon corrupted ACK/NACK is not sufficient!

Transport Layer: 3-56

rdt2.1: need seq #!
sender receiver

rcv pkt1

rcv pkt2

send ack

send ack

send ack

rcv ack

send pkt2

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt2

ack

ack

ack

(b) Corrupted NACK

pkt1

pkt1
rcv garbled

rcv garbled pkt1
drop pkt 1

send NACK
nack

sender receiver

rcv pkt1

send ack

send ack

rcv ack
send pkt1

send pkt0

rcv pkt0
pkt0

pkt1

ack

ack

(a) Corrupted ack

rcv dup pkt1
drop dup pkt1

rcv pkt2

send ack

send ack

send pkt2
rcv ack

pkt2

ack

ack

pkt1

rcv garbled
resend pkt1

resend pkt1

Transport Layer: 3-57

rdt2.1: sender, handles garbled ACK/NAKs

Wait for

call 0 from
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

 call 1 from
above

Wait for

ACK or
NAK 1




rdt2.1: receiver, handles garbled ACK/NAKs

Wait for

0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for

1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: 1-bit seq # is enough!
Sender receiver

rcv pkt1

rcv pkt0

send ack

send ack

send ack

rcv ack

send pkt0
(new pkt!)

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack

ack

ack

(a) no error

sender receiver

rcv pkt1

rcv pkt0

send ack

send ack

send ack

rcv ack

send pkt0
(new pkt!)

send pkt1

rcv ack

send pkt0

rcv pkt0
pkt0

pkt0

ack

ack

ack

(b) packet with bit errors

pkt1

pkt1
rcv NACK

rcv garbled pkt1
drop pkt1

send NACK
NACK

resend pkt1

Transport Layer: 3-64

Version Channel Mechanism

rdt1.0 Reliable
channel

nothing

rdt2.0 bit errors
(no loss)

(1)error detection via checksum
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 handling fatal flaw with rdt 2.0:
(4)need seq #. for each packet

Transport Layer: 3-65

Summary: reliable data transfer (so far)

rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-66

rdt2.2: NAK-free
sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) dup ack for garbled pkt

pkt1

pkt1

rcv dup ack0

rcv garbled pkt1
drop pkt 1

send ack0
ack0

sender receiver

rcv pkt1

send ack0

send ack1

rcv ack0
send pkt1

send pkt0

rcv pkt0
pkt0

pkt1

ack1

ack0

(a) Corrupted ack

rcv pkt1 (dup)
drop dup pkt1

rcv pkt0

send ack1

send ack0

send pkt0
rcv ack1

pkt0

ack1

ack0

pkt1
rcv garbled

resend pkt1

resend pkt1

Transport Layer: 3-67

rdt2.2: sender, receiver fragments

Wait for

call 0 from
above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK
0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from
below

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment



Transport Layer: 3-68

Summary: reliable data transfer (so far)

69

Version Channel Mechanism

rdt1.0 Reliable
channel

nothing

rdt2.0 bit errors
(no loss)

(1)error detection via checksum
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0
(fatal flaw)

(4)seq# (1 bit, 0/1) for each pkt

rdt2.2 Same as 2.0 A variant to rdt2.1 (no NAK)
Duplicate ACK = NAK

Transport Layer: 3-69

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-70

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

Transport Layer: 3-71

rdt3.0 sender

Wait

for
ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for

call 1 from
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

Wait for

call 0 from
above

Wait

for
ACK1

Transport Layer: 3-73

rdt3.0 sender

Wait

for
ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for

call 1 from
above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)
start_timer

timeoutWait for

call 0 from
above

Wait

for
ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)



udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,0))



Transport Layer: 3-74

Example: rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Transport Layer: 3-75

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Transport Layer: 3-76

Summary: reliable data transfer (so far)

78

Version Channel Mechanism

rdt1.0 Reliable channel nothing

rdt2.0 bit errors
(no loss)

(1)error detection via checksum
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 (4)seq# (1 bit) for each pkt

rdt2.2 Same as 2.0 A variant to rdt2.1 (no NAK)

Unexpected ACK = NAK
ACK0 = ACK for pkt0, NAK for pkt1

Rdt3.0 Bit errors +
loss

(5) retransmission upon timeout
No NAK, only ACK Transport Layer: 3-78

Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

Transport Layer: 3-79

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Transport Layer: 3-80

rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-81

▪ Error detection
• via algorithms such as Internet checksum (in UDP), CRC (later in Chapter 6)

▪ Receiver feedback via (ACK + sequence #)
• Duplicate ACK = negative acknowledgment

▪ Timer & sequence # for each transmitted packet
• Number of seq. #: ≥ 2 for stop & wait protocol

• Timeout not too small, not too big (≈ 𝑅𝑇𝑇)

▪ Retransmission upon timeout or duplicate ACK (i.e., negative ACK)

Mechanisms for reliable data transfer

Transport Layer: 3-82

rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

Transport Layer: 3-83

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Transport Layer: 3-84

Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
Transport Layer: 3-86

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Transport Layer: 3-87

Go-Back-N in action: No loss

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

rcv ack0, send pkt4

pkt0 timeout

receive pkt4, send ack4

receive pkt5, send ack5

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

receive pkt6, send ack6

receive pkt7, send ack7
pkt1 timeout

pkt2 timeout

pkt3 timeout

pkt4 timeout

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt2, send ack2

receive pkt3, send ack3

rcv ack1, send pkt5

rcv ack2, send pkt6
rcv ack3, send pkt7

Transport Layer: 3-88

Go-Back-N in action: Loss

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Transport Layer: 3-89

Selective repeat

▪receiver individually acknowledges all correctly received packets
• buffers packets, as needed, for eventual in-order delivery to upper

layer

▪sender times-out/retransmits individually for unACKed packets

• sender maintains timer for each unACKed pkt

▪sender window
• N consecutive seq #s

• limits seq #s of sent, unACKed packets

Transport Layer: 3-90

Selective repeat: sender, receiver windows

Transport Layer: 3-91

Selective repeat: sender and receiver

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Transport Layer: 3-92

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3

record ack3 arrived

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer: 3-93

▪How many unique seq# may appear in GBN and SR, respectively?
• N = 2

• GBN: sender [4,5], what is the expected number at the receiver?
• No error

• ACK 4 is lost

• ACK 4 and ACK 5 are lost

• Given the expected number 6, how to infer the sender window?

▪How about SR (expected window)?

▪What if we have N+1 sequence numbers for SR?

In-class Practice: GBN vs SR

94

4, 5, or 6

GBN: give the expected number x, the sender window

will be [x-2, x-1], [x-1, x], [x, x+1]

[4,5], [5,6], [6,7]

Selective repeat:
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:

▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

Transport Layer: 3-95

Selective repeat:
a dilemma!

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:

▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

▪ receiver can’t
see sender side
▪ receiver

behavior
identical in both
cases!
▪ something’s

(very) wrong!

Transport Layer: 3-96

Selective repeat:
dilemma (N+1)

example:

▪ window size=3

▪ seq #’s: 0, 1, 2, 3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X

X

X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

❖ receiver sees no
difference in two
scenarios!

❖ duplicate data
accepted as new in
(b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

2N
Transport Layer: 3-97

Summary: reliable data transfer (final)

Transport Layer: 3-9898

Version Channel Mechanism

rdt1.0 No error/loss nothing

rdt2.0 bit errors
(no loss)

(1)error detection via checksum
(2)receiver feedback (ACK/NAK)
(3)retransmission upon NAK

rdt2.1 Same as 2.0 (4)seq# (1 bit) for each pkt

rdt2.2 Same as 2.0 (no NAK): Unexpected ACK = NAK

Rdt3.0 errors + loss (5)Retransmission upon timeout; ACK-only

Performance issue: low utilization

Goback-N
Same as 3.0 N sliding window (pipeline)

Discard out-of-order pkts (recovery)

Selective
Repeat

Same as 3.0 N sliding window,
selective recovery

Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-99

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-100

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-101

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up
to implementor

Transport Layer: 3-102

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-103

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions (why?)

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-104

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 1/8
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
Transport Layer: 3-105

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 1/4)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-106

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-107

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-108

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-109

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-110

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-111

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-112

Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-113

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-114

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-115

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-116

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems autoadjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-117

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems autoadjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-118

Chapter 3: roadmap
▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-121

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)

▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer: 3-122

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?
▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-123

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-127

How to set SYNC, ACK bit?

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

ACK: ACK #

valid

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Closing a TCP connection

Transport Layer: 3-129

Closing TCP connection
(i.e., two 1-way subconnections)

Transport Layer: 3-130

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB

Makes the client wait for a duration long enough for an ACK to be lost
and a FIN to arrive. If a FIN arrives, restart the timer 2*max-segment-lifetime
Drop any delayed segments during timer=2*max-segment-time (2min default)

Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-131

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

▪ a top-10 problem!

Transport Layer: 3-132

Causes/costs of congestion: scenario 1

Simplest scenario:

maximum per-connection
throughput: R/2

Host A

Host B

throughput: out

large delays as arrival rate
in approaches capacity

Q: What happens as
arrival rate in
approaches R/2?

original data: in

R
▪ two flows

▪ one router, infinite buffers

▪ input, output link capacity: R infinite shared

output link buffers

R
▪ no retransmissions needed

R/2

d
el

ay

in

R/2

R/2


o
u
t

in

th
ro

u
gh

pu
t:

Transport Layer: 3-133

▪ More motivation scenarios in the textbook (optional)
• Queuing theory (Internet as a connected graph, each router with a queue)

Causes/costs of congestion: more scenarios

Transport Layer: 3-143

▪ upstream transmission capacity / buffering
wasted for packets lost downstream

R/2

R/2

l
o

u
t

lin
’

▪ delay increases as capacity approached

R/2

d
e

la
y

lin

▪ un-needed duplicates further decreases
effective throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ loss/retransmission decreases effective
throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ throughput can never exceed capacity

R/2
lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

#1: End-end congestion control:

▪ no explicit feedback from
network

▪ congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP

Transport Layer: 3-144

▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

#2: Network-assisted
congestion control:

▪ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Transport Layer: 3-145

Chapter 3: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-146

❖Idea
▪ Assumes best-effort network

▪ Each source determines network capacity for itself

▪ Implicit feedback via ACKs or timeout events
▪ Feedback control system in practice

▪ ACKs pace transmission (self-clocking)

❖Challenge
▪ Determining initial available capacity

▪ Adjusting to changes in capacity in a timely manner

TCP Congestion Control

Transport Layer: 3-147

TCP Congestion Control

▪Assumptions for congestion control
• TCP pipelined reliable data transfer (SR in the common cases)

• Works with TCP flow control

• All losses of TCP segments are due to Internet congestion
• Ignore the transmission errors (since link quality is good in general)

▪Mechanism: Window-based congestion control
• Adjust the window size for SR to change the TCP sending rate

▪ Changes in congestion window size (cwnd)
• Slow increases to absorb new bandwidth

• Quick decreases to eliminate congestion

Transport Layer: 3-148

TCP Congestion Control
r sender limits transmission:

 LastByteSent-LastByteAcked

  cwnd

r cwnd is dynamic, function of
perceived network congestion

How does sender perceive
congestion?

r loss event = timeout or 3
duplicate acks

r TCP sender reduces rate
(cwnd) after loss event

three mechanisms:

m AIMD: how to grow cwnd

m slow start: startup

m conservative after loss
(timeout, duplicate ACKs)
events

last byte
ACKed sent, not-yet

ACKed
(“in-flight”)

last byte
sent

cwnd

sender sequence number space

▪ Approach: increase transmission rate (window size), probing for
usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS every RTT until loss detected

• multiplicative decrease: cut cwnd by 50% after loss

AIMD Rule:
additive increase, multiplicative decrease

Transport Layer: 3-150

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

timec
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e
Saw tooth

behavior: probing
for bandwidth

Two competing sessions:

▪ Additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally

What AIMD? TCP Fairness

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

How to implement TCP Congestion Control?

Multiple algorithms work together:

▪ slow start: how to jump-start

▪ congestion avoidance: additive increase

▪ fast retransmit/fast recovery: recover from single packet loss:
multiplicative decrease

▪ retransmission upon timeout: conservative loss/failure handling

TCP Congestion Control (RFC 5681)

Transport Layer: 3-152

TCP Congestion Control Summary
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion

Avoidance cwnd > ssthresh

cwnd++ per RTT (additive

increase)

cwnd+=(MSS/cwnd) * MSS

per ACK

fast

retransmit 3 duplicate ACK

reduce the cwnd by half

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS)

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK

after fast retx

finish the 1/2 reduction of

cwnd in fast retx/fast

recovery

cwnd = ssthresh;

tx if allowed by cwnd

upon a dup ACK after

fast retx before fast

recovery

("transition phrase)

cwnd +=1MSS;

Note: it is different from slow

start.

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS)

cwnd = 1MSS;

retx the lost packet
Transport Layer: 3-153

TCP Slow Start

▪When connection begins, cwnd
 2 MSS, typically, set cwnd =
1MSS
• Example: MSS = 500 bytes & RTT =

200 msec

• initial rate = 20 kbps

▪ available bandwidth may be >>
MSS/RTT
• desirable to quickly ramp up to

respectable rate

• When connection begins,
increase rate exponentially fast
until cwnd reaches a threshold
value: slow-start-threshold
ssthresh
• cwnd < ssthresh

▪When connection begins,
increase rate exponentially
when cwnd<ssthresh
• Goal: double cwnd every RTT

by setting
• Action: cwnd += 1 MSS for

every ACK received

▪Summary: initial rate is slow
but ramps up exponentially
fast

TCP Slow Start (more)

Host A

R
T

T

Host B

time

Congestion Avoidance

▪Goal: increase cwnd by 1 MSS
per RTT until congestion (loss)
is detected

• Conditions: when cwnd > ssthresh
and no loss occurs

• Actions: cwnd += (MSS/cwnd)*MSS
(bytes) upon every incoming non-
duplicate ACK

Host A

R
T

T

Host B

time

THREE
segments

TCP Congestion Control
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion

Avoidance cwnd > ssthresh

cwnd++ per RTT (additive

increase)

cwnd+=(MSS/cwnd) * MSS

per ACK

fast

retransmit 3 duplicate ACK

reduce the cwnd by half

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS)

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK

after fast retx

finish the 1/2 reduction of

cwnd in fast retx/fast

recovery

cwnd = ssthresh;

tx if allowed by cwnd

upon a dup ACK after

fast retx before fast

recovery

("transition phrase)

cwnd +=1MSS;

Note: it is different from slow

start.

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS)

cwnd = 1MSS;

retx the lost packet
Transport Layer: 3-169

▪Detecting losses and reacting to them:

• through duplicate ACKs
• fast retransmit / fast recovery

• Goal: multiplicative decrease cwnd upon loss

• through retransmission timeout
• Goal: reset everything

When loss occurs

Fast Retransmit/Fast Recovery
▪ fast retransmit: to detect and

repair loss, based on incoming
duplicate ACKs

• use 3 duplicate ACKs to infer
packet loss

• set ssthresh = max(cwnd/2,
2MSS)

• cwnd = ssthresh + 3MSS

• retransmit the lost packet

▪ fast recovery: governs the
transmission of new data until a
non-duplicate ACK arrives

• increase cwnd by 1 MSS upon every
duplicate ACK

❑ 3 dup ACKs to infer losses
and differentiate from
transient out-of-order
delivery
❑ What about only 1 or 2
dup ACKs?

❑ Do nothing; this allows for
transient out-of-order
delivery

❑ receiving each duplicate
ACK indicates one more
packet left the network and
arrived at the receiver

Philosophy:

Transport Layer: 3-172

▪ Initially, fastretx = false;
▪ If upon 3rd duplicate ACK

• ssthresh = max (cwnd/2, 2*MSS)
• cwnd = ssthresh + 3*MSS

• why add 3 packets here?
• retransmit the lost TCP packet
• Set fastretx = true;

▪ If fastretx == true; upon each additional duplicate ACK
• cwnd += 1 MSS
• transmit a new packet if allowed

• by the updated cwnd and rwnd

▪ If fastretx == true; upon a new (i.e., non-duplicate) ACK
• cwnd = ssthresh
• Fastretx = false; // After fast retx/fast recovery, cwnd decreases by half

Algorithm for fast rexmit/fast recovery

Transport Layer: 3-173

when retransmission timer expires
• ssthresh = max (cwnd/2, 2*MSS)

• cwnd should be flight size to be more accurate

• see RFC 2581

• cwnd = 1 MSS

• retransmit the lost TCP packet

▪why resetting?
• heavy loss detected

Retransmission Timeout

Transport Layer: 3-174

Transport Layer: 3-175

TCP Congestion Window Trace

TCP Congestion Control Summary
Algoritms condition Design action

Slow Start cwnd <= ssthresh; cwnd doubles per RTT cwnd+=1MSS per ACK

Congestion

Avoidance cwnd > ssthresh

cwnd++ per RTT (additive

increase)

cwnd+=(MSS/cwnd) * MSS

per ACK

fast

retransmit 3 duplicate ACK

reduce the cwnd by half

(multicative decreasing)

ssthresh = max(cwnd/2,2MSS)

cwnd = ssthresh + 3 MSS;

retx the lost packet

fast recovery

receiving a new ACK

after fast retx

finish the 1/2 reduction of

cwnd in fast retx/fast

recovery

cwnd = ssthresh;

tx if allowed by cwnd

upon a dup ACK after

fast retx before fast

recovery

("transition phrase)

cwnd +=1MSS;

Note: it is different from slow

start.

RTO timeout time out Reset everything

ssthresh = max(cwnd/2,2MSS)

cwnd = 1MSS;

retx the lost packet Transport Layer: 3-176

How Selective repeat, congestion control, flow control work together:

▪ use selective repeat to do reliable data transfer for a window of
packets win at any time

▪ update win = min (cwnd, rwnd)
• cwnd is updated by TCP congestion control

• rwnd is updated by TCP flow control

▪ Example: cwnd = 20; rwnd = 10
• Then win=10

Putting Things Together in TCP

Transport Layer: 3-177

Illustrative Example

Transport Layer: 3-178

▪ Use all following TCP congestion control algorithms:
• Slow start
• Congestion avoidance (CA)
• Fast retransmit/fast recovery
• Retransmission timeout (say, RTO=500ms)

▪ When cwnd=ssthresh, use slow start algorithm (instead of CA)

▪ Assume rwnd is always large enough, then the send window size min(rwnd,cwnd) =cwnd

▪ Assume 1 acknowledgement per packet (i.e., no delayed ACK is used), and we use TCP cumulative ACK (i.e.,
ACK # = (largest sequence # received in order at the receiver + 1))

▪ Assume each packet size is 1 unit (1B) for simple calculation

▪ TCP sender has infinite packets to send, 1, 2, 3, 4, 5,….

▪ Assume packet #5 is lost once

▪ Assume that the receiver will buffer out of order packets (like selective repeat)

We will how TCP congestion control algorithms work together

Example Setting

Transport Layer: 3-179

slow start (upon ack2)

CC algorithm SR after algo runs

1

cwnd =1

ssh =4

slow start (upon ack3)
ssh =4

slow start (upon ack5)

5 6 87 9

Do nothing upon ack5 (1st dup)
Do nothing upon ack5 (2nd| dup)

Fast retransmit (upon 3 dup ack5)

5 6 87 9

Fast recovery w/ additional dup ACK (upon 4th dup)

ssh = 2, cwnd = 5 +1 =6
send pkt 10

5 6 87 109

cwnd =1+1=2 2

3

1

1

2

3

3 4

cwnd =2+1=3

2 3

5

4 5

cwnd =3+1=4

6

4

5 4

7

slow start (upon ack4)
ssh =4

6

7

ssh =4
cwnd =4+1=5 8

9

6

7

8

9

5

5

10

10

slow start
ssh =4

Transport Layer: 3-180

CC algorithm cwnd after algo runs

cwnd = ssh = 2
Fast retx/fast recovery is over

Fast recovery w/ a new ACK (upon ack10)

1011

Slow start also upon ack10

101112

cwnd =2 + 1 = 3
Send new packet 12

Congestion avoidance upon ack11

111213

Congestion avoidance upon ack 12

10

5

11
11

ssh =2

ssh =2
12

13

12

13
ssh =2

ssh =2

121314

14 14

Congestion avoidance upon ack 13

ssh =2

131415

15

cwnd = 3 + 3/3=4

16

Send packets 15, 16

16 15

16

10

Fast recovery w/ additional dup ACK (upon 4th dup)
ssh = 2, cwnd = 5 +1 =6; send pkt 10

5 6 87 109

Transport Layer: 3-181

Transport layer: roadmap

▪ Transport-layer services

▪Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-186

▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data
transfers)

Many packets “in flight”; loss shuts down
pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows

Transport Layer: 3-187

▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP

Transport Layer: 3-188

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

Transport Layer: 3-189

QUIC: Connection establishment

TCP handshake

(transport layer)

TLS handshake

(security)

TCP (reliability, congestion control

state) + TLS (authentication, crypto
state)

▪ 2 serial handshakes

data

QUIC handshake

data

QUIC: reliability, congestion control,
authentication, crypto state

▪ 1 handshake

Transport Layer: 3-190

QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

or
t

a
pp

lic
at

io
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET
HTTP
GET

Transport Layer: 3-191

Chapter 3: summary

Transport Layer: 3-192

▪ principles behind transport
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network “core”

▪ two network-layer
chapters:

• data plane

• control plane

	Slide 1: Chapter 3: Transport Layer
	Slide 2: Chapter 3: Our Goals
	Slide 3: Chapter 3: Outline
	Slide 4: Transport services and protocols
	Slide 5: Transport Layer Actions
	Slide 6: Transport Layer Actions
	Slide 8: Transport vs. network layer services and protocols
	Slide 9: Two principal Internet transport protocols
	Slide 10: Chapter 3: roadmap
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Multiplexing/demultiplexing
	Slide 17: How demultiplexing works
	Slide 18: Connectionless demultiplexing
	Slide 19: Connectionless demultiplexing: an example
	Slide 20: Connection-oriented demultiplexing
	Slide 21: Connection-oriented demultiplexing: example
	Slide 22: Summary
	Slide 23: Chapter 3: roadmap
	Slide 24: UDP: User Datagram Protocol
	Slide 25: UDP: User Datagram Protocol
	Slide 30: UDP segment header
	Slide 31: UDP checksum
	Slide 32: UDP checksum
	Slide 33: Internet checksum: an example
	Slide 34: Internet checksum: weak protection!
	Slide 35: In-class practice: UDP checksum
	Slide 36: Summary: UDP
	Slide 37: Chapter 3: roadmap
	Slide 38: Principles of reliable data transfer
	Slide 39: Principles of reliable data transfer
	Slide 40: Principles of reliable data transfer
	Slide 41: Principles of reliable data transfer
	Slide 42: Principles of reliable data transfer
	Slide 43: Reliable data transfer protocol (rdt): interfaces
	Slide 44: Reliable data transfer: getting started
	Slide 45: rdt1.0: reliable transfer over a reliable channel
	Slide 46: “Stop and Wait” Scenario
	Slide 47: “Stop and Wait” Scenario
	Slide 48: rdt2.0: channel with bit errors
	Slide 49: rdt2.0: channel with bit errors
	Slide 50: rdt2.0: FSM specifications
	Slide 51: rdt2.0: FSM specification
	Slide 52: rdt2.0: operation with no errors
	Slide 53: rdt2.0: corrupted packet scenario
	Slide 54: rdt2.0 in action
	Slide 55: rdt2.0 has a fatal flaw!
	Slide 56: rdt2.0’s flaw: garbled ACK/NACK
	Slide 57: rdt2.1: need seq #!
	Slide 58: rdt2.1: sender, handles garbled ACK/NAKs
	Slide 59: rdt2.1: receiver, handles garbled ACK/NAKs
	Slide 64: rdt2.1: 1-bit seq # is enough!
	Slide 65: Summary: reliable data transfer (so far)
	Slide 66: rdt2.2: a NAK-free protocol
	Slide 67: rdt2.2: NAK-free
	Slide 68: rdt2.2: sender, receiver fragments
	Slide 69: Summary: reliable data transfer (so far)
	Slide 70: rdt3.0: channels with errors and loss
	Slide 71: rdt3.0: channels with errors and loss
	Slide 73: rdt3.0 sender
	Slide 74: rdt3.0 sender
	Slide 75: Example: rdt3.0 in action
	Slide 76: rdt3.0 in action
	Slide 78: Summary: reliable data transfer (so far)
	Slide 79: Performance of rdt3.0 (stop-and-wait)
	Slide 80: rdt3.0: stop-and-wait operation
	Slide 81: rdt3.0: stop-and-wait operation
	Slide 82: Mechanisms for reliable data transfer
	Slide 83: rdt3.0: pipelined protocols operation
	Slide 84: Pipelining: increased utilization
	Slide 86: Go-Back-N: sender
	Slide 87: Go-Back-N: receiver
	Slide 88: Go-Back-N in action: No loss
	Slide 89: Go-Back-N in action: Loss
	Slide 90: Selective repeat
	Slide 91: Selective repeat: sender, receiver windows
	Slide 92: Selective repeat: sender and receiver
	Slide 93: Selective Repeat in action
	Slide 94: In-class Practice: GBN vs SR
	Slide 95: Selective repeat: a dilemma!
	Slide 96: Selective repeat: a dilemma!
	Slide 97: Selective repeat: dilemma (N+1)
	Slide 98: Summary: reliable data transfer (final)
	Slide 99: Chapter 3: roadmap
	Slide 100: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 101: TCP segment structure
	Slide 102: TCP sequence numbers, ACKs
	Slide 103: TCP sequence numbers, ACKs
	Slide 104: TCP round trip time, timeout
	Slide 105: TCP round trip time, timeout
	Slide 106: TCP round trip time, timeout
	Slide 107: TCP Sender (simplified)
	Slide 108: TCP Receiver: ACK generation [RFC 5681]
	Slide 109: TCP Receiver: ACK generation [RFC 5681]
	Slide 110: TCP: retransmission scenarios
	Slide 111: TCP: retransmission scenarios
	Slide 112: TCP fast retransmit
	Slide 113: Chapter 3: roadmap
	Slide 114: TCP flow control
	Slide 115: TCP flow control
	Slide 116: TCP flow control
	Slide 117: TCP flow control
	Slide 118: TCP flow control
	Slide 121: Chapter 3: roadmap
	Slide 122: TCP connection management
	Slide 123: Agreeing to establish a connection
	Slide 127: TCP 3-way handshake
	Slide 128: How to set SYNC, ACK bit?
	Slide 129: Closing a TCP connection
	Slide 130: Closing TCP connection (i.e., two 1-way subconnections)
	Slide 131: Chapter 3: roadmap
	Slide 132: Principles of congestion control
	Slide 133: Causes/costs of congestion: scenario 1
	Slide 143: Causes/costs of congestion: more scenarios
	Slide 144: Approaches towards congestion control
	Slide 145: Approaches towards congestion control
	Slide 146: Chapter 3: roadmap
	Slide 147: TCP Congestion Control
	Slide 148: TCP Congestion Control
	Slide 149: TCP Congestion Control
	Slide 150: AIMD Rule: additive increase, multiplicative decrease
	Slide 151: What AIMD? TCP Fairness
	Slide 152: TCP Congestion Control (RFC 5681)
	Slide 153: TCP Congestion Control Summary
	Slide 166: TCP Slow Start
	Slide 167: TCP Slow Start (more)
	Slide 168: Congestion Avoidance
	Slide 169: TCP Congestion Control
	Slide 171: When loss occurs
	Slide 172: Fast Retransmit/Fast Recovery
	Slide 173: Algorithm for fast rexmit/fast recovery
	Slide 174: Retransmission Timeout
	Slide 175: TCP Congestion Window Trace
	Slide 176: TCP Congestion Control Summary
	Slide 177: Putting Things Together in TCP
	Slide 178: Illustrative Example
	Slide 179: Example Setting
	Slide 180
	Slide 181
	Slide 186: Transport layer: roadmap
	Slide 187: Evolving transport-layer functionality
	Slide 188: QUIC: Quick UDP Internet Connections
	Slide 189: QUIC: Quick UDP Internet Connections
	Slide 190: QUIC: Connection establishment
	Slide 191: QUIC: streams: parallelism, no HOL blocking
	Slide 192: Chapter 3: summary

