
Chapter 5
Network Layer:
Control Plane

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ Introduction (recap)
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-2

Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Recap: Network-layer functions

Network Layer: 5-3

▪ forwarding: move packets from router’s
input to appropriate router output

data plane

control plane▪ routing: determine route taken by
packets from source to destination

Recap: per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 5-4

Recap: Software-Defined Networking (SDN) control
plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 5-5

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-6

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers

▪ path: sequence of routers packets
traverse from given initial source host
to final destination host

▪ “good”: least “cost”, “fastest”, “least
congested”

▪ routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 5-7

Graph abstraction: link costs

Network Layer: 5-8

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

Network Layer: 5-9
global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-10

Dijkstra’s link-state routing algorithm

Network Layer: 5-11

▪ centralized: network topology, link
costs known to all nodes
• accomplished via “link state

broadcast”

• all nodes have same info

▪ computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know
least cost path to k destinations

▪ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

▪ D(v): current estimate of cost
of least-cost-path from source
to destination v

▪ p(v): predecessor node along
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm

Network Layer: 5-12

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */

3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */

5 then D(v) = cu,v /* but may not be minimum cost! */

6 else D(v) = ∞
7

8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known

least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Network Layer: 5-13

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

4,y

D(w),p(w)

4,y3,y

5,u ∞∞1,u2,u

∞2,x4,x2,u
4,y3,y2,u

uxyvwz

uxyvw

uxyv

uxy

ux
u

v w x y z

find a not in N' such that D(a) is a minimum
add a to N'
update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

Initialization (step 0): For all a: if a adjacent to then D(a) = cu,a

Dijkstra’s algorithm: an example

Network Layer: 5-14

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s algorithm: another example

Network Layer: 5-15

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9
Step N'

D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

Network Layer: 5-16

algorithm complexity: n nodes

▪ each of n iteration: need to check all nodes, w, not in N

▪ n(n+1)/2 comparisons: O(n2) complexity

▪ more efficient implementations possible: O(nlogn)

message complexity:

▪ each router must broadcast its link state information to other n routers

▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

▪ each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible

Network Layer: 5-17

▪ when link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-18

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Network Layer: 5-19

Let Dx(y): cost of least-cost path from x to y.

Then:

 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

Network Layer: 5-20

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

 cu,x + Dx(z),

 cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

 1 + 3,

 5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-
cost path to destination (z)

Distance vector algorithm

Network Layer: 5-21

key idea:
▪ from time-to-time, each node sends its own distance vector estimate

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

Network Layer: 5-22

iterative, asynchronous: each local
iteration caused by:

▪ local link cost change

▪ DV update message from neighbor
wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

▪ neighbors then notify their
neighbors – only if necessary

▪ no notification received, no
actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-23

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have
distance estimates
to nearest
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector to
their neighbors

Distance vector example: iteration

Network Layer: 5-24

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

Network Layer: 5-25

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-26

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

Distance vector example: iteration

Network Layer: 5-27

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-28

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-29

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-30

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-31

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Network Layer: 5-32

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-33

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

Network Layer: 5-34

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive

exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

Network Layer: 5-35

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at
t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector computations
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at b,a,e
and now at c,f,h as well

t=3

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at b,a,e,
c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network:

t=1

t=2

t=3

t=4

Distance vector: link cost changes

Network Layer: 5-37

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its table, computes new least
cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least costs
do not change, so y does not send a message to z.

link cost changes:
▪ node detects local link cost change

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors

x z

14

50

y
1

Distance vector: link cost changes

Network Layer: 5-38

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions. Distributed algorithms are tricky!

Distance Vector: link cost increases

x z

14

50

y
60

x y z

y

x

z

4 0 1

0 4 5

5 1 0

fr
o
m

cost to

x y z

y

x

z

6

fr
o
m

cost to

node y table

node z table

node x table

Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)}

= min{60+0 , 1+5} = 6

10

x y z

z

y

x

5 1 0

4 0 1

0 4 5

fr
o
m

cost to

x y z

x

y

z

0 4 5

4 0 1

5 1 0

fr
o
m

cost to

x y z

z

y

x

7 1 0

fr
o
m

cost to

Dz(x) = min{c(z,y) + Dy(x), c(z,x) + Dx(x)}

= min{1+6, 50+0} = 7

when y detects

Network Layer: 5-39

Distance Vector: link cost increases

x z

14

50

y
60

x y z

y

x

z

4 0 1

0 4 5

5 1 0

fr
o
m

cost to

x y z

y

x

z

6

fr
o
m

cost to

node y table

node z table

node x table

10

x y z

z

y

x

5 1 0

4 0 1

0 4 5

fr
o
m

cost to

x y z

x

y

z

0 4 5

4 0 1

5 1 0

fr
o
m

cost to

x y z

z

y

x

7 1 0

fr
o
m

cost to

Dz(x) = min{c(z,y) + Dy(x), c(z,x) + Dx(x)}

= min{1+8, 50+0} = 9

x y z

y

x

z

8

fr
o
m

cost to

10

Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)}

= min{60+0 , 1+7} = 8

x y z

z

y

x

9 1 0

fr
o
m

cost to

when y detects

Network Layer: 5-40

Comparison of LS and DV algorithms

Network Layer: 5-41

message complexity
LS: n routers, O(n2) messages sent

DV: exchange between neighbors;
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:

• router can advertise incorrect link cost

• each router computes only its own
table

DV:

• DV router can advertise incorrect path
cost (“I have a really low cost path to
everywhere”): black-holing

• each router’s table used by others:
error propagate thru network

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-42

our routing study thus far - idealized
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-43

scale: billions of destinations:
▪ can’t store all destinations in

routing tables!

▪ routing table exchange would
swamp links!

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to
control routing in its own network

aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-44

intra-AS (aka “intra-domain”):
routing among within same AS
(“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS,

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”):
routing among AS’es

▪ gateways perform inter-domain
routing (as well as intra-domain
routing)

Interconnected ASes

Network Layer: 5-45

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra-
and inter-AS routing algorithms

Intra-AS

Routing
Inter-AS

Routing ▪ intra-AS routing determine entries for
destinations within AS

▪ inter-AS & intra-AS determine entries
for external destinations

Inter-AS routing: a role in intradomain forwarding

Network Layer: 5-46

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable

through AS2, which through AS3
2. propagate this reachability info to all

routers in AS1

• router should forward packet to
gateway router in AS1, but which
one?

Intra-AS routing: routing within an AS

Network Layer: 5-47

most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪ OSPF: Open Shortest Path First [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

OSPF (Open Shortest Path First) routing

Network Layer: 5-48

▪ “open”: publicly available

▪ classic link-state
• each router floods OSPF link-state advertisements (directly over IP

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious
intrusion)

Hierarchical OSPF

Network Layer: 5-49

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach
other destinations

area border routers:
“summarize” distances to
destinations in own area,
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router:
runs OSPF limited
to backbone

boundary router:
connects to other ASes

local routers:
• flood LS in area only
• compute routing within

area
• forward packets to outside

via area border router

Hierarchical OSPF Example
boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

Network Layer: 5-50

Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 2

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

dest distance

R4

 N

 M

1
 1

 2

M

N

Q

@router Q Network Layer: 5-51

Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

dest distance

R6

 L
2
 1

dest distance

R4

 N

 M

1
 1

 2

Network Layer: 5-52

Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1, 2, 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

2. Run OSPF in backbone
• R1 propagates summary
 for Area 1 via link states dest distance

R1

 R2

 R3

 R5

 R4

 C
 A

 D
 B

4
 3

 2
 1

 2

 5
 6

 6
 7

@router R6

Network Layer: 5-53

Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1, 2, 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

2. Run OSPF in backbone
• R1 propagates summary
mfor Area 1 via link states

dest distance

R1

 R2

 R3

 R5

 R4

 C
 A

 D
 B

6
 5

 4
 3

 4

 7
 8

 8
 9

@router K

3. Router K in Area 3 updates its
 table based on R6

Network Layer: 5-54

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP
▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-55

▪ BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol

• “glue that holds the Internet together”

▪ allows subnet to advertise its existence, and the destinations it can
reach, to rest of Internet: “I am here, here is who I can reach, and how”

▪ BGP provides each AS a means to:

• eBGP: obtain subnet reachability information from neighboring ASes

• iBGP: propagate reachability information to all AS-internal routers.

• determine “good” routes to other networks based on reachability information
and policy

Internet inter-AS routing: BGP

Network Layer: 5-56

eBGP, iBGP connections

Network Layer: 5-57

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols

BGP routers exchange messages

Establish session on
 TCP port 179

Exchange all
 active routes

Exchange incremental
 updates

AS1

AS2

While connection is ALIVE,
exchange route UPDATE
messages

BGP session

eBGP router

eBGP router

Network Layer: 5-58

BGP message types

▪Exchanged over TCP connection among two BGP
routers (“peers”)

▪BGP message types:
• OPEN: opens TCP connection to peer and

authenticates sender

• UPDATE: advertises new path (or withdraws old)

• KEEPALIVE: keeps connection alive in absence of
UPDATES; also ACKs OPEN request

• NOTIFICATION: reports errors in previous msg; also
used to close connection

Network Layer: 5-59

BGP basics

Network Layer: 5-60

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages over
semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP is a “path
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X

AS Numbers (ASNs)

• Level 3 Communications, Inc: 1

• MIT: 3

• UCB: 25

• USC: 47

• UCLA: 52

• JPL: 127

• AT&T: 2386, 2686, 7018, 5074, 5075, …

• UUNET: 701, 702, 284, 12199, …

• Sprint: 1239, 1240, 6211, 6242, …

Source: http://www.bgplookingglass.com/list-of-autonomous-system-
numbers

❖ ASNs are 4-byte #s now; denote units of routing policy
▪ ASN once was 2-byte before 2007.

❖ AS 4200000000 ~ 4294967294 (94,967,295 ASes) are
reserved for private usage (not visible in the Internet).

Network Layer: 5-61

http://www.bgplookingglass.com/list-of-autonomous-system-numbers
http://www.bgplookingglass.com/list-of-autonomous-system-numbers

ASes are well connected! (AS Graphs)

The subgraph showing all ASes that have more than 100 neighbors in full

graph of 11,158 nodes. July 6, 2001. Point of view: AT&T route-server
Network Layer: 5-62

Path attributes and BGP routes

Network Layer: 5-63

▪ BGP advertised route: prefix + attributes
• prefix: destination being advertised

• two important attributes:
• AS-PATH: list of ASes through which prefix advertisement has passed

• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to

accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to other other
neighboring ASes

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-64

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all
AS2 routers

AS2,AS3,X

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to
AS1 router 1c

AS3, X

BGP path advertisement (more)

Network Layer: 5-65

AS2,AS3,X

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a

▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path
within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-66

AS2,AS3,X

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

12

1

2

dest interface

…

…

…

…

local link
interfaces
at 1a, 1d

▪ at 1d: to get to X, use interface 1
1c 1

X 1

AS3,X

AS3,X

AS3,X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-67

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

1

2

▪ at 1d: to get to X, use interface 1

dest interface

…

…

…

…

1c 2

X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use interface 2

▪ at 1a: to get to X, use interface 2

Why different Intra-, Inter-AS routing ?

Network Layer: 5-68

policy:

▪ inter-AS: admin wants control over how its traffic routed, who
routes through its network

▪ intra-AS: single admin, so policy less of an issue

scale:

▪ hierarchical routing saves table size, reduced update traffic

performance:

▪ intra-AS: can focus on performance

▪ inter-AS: policy dominates over performance

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-69

▪ 2d learns (via iBGP) it can route to X via 2a or 2c

▪ hot potato routing: choose local gateway that has least intra-domain
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry
about inter-domain cost!

AS3,X AS1,AS3,X

OSPF link weights

201

112

263

BGP: achieving policy via advertisements

Network Layer: 5-70

B

legend:

customer
network:

provider
network

▪ A advertises path Aw to B and to C

▪ B chooses not to advertise BAw to C!
▪ B gets no “revenue” for routing CBAw, since none of C, A, w are B’s customers

▪ C does not learn about CBAw path

▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want

to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

A,w

A,w

BGP: achieving policy via advertisements (more)

Network Layer: 5-71

B

ISP only wants to route traffic to/from its customer networks (does not want

to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

▪ A,B,C are provider networks

▪ x,w,y are customer (of provider networks)

▪ x is dual-homed: attached to two networks
▪ policy to enforce: x does not want to route from B to C via x

▪ .. so x will not advertise to B a route to C

legend:

customer
network:

provider
network

▪ router may learn about more than one route to destination
AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH

3. closest NEXT-HOP router: hot potato routing

4. additional criteria

BGP route selection

Network Layer: 5-72

Network Layer

Another example: How AS path is formed

AS7018
135.207.0.0/16

AS Path = 6341

AS 1239
Sprint

AS 1755
Ebone

AT&T

AS 3549
Global Crossing

135.207.0.0/16

AS Path = 7018 6341

135.207.0.0/16

AS Path = 3549 7018 6341

AS 6341

135.207.0.0/16

AT&T Research

Prefix Originated

AS 1239
Sprint

AS 1129
Global Access

135.207.0.0/16

AS Path = 7018 6341

135.207.0.0/16

AS Path = 1239 7018 6341

135.207.0.0/16

AS Path = 1755 1239 7018 6341

135.207.0.0/16

AS Path = 1129 1755 1239 7018 6341

AS3

135.207.0.0/16

AS Path = 1239 3549 7018 6341

Network Layer: 5-73

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-74

▪ Internet network layer: historically implemented via
distributed, per-router control approach:

• monolithic router contains switching hardware, runs proprietary
implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF,
BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions:
firewalls, load balancers, NAT boxes, ..

▪ ~2005: renewed interest in rethinking network control plane

Software defined networking (SDN)

Network Layer: 5-75

Recap: Software-Defined Networking (SDN) control
plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 4-77

Why a logically centralized control plane?

▪ easier network management: avoid router misconfigurations,
greater flexibility of traffic flows

▪ table-based forwarding (recall OpenFlow API) allows
“programming” routers

• centralized “programming” easier: compute tables centrally and distribute

• distributed “programming” more difficult: compute tables as result of
distributed algorithm (protocol) implemented in each-and-every router

▪ open (non-proprietary) implementation of control plane
• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 5-78

SDN analogy: mainframe to PC revolution

Network Layer: 5-79

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating

System

Specialized
Hardware

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

App
Specialized

Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

Microprocessor

Open Interface

* Slide courtesy: N. McKeown

or or

Open Interface

Windows Linux MAC OS

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5-80

Q: what if network operator wants u-to-z traffic to flow along
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5-81

Q: what if network operator wants to split u-to-z
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Traffic engineering: difficult with traditional routing

Network Layer: 5-82

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination-based forwarding, and LS, DV routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN can
be used to achieve any routing desired

Software defined networking (SDN)

Network Layer: 5-83

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based”
forwarding (e.g., OpenFlow)

2. control, data
plane separation

3. control plane functions
external to data-plane
switches

…routing
access
control

load
balance4. programmable

control
applications

Software defined networking (SDN)

Network Layer: 5-84

Data-plane switches:
▪ fast, simple, commodity switches

implementing generalized data-plane
forwarding (Section 4.4) in hardware

▪ flow (forwarding) table computed,
installed under controller supervision

▪ API for table-based switch control
(e.g., OpenFlow)

• defines what is controllable, what is not

▪ protocol for communicating with
controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5-85

SDN controller (network OS):
▪ maintain network state

information

▪ interacts with network control
applications “above” via
northbound API

▪ interacts with network switches
“below” via southbound API

▪ implemented as distributed system
for performance, scalability, fault-
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5-86

network-control apps:

▪ “brains” of control:
implement control functions
using lower-level services, API
provided by SDN controller

▪ unbundled: can be provided by
3rd party: distinct from routing
vendor, or SDN controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Components of SDN controller

Network Layer: 5-87

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…

…

OpenFlow SNMP…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

communication: communicate
between SDN controller and
controlled switches

network-wide state
management : state of
networks links, switches,
services: a distributed database

interface layer to network
control apps: abstractions API

OpenFlow protocol

Network Layer: 5-88

▪ operates between controller, switch

▪ TCP used to exchange messages

• optional encryption

▪ three classes of OpenFlow messages:

• controller-to-switch

• asynchronous (switch to controller)

• symmetric (misc.)

▪ distinct from OpenFlow API

• API used to specify generalized
forwarding actions

OpenFlow Controller

OpenFlow: controller-to-switch messages

Network Layer: 5-89

Key controller-to-switch messages
▪ features: controller queries switch

features, switch replies
▪ configure: controller queries/sets

switch configuration parameters
▪ modify-state: add, delete, modify flow

entries in the OpenFlow tables
▪ packet-out: controller can send this

packet out of specific switch port

OpenFlow Controller

OpenFlow: switch-to-controller messages

Network Layer: 5-90

Key switch-to-controller messages
▪ packet-in: transfer packet (and its

control) to controller. See packet-out
message from controller

▪ flow-removed: flow table entry deleted
at switch

▪ port status: inform controller of a

change on a port.

Fortunately, network operators don’t “program” switches by creating/sending
OpenFlow messages directly. Instead use higher-level abstraction at controller

OpenFlow Controller

SDN: control/data plane interaction example

Network Layer: 5-91

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

Dijkstra’s link-state
routing

s1
s2

s3
s4

S1, experiencing link failure uses
OpenFlow port status message to
notify controller

1

SDN controller receives OpenFlow
message, updates link status info

2

Dijkstra’s routing algorithm
application has previously registered
to be called when ever link status
changes. It is called.

3

Dijkstra’s routing algorithm
access network graph info, link
state info in controller, computes
new routes

4
1

2

3

4

SDN: control/data plane interaction example

Network Layer: 5-92

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

Dijkstra’s link-state
routing

s1
s2

s3
s4

link state routing app interacts
with flow-table-computation
component in SDN controller,
which computes new flow tables
needed

5

controller uses OpenFlow to
install new tables in switches
that need updating

6

5

1

2

3

4

OpenDaylight (ODL) controller

Network Layer: 5-93

Network Orchestrations and Applications

Southbound API

Service Abstraction
Layer (SAL)

config. and
operational data

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced
Services

…

… Forwarding
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processing

Service Abstraction Layer:

▪ interconnects internal,
external applications
and services

ONOS controller

Network Layer: 5-94

Network Applications

Southbound API

Northbound API

Traffic
Engineering …Firewalling Load Balancing

southbound
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound
abstractions,
protocols

REST API Intent

ONOS
distributed
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate
from controller

▪ intent framework: high-
level specification of
service: what rather
than how

▪ considerable emphasis
on distributed core:
service reliability,
replication performance
scaling

▪ hardening the control plane: dependable, reliable, performance-
scalable, secure distributed system
• robustness to failures: leverage strong theory of reliable distributed

system for control plane

• dependability, security: “baked in” from day one?

▪ networks, protocols meeting mission-specific requirements
• e.g., real-time, ultra-reliable, ultra-secure

▪ Internet-scaling: beyond a single AS

▪ SDN critical in 5G cellular networks

SDN: selected challenges

Network Layer: 5-95

▪ SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol

computed

▪ one could imagine SDN-computed congestion control:
• controller sets sender rates based on router-reported (to

controller) congestion levels

SDN and the future of traditional network protocols

Network Layer: 5-96

How will implementation of
network functionality (SDN
versus protocols) evolve?

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Network Layer: 5-97

ICMP: internet control message protocol

Network Layer: 4-98

▪ used by hosts and routers to
communicate network-level
information
• error reporting: unreachable host,

network, port, protocol

• echo request/reply (used by ping)

▪ network-layer “above” IP:
• ICMP messages carried in IP

datagrams

▪ ICMP message: type, code plus
first 8 bytes of IP datagram causing
error

Type Code description

0 0 echo reply (ping)

3 0 dest. network unreachable

3 1 dest host unreachable

3 2 dest protocol unreachable
3 3 dest port unreachable

3 6 dest network unknown

3 7 dest host unknown

4 0 source quench (congestion

 control - not used)
8 0 echo request (ping)

9 0 route advertisement

10 0 router discovery

11 0 TTL expired

12 0 bad IP header

Traceroute and ICMP

Network Layer: 4-99

▪ when ICMP message arrives at source: record RTTs

stopping criteria:
▪ UDP segment eventually

arrives at destination host
▪ destination returns ICMP
“port unreachable”
message (type 3, code 3)

▪ source stops

3 probes

3 probes

3 probes

▪ source sends sets of UDP segments to
destination
• 1st set has TTL =1, 2nd set has TTL=2, etc.

▪ datagram in nth set arrives to nth router:
• router discards datagram and sends source

ICMP message (type 11, code 0)

• ICMP message possibly includes name of
router & IP address

Network layer: Summary

Network Layer: 5-100

we’ve learned a lot!

▪ approaches to network control plane
• per-router control (traditional)

• logically centralized control (software defined networking)

▪ traditional routing algorithms
• implementation in Internet: OSPF , BGP

▪ Internet Control Message Protocol

next stop: link layer!

	Slide 1
	Slide 2: Network layer: “control plane” roadmap
	Slide 3: Recap: Network-layer functions
	Slide 4: Recap: per-router control plane
	Slide 5: Recap: Software-Defined Networking (SDN) control plane
	Slide 6: Network layer: “control plane” roadmap
	Slide 7: Routing protocols
	Slide 8: Graph abstraction: link costs
	Slide 9: Routing algorithm classification
	Slide 10: Network layer: “control plane” roadmap
	Slide 11: Dijkstra’s link-state routing algorithm
	Slide 12: Dijkstra’s link-state routing algorithm
	Slide 13: Dijkstra’s algorithm: an example
	Slide 14: Dijkstra’s algorithm: an example
	Slide 15: Dijkstra’s algorithm: another example
	Slide 16: Dijkstra’s algorithm: discussion
	Slide 17: Dijkstra’s algorithm: oscillations possible
	Slide 18: Network layer: “control plane” roadmap
	Slide 19: Distance vector algorithm
	Slide 20: Bellman-Ford Example
	Slide 21: Distance vector algorithm
	Slide 22: Distance vector algorithm:
	Slide 23: Distance vector: example
	Slide 24: Distance vector example: iteration
	Slide 25: Distance vector example: iteration
	Slide 26: Distance vector example: iteration
	Slide 27: Distance vector example: iteration
	Slide 28: Distance vector example: iteration
	Slide 29: Distance vector example: iteration
	Slide 30: Distance vector example: iteration
	Slide 31: Distance vector example: computation
	Slide 32: Distance vector example: computation
	Slide 33: Distance vector example: computation
	Slide 34: Distance vector example: computation
	Slide 35: Distance vector example: computation
	Slide 36: Distance vector: state information diffusion
	Slide 37: Distance vector: link cost changes
	Slide 38: Distance vector: link cost changes
	Slide 39
	Slide 40
	Slide 41: Comparison of LS and DV algorithms
	Slide 42: Network layer: “control plane” roadmap
	Slide 43: Making routing scalable
	Slide 44: Internet approach to scalable routing
	Slide 45: Interconnected ASes
	Slide 46: Inter-AS routing: a role in intradomain forwarding
	Slide 47: Intra-AS routing: routing within an AS
	Slide 48: OSPF (Open Shortest Path First) routing
	Slide 49: Hierarchical OSPF
	Slide 50: Hierarchical OSPF Example
	Slide 51: Hierarchical OSPF Example
	Slide 52: Hierarchical OSPF Example
	Slide 53: Hierarchical OSPF Example
	Slide 54: Hierarchical OSPF Example
	Slide 55: Network layer: “control plane” roadmap
	Slide 56: Internet inter-AS routing: BGP
	Slide 57: eBGP, iBGP connections
	Slide 58
	Slide 59: BGP message types
	Slide 60: BGP basics
	Slide 61
	Slide 62
	Slide 63: Path attributes and BGP routes
	Slide 64: BGP path advertisement
	Slide 65: BGP path advertisement (more)
	Slide 66: BGP path advertisement
	Slide 67: BGP path advertisement
	Slide 68: Why different Intra-, Inter-AS routing ?
	Slide 69: Hot potato routing
	Slide 70: BGP: achieving policy via advertisements
	Slide 71: BGP: achieving policy via advertisements (more)
	Slide 72: BGP route selection
	Slide 73
	Slide 74: Network layer: “control plane” roadmap
	Slide 75: Software defined networking (SDN)
	Slide 77: Recap: Software-Defined Networking (SDN) control plane
	Slide 78: Software defined networking (SDN)
	Slide 79: SDN analogy: mainframe to PC revolution
	Slide 80: Traffic engineering: difficult with traditional routing
	Slide 81: Traffic engineering: difficult with traditional routing
	Slide 82: Traffic engineering: difficult with traditional routing
	Slide 83: Software defined networking (SDN)
	Slide 84: Software defined networking (SDN)
	Slide 85: Software defined networking (SDN)
	Slide 86: Software defined networking (SDN)
	Slide 87: Components of SDN controller
	Slide 88: OpenFlow protocol
	Slide 89: OpenFlow: controller-to-switch messages
	Slide 90: OpenFlow: switch-to-controller messages
	Slide 91: SDN: control/data plane interaction example
	Slide 92: SDN: control/data plane interaction example
	Slide 93: OpenDaylight (ODL) controller
	Slide 94: ONOS controller
	Slide 95: SDN: selected challenges
	Slide 96: SDN and the future of traditional network protocols
	Slide 97: Network layer: “control plane” roadmap
	Slide 98: ICMP: internet control message protocol
	Slide 99: Traceroute and ICMP
	Slide 100: Network layer: Summary

