
Chapter 5
Network Layer:
Control Plane



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ Introduction (recap)
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 
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Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Recap: Network-layer functions
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▪ forwarding: move packets from router’s 
input to appropriate router output

data plane

control plane▪ routing: determine route taken by 
packets from source to destination



Recap: per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane
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Recap: Software-Defined Networking (SDN) control 
plane
Remote controller computes, installs forwarding tables in routers

data
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control
plane

Remote Controller
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 
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Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers

▪ path: sequence of routers packets 
traverse from given initial source host 
to final destination host

▪ “good”: least “cost”, “fastest”, “least 
congested”

▪ routing: a “top-10” networking 
challenge!

Routing protocols
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
             e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or inversely related to 
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification

Network Layer: 5-9
global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 
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Dijkstra’s link-state routing algorithm
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▪ centralized: network topology, link 
costs known to all nodes
• accomplished via “link state 

broadcast” 

• all nodes have same info

▪ computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know 
least cost path to k destinations

▪ cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors

▪ D(v): current estimate of cost 
of least-cost-path from source 
to destination v

▪ p(v): predecessor node along 
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation



Dijkstra’s link-state routing algorithm
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1  Initialization: 
2   N' = {u}                               /* compute least cost path from u to all other nodes */

3    for all nodes v 
4      if v adjacent to u            /* u initially knows direct-path-cost only to  direct neighbors    */

5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */

6      else D(v) = ∞ 
7 

8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N' 

find w not in N' such that D(w) is a minimum 
add w to N' 
update D(v) for all v adjacent to w and not in N' : 
     D(v) = min ( D(v),  D(w) + cw,v  ) 
/* new least-path-cost to v is either old least-cost-path to v or known 

least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example
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N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)
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4,y

D(w),p(w)

4,y3,y

5,u ∞∞1,u2,u

∞2,x4,x2,u
4,y3,y2,u

uxyvwz

uxyvw

uxyv

uxy

ux
u

v w x y z

find a not in N' such that D(a) is a minimum 
add a to N' 
update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

Initialization (step 0): For all a: if a adjacent to then D(a) = cu,a 



Dijkstra’s algorithm: an example
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resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x 



Dijkstra’s algorithm: another example
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Step N'

D(v),
p(v)
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D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



Dijkstra’s algorithm: discussion
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algorithm complexity: n nodes

▪ each of n iteration: need to check all nodes, w, not in N

▪ n(n+1)/2 comparisons: O(n2) complexity

▪ more efficient implementations possible: O(nlogn)

message complexity: 

▪ each router must broadcast its link state information to other n routers 

▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 
broadcast message from one source

▪ each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible
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▪ when  link costs depend on traffic volume, route oscillations possible
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▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 
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Let Dx(y): cost of least-cost path from x to y.

Then:

   Dx(y) = minv { cx,v + Dv(y) }

   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

                    cu,x + Dx(z),

                    cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

           1 + 3,

           5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



Distance vector algorithm 
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key idea: 
▪ from time-to-time, each node sends its own distance vector estimate 

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  
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iterative, asynchronous: each local 
iteration caused by: 

▪ local link cost change 

▪ DV update message from neighbor
wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes

▪ neighbors then notify their 
neighbors – only if necessary

▪ no notification received, no 
actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have 
distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration
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g h i
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1 1 1
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d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration
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…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
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g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 

exercises for more examples: 
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation
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1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at b,a,e 
and now at c,f,h as well

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at b,a,e, 
c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 

t=2 

t=3 

t=4 



Distance vector: link cost changes
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“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its table, computes new least 
cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table.  y’s least costs 
do not change, so y does not send a message to z. 

link cost changes:
▪ node detects local link cost change 

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors 

x z

14

50

y
1



Distance vector: link cost changes
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link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity 
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions.  Distributed algorithms are tricky!



Distance Vector: link cost increases

x z
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node y table

node z table

node x table

Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)}

= min{60+0 , 1+5} = 6
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cost to

Dz(x) = min{c(z,y) + Dy(x), c(z,x) + Dx(x)}

= min{1+6, 50+0} = 7

when y detects

Network Layer: 5-39



Distance Vector: link cost increases
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Comparison of LS and DV algorithms

Network Layer: 5-41

message complexity
LS: n routers, O(n2) messages sent  

DV: exchange between neighbors; 
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 

• router can advertise incorrect link cost

• each router computes only its own 
table

DV:

• DV router can advertise incorrect path 
cost (“I have a really low cost path to 
everywhere”): black-holing

• each router’s table used by others: 
error propagate thru network



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-42



our routing study thus far - idealized 
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-43

scale: billions of destinations:
▪ can’t store all destinations in 

routing tables!

▪ routing table exchange would 
swamp links! 

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to 
control routing in its own network



aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-44

intra-AS (aka “intra-domain”): 
routing among within same AS 
(“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different 

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS, 

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”): 
routing among AS’es

▪ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

Network Layer: 5-45

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table  configured by intra- 
and inter-AS routing algorithms

Intra-AS

Routing 
Inter-AS

Routing ▪ intra-AS routing determine entries for 
destinations within AS

▪ inter-AS & intra-AS determine entries 
for external destinations



Inter-AS routing:  a role in intradomain forwarding
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3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3
2. propagate this reachability info to all 

routers in AS1

• router should forward packet to 
gateway router in AS1, but which 
one?



Intra-AS routing:  routing within an AS
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most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪  OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF



OSPF (Open Shortest Path First) routing

Network Layer: 5-48

▪ “open”: publicly available

▪ classic link-state 
• each router floods OSPF link-state advertisements (directly over IP 

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute 
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious 
intrusion) 



Hierarchical OSPF

Network Layer: 5-49

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach 
other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF limited 
to backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to outside 

via area border router



Hierarchical OSPF Example
boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L
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Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 2

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

dest distance

R4

 N

 M

1
 1

 2

M

N

Q

@router Q Network Layer: 5-51



Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

dest distance

R6

 L
2
 1

 

dest distance

R4

 N

 M

1
 1

 2
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Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1, 2, 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

2. Run OSPF in backbone
• R1 propagates summary 
   for Area 1 via link states dest distance

R1

 R2

 R3

 R5

 R4

  C
  A

  D
  B

4
 3

 2
 1

 2

 5
 6

 6
 7

@router R6

Network Layer: 5-53



Hierarchical OSPF Example

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

1. Run OSPF within area 1, 2, 3

A

B

C

D

dest distance

C
 A

 D
 B

1
 2

 2
 3

R1

R2

R3

R4

R5

R6

K

L

2. Run OSPF in backbone
• R1 propagates summary 
mfor Area 1 via link states

dest distance

R1

 R2

 R3

 R5

 R4

  C
  A

  D
  B

6
 5

 4
 3

 4

 7
 8

 8
 9

@router K

3. Router K in Area 3 updates its 
    table based on R6
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP
▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-55



▪ BGP (Border Gateway Protocol): the de facto inter-domain routing 
protocol

• “glue that holds the Internet together”

▪ allows subnet to advertise its existence, and the destinations it can 
reach, to rest of Internet: “I am here, here is who I can reach, and how”

▪ BGP provides each AS a means to:

• eBGP: obtain subnet reachability information from neighboring ASes

• iBGP: propagate reachability information to all AS-internal routers.

• determine “good” routes to other networks based on reachability information 
and policy

Internet inter-AS routing: BGP

Network Layer: 5-56



eBGP, iBGP connections

Network Layer: 5-57

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols



BGP routers exchange messages 

Establish session on
     TCP port 179

Exchange all
        active routes 

Exchange incremental
           updates

AS1

AS2

While connection is ALIVE, 
exchange route UPDATE 
messages

BGP session

eBGP router

eBGP router
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BGP message types

▪Exchanged over TCP connection among two BGP 
routers (“peers”)

▪BGP message types:
• OPEN: opens TCP connection to peer and 

authenticates sender

• UPDATE: advertises new path (or withdraws old)

• KEEPALIVE: keeps connection alive in absence of 
UPDATES; also ACKs OPEN request

• NOTIFICATION: reports errors in previous msg; also 
used to close connection

Network Layer: 5-59



BGP basics

Network Layer: 5-60

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages over 
semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP  is a “path 
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X



AS Numbers (ASNs)

• Level 3 Communications, Inc: 1 

• MIT: 3

• UCB: 25

• USC: 47

• UCLA: 52

• JPL: 127

• AT&T: 2386, 2686, 7018, 5074, 5075, … 

• UUNET: 701, 702, 284, 12199, …

• Sprint: 1239, 1240, 6211, 6242, …

Source: http://www.bgplookingglass.com/list-of-autonomous-system-
numbers

❖ ASNs are 4-byte #s now; denote units of routing policy
▪ ASN once was 2-byte before 2007.

❖ AS 4200000000 ~ 4294967294 (94,967,295 ASes) are 
reserved for private usage (not visible in the Internet).

Network Layer: 5-61

http://www.bgplookingglass.com/list-of-autonomous-system-numbers
http://www.bgplookingglass.com/list-of-autonomous-system-numbers


ASes are well connected! (AS Graphs)

The subgraph showing all ASes that have more than 100 neighbors in full

graph of 11,158 nodes. July 6, 2001.  Point of view: AT&T route-server
Network Layer: 5-62



Path attributes and BGP routes

Network Layer: 5-63

▪ BGP advertised route:  prefix + attributes 
• prefix: destination being advertised

• two important attributes:
• AS-PATH: list of ASes through which prefix advertisement has passed

• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to 

accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to other other 
neighboring ASes



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement
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▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all 
AS2 routers

AS2,AS3,X 

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy,  AS2 router 2a advertises (via eBGP)  path AS2, AS3, X  to 
AS1 router 1c

AS3, X



BGP path advertisement (more)

Network Layer: 5-65

AS2,AS3,X 

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a

▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path 
within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X
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2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement
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AS2,AS3,X 

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

12

1

2

dest interface

…

…

…

…

local link 
interfaces
at 1a, 1d

▪ at 1d: to get to X, use  interface 1
1c 1

X 1

AS3,X

AS3,X

AS3,X



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement
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▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

1

2

▪ at 1d: to get to X, use  interface 1

dest interface

…

…

…

…

1c 2

X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use  interface 2

▪ at 1a: to get to X, use  interface 2



Why different Intra-, Inter-AS routing ? 

Network Layer: 5-68

policy: 

▪ inter-AS: admin wants control over how its traffic routed, who 
routes through its network 

▪ intra-AS: single admin, so policy less of an issue

scale:

▪ hierarchical routing saves table size, reduced update traffic

performance: 

▪ intra-AS: can focus on performance

▪ inter-AS: policy dominates over performance



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-69

▪ 2d learns (via iBGP) it can route to X via 2a or 2c

▪ hot potato routing: choose local gateway that has least intra-domain 
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry 
about inter-domain cost!

AS3,X AS1,AS3,X 

OSPF link weights

201

112

263



BGP: achieving policy via advertisements

Network Layer: 5-70

B

legend:

customer 
network:

provider
network

▪ A advertises path Aw to B and to C

▪ B chooses not to advertise BAw to C!  
▪ B gets no “revenue” for routing CBAw, since none of  C, A, w are B’s customers

▪ C does not learn about CBAw path

▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want 

to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

A,w

A,w



BGP: achieving policy via advertisements (more)

Network Layer: 5-71

B

ISP only wants to route traffic to/from its customer networks (does not want 

to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

▪ A,B,C are provider networks

▪ x,w,y are customer (of provider networks)

▪ x is dual-homed: attached to two networks
▪ policy to enforce: x does not want to route from B to C via x 

▪ .. so x will not advertise to B a route to C

legend:

customer 
network:

provider
network



▪ router may learn about more than one route to destination 
AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH 

3. closest NEXT-HOP router: hot potato routing

4. additional criteria 

BGP route selection

Network Layer: 5-72



Network Layer

Another example: How AS path is formed

AS7018
135.207.0.0/16

AS Path = 6341

AS 1239
Sprint

AS 1755
Ebone

AT&T

AS 3549
Global Crossing 

135.207.0.0/16

AS Path = 7018 6341

135.207.0.0/16

AS Path = 3549 7018 6341

AS 6341

135.207.0.0/16

AT&T Research

Prefix Originated

AS 1239
Sprint 

AS 1129
Global Access

135.207.0.0/16

AS Path = 7018 6341

135.207.0.0/16

AS Path = 1239 7018 6341

135.207.0.0/16

AS Path = 1755 1239 7018 6341

135.207.0.0/16

AS Path = 1129 1755 1239 7018 6341

AS3

135.207.0.0/16

AS Path = 1239 3549 7018 6341
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-74



▪ Internet network layer: historically implemented via 
distributed, per-router control approach:

• monolithic router contains switching hardware, runs proprietary 
implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF, 
BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions: 
firewalls, load balancers, NAT boxes, ..

▪ ~2005: renewed interest in rethinking network control plane

Software defined networking (SDN)

Network Layer: 5-75



Recap: Software-Defined Networking (SDN) control 
plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header

Network Layer: 4-77



Why a logically centralized control plane?

▪ easier network management: avoid router misconfigurations, 
greater flexibility of traffic flows

▪ table-based forwarding (recall OpenFlow API) allows 
“programming” routers

• centralized “programming” easier: compute tables centrally and distribute

• distributed “programming” more difficult: compute tables as result of 
distributed algorithm (protocol) implemented in each-and-every router 

▪ open (non-proprietary) implementation of control plane
• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)
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SDN analogy: mainframe to PC revolution

Network Layer: 5-79

Vertically integrated
Closed, proprietary

Slow innovation
Small industry
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Open Interface

* Slide  courtesy: N. McKeown
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Traffic engineering: difficult with traditional routing

Network Layer: 5-80

Q: what if network operator wants u-to-z traffic to flow along 
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm 
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!
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Traffic engineering: difficult with traditional routing

Network Layer: 5-81

Q: what if network operator wants to split  u-to-z 
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)



Traffic engineering: difficult with traditional routing

Network Layer: 5-82

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination-based forwarding, and LS, DV routing)
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1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN can 
be used to achieve any routing desired



Software defined networking (SDN)

Network Layer: 5-83

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based” 
forwarding (e.g., OpenFlow)

2. control, data 
plane separation

3. control plane functions 
external to data-plane 
switches

…routing
access 
control

load
balance4. programmable 

control 
applications



Software defined networking (SDN)

Network Layer: 5-84

Data-plane switches:
▪ fast, simple, commodity switches 

implementing generalized data-plane 
forwarding (Section 4.4) in hardware

▪ flow (forwarding) table computed, 
installed under controller supervision

▪ API for table-based switch control 
(e.g., OpenFlow)

• defines what is controllable, what is not

▪ protocol for communicating with 
controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Software defined networking (SDN)

Network Layer: 5-85

SDN controller (network OS): 
▪ maintain network state 

information

▪ interacts with network control 
applications “above” via 
northbound API

▪ interacts with network switches 
“below” via southbound API

▪ implemented as distributed system 
for performance, scalability, fault-
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Software defined networking (SDN)

Network Layer: 5-86

network-control apps:

▪ “brains” of control:  
implement control functions 
using lower-level services, API 
provided by SDN controller

▪ unbundled: can be provided by 
3rd party: distinct from routing 
vendor, or SDN controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Components of SDN controller

Network Layer: 5-87

Network-wide distributed, robust  state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…  

…  

OpenFlow SNMP…  

network 
graph intent

RESTful
API

…  
Interface, abstractions for network control apps

SDN
controller

routing access 
control

load
balance

communication: communicate 
between SDN controller and 
controlled switches

network-wide state 
management : state of 
networks links, switches, 
services: a distributed database

interface layer to network 
control apps: abstractions API



OpenFlow protocol

Network Layer: 5-88

▪ operates between controller, switch

▪ TCP used to exchange messages

• optional encryption

▪ three classes of  OpenFlow messages:

• controller-to-switch

• asynchronous (switch to controller)

• symmetric (misc.)

▪ distinct from OpenFlow API

• API used to specify  generalized 
forwarding actions

OpenFlow Controller



OpenFlow: controller-to-switch messages

Network Layer: 5-89

Key controller-to-switch messages
▪ features: controller queries switch 

features, switch replies
▪ configure: controller queries/sets 

switch configuration parameters
▪ modify-state: add, delete, modify flow 

entries in the OpenFlow tables
▪ packet-out: controller can send this 

packet out of specific switch port

OpenFlow Controller



OpenFlow: switch-to-controller messages

Network Layer: 5-90

Key switch-to-controller messages
▪ packet-in: transfer packet (and its 

control) to controller.  See packet-out 
message from controller

▪ flow-removed: flow table entry deleted 
at switch

▪ port status: inform controller of a 

change on a port.

Fortunately, network operators don’t “program” switches by creating/sending 
OpenFlow messages directly.  Instead use higher-level abstraction at controller

OpenFlow Controller



SDN: control/data plane interaction example

Network Layer: 5-91

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph intent

RESTful
API

…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

S1, experiencing link failure uses 
OpenFlow port status message to 
notify controller

1

SDN controller receives OpenFlow 
message, updates link status info

2

Dijkstra’s routing algorithm 
application has previously registered 
to be called when ever link status 
changes.  It is called.

3

Dijkstra’s routing algorithm 
access network graph info, link 
state info in controller,  computes 
new routes

4
1

2

3

4



SDN: control/data plane interaction example

Network Layer: 5-92

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph intent

RESTful
API

…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

link state routing app interacts 
with flow-table-computation 
component in SDN controller, 
which computes new flow tables 
needed

5

controller uses OpenFlow to 
install new tables in switches 
that need updating

6

5

1

2

3

4



OpenDaylight (ODL) controller

Network Layer: 5-93

Network Orchestrations and Applications

Southbound API

Service Abstraction 
Layer (SAL)

config. and 
operational data 

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced 
Services

…

… Forwarding 
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processing

Service Abstraction Layer: 

▪ interconnects internal, 
external applications 
and services



ONOS controller

Network Layer: 5-94

Network Applications

Southbound API

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

southbound 
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound 
abstractions,
protocols

REST    API Intent

ONOS
distributed 
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate 
from controller

▪ intent framework: high-
level specification of 
service: what rather 
than how

▪ considerable emphasis 
on distributed core: 
service reliability, 
replication performance 
scaling



▪ hardening the control plane: dependable, reliable, performance-
scalable, secure distributed system
• robustness to failures: leverage strong theory of reliable distributed 

system for control plane

• dependability, security: “baked in” from day one? 

▪ networks, protocols meeting mission-specific requirements
• e.g., real-time, ultra-reliable, ultra-secure

▪ Internet-scaling: beyond a single AS

▪ SDN critical in 5G cellular networks

SDN:  selected challenges

Network Layer: 5-95



▪ SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol 

computed

▪ one could imagine SDN-computed congestion control: 
• controller sets sender rates based on router-reported (to 

controller) congestion levels 

SDN and the future of traditional network protocols

Network Layer: 5-96

How will implementation of 
network functionality (SDN 
versus protocols) evolve?



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 

Network Layer: 5-97



ICMP: internet control message protocol

Network Layer: 4-98

▪ used by hosts and routers to 
communicate network-level 
information
• error reporting: unreachable host, 

network, port, protocol

• echo request/reply (used by ping)

▪ network-layer “above” IP:
• ICMP messages carried in IP 

datagrams

▪ ICMP message: type, code plus 
first 8 bytes of IP datagram causing 
error

Type  Code  description

0        0         echo reply (ping)

3        0         dest. network unreachable

3        1         dest host unreachable

3        2         dest protocol unreachable
3        3         dest port unreachable

3        6         dest network unknown

3        7         dest host unknown

4        0         source quench (congestion

                     control - not used)
8        0         echo request (ping)

9        0         route advertisement

10      0         router discovery

11      0         TTL expired

12      0         bad IP header



Traceroute and ICMP

Network Layer: 4-99

▪ when ICMP message arrives at source: record RTTs

stopping criteria:
▪ UDP segment eventually 

arrives at destination host
▪ destination returns ICMP 
“port unreachable” 
message (type 3, code 3)

▪ source stops

3 probes

3 probes

3 probes

▪ source sends sets of UDP segments to 
destination
• 1st  set has TTL =1, 2nd  set has TTL=2, etc.

▪ datagram in nth set arrives to nth router:
• router discards datagram and sends source 

ICMP message (type 11, code 0)

• ICMP message possibly includes name of 
router & IP address



Network layer:  Summary

Network Layer: 5-100

we’ve learned a lot!

▪ approaches to network control plane
• per-router control (traditional)

• logically centralized control (software defined networking)

▪ traditional routing algorithms
• implementation in Internet: OSPF , BGP

▪ Internet Control Message Protocol

next stop:  link layer!
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