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Abstract 

Fair scheduling of delay and rate-sensitive packet flows over 
a wireless channel is not addressed effectively by most con- 
temporary vrireline fair scheduling algorithms because of two 
unique characteristics of wireless media: (a) bursty channel 
errors, and (b) location-dependent channel capacity and er- 
rors, Besides, in packet cellular networks, the base station 
typically performs the task of packet scheduhng for both 
dovmlink and uplink flows in a cell; however a base station 
has only a limited knowledge of the arrival processes of up- 
link flows. 

In this paper, vre propose a new model for wireless fair 
scheduling based on an adaptation of fluid fair queueing to 
handle location-dependent error bursts. We describe an 
ideal wireless fair scheduling algorithm which provides a 
pack&cd implementation of the fluid model while assum- 
ing full knowledge of the current channel conditions. For this 
algorithm, we derive the worst-case throughput and delay 
bounds. Finally, we describe a practical wireless scheduling 
algorithm which approximates the ideal algorithm. Through 
simulations, we show that the algorithm achieves the desir- 
able properties identified in the wireless fluid fair queueing 
model, 

1 Introduction 

Future indoor and outdoor packet cellular environments will 
seek to support communication-intensive applications such 
as multimedia tdeconferencing, Www browsing, etc. Sup- 
porting such applications requires the network to provide 
sustained quality of service to packet flows over scarce and 
shared vrireless networking resources. In wireline networks, 
quality of service requirements are typically satisfied by a 
combination of resource reservation (at the flow level) and 
fair resource allocation/packet scheduling (at the packet level). 
Howcvcr, in packet cellular environments, user mobility and 
wirclcss channel error make it very difficuIt to perform either 
resource reservation or fair packet scheduling. While there 
have been some recent efforts to provide resource reservation 
for mobile flows in packet cellular networks, the problem 
of fair packet scheduling in wireless networks has remained 
largely unaddressed. In fact, even the notion of fairness in 
shared channel wireless networks has not been precisely de- 
fined. In this work, we first propose a precisely quantifiable 
definition of fairness and then describe algorithms for packet 
scheduling in wireless networks to achieve such fairness. 
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In wireline networks, a popular model for packet schedul- 
ing over a link is the fluid fair queueing model [5, 111. In 
thii model, packet flows are modeled as fluid flows through 
a channel of capacity C, and every flow f is assigned a 
weight rf; over any infinitesimally small window of time 
At, a backlogged flop f is allocated a channel capacity of 
C-Ae-f / &3(t) r-i), where B(t) is the set of flops that 
are backlogged at time t. There are several packet-level al- 
gorithmic implementations of this model, such as WFQ (51, 
WF2Q [l], SCFQ [7], STFQ [S], etc. Essentially, the goal 
of each of these algorithms is to serve packets in an order 
that approximates fluid fair queueing as closely as possible. 
At fist glance, it would seem that the fluid fair queueing 
model is applicabIe to scheduling over a wireIeas channel, 
and any of the above algorithms will work just as well for 
wireless channeLs. However, there are two key characteris- 
tics of shared wireless channels Nhich render the fluid fair 
queueing model inapplicable: (a) bur.sry channel errors, and 
(b) location-dependent channel capacity and errors. Since 
wireless transmissions are locally broadcast, contention and 
effective channel capacity are location-dependent. Besides, 
due to interference, fades and multipath effects, channel er- 
rors are also location-dependent. This implies that at any 
time, only a subset of flows can be scheduled on the cban- 
nel. All the algorithms cited above for wireline scheduling 
assume that the channel is error-free, or at least that either 
all flows can be scheduled or none of them can be scheduled. 
In fact, the fluid fair queueing model itself does not address 
the issue of fairness when a subset of backlogged flonrs are 
unable to transmit due to channel errors. This points to 
a clear need to develop a new fairness model for wireless 
channels. 

Another unique concern in packet cellular networks is the 
following: within a cell, every host is only guaranteed to be 
within the range of the base station, and all transmissions 
are either uplink or downlmk. Thus, the base station is 
the only logical choice for the scheduling entity in a cell. 
However, the base station has only limited knowledge about 
the arrival of packets in uphnk flops. In particular, the 
base station may knov? if an uplii ffonr has any outstanding 
packets, but it does not know when packets arrive, or how 
many packets there are in the queue at any instant. Thus me 
cannot assume convenient tagging mechanisms at the source 
when packets arrive, as in most fair queueing algorithms. 
Besides, due to the shared nature of the wireless medium, 
we must take into account hidden/exposed stations [3). This 
points to a close coordination of the scheduling algorithm 
with the medium access protocol for wireless channels. 

In this paper, we seek to address the issues unique to 
wireless fair queueing, while drawing extensively from the 
basic fluid fair queueing model for wirelme networks. The 
key contributions of this paper are the following: (a) a fair- 
ness model for wireless fair queueing, (b) the design of an 
ideal wireless fair queueing algorithm with analytically prov- 
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able delay and throughput bounds, and (c) the design of 
a wirclcss scheduling algorithm which closely approximates 
the characteristics of the ideal algorithm, while addressing 
several practical issues in wireless medium access. 

The rest of the paper is organized as follows. Section 2 
describes the wireless network model. Section 3 proposes a 
model for wireless fluid fair queueing. Section 4 describes 
a wireless scheduling algorithm which realizes the fairness 
model for an idealized scenario, while Section 5 derives its 
analytical throughput and delay bounds. Section 6 discusses 
some implementation issues, while Section 7 describes the 
practical wireless packet scheduling algorithm. Section 8 
provides a simulation based performance evaluation of this 
algorithm, Section 9 compares our work with related work, 
and Section 10 concludes the paper. 

2 Model 

For the purposes of this paper, we consider a packet cellu- 
lar network with a high-speed wired backbone and small, 
partially overlapping, shared channel wireless cells. Each 
ccl1 is served by a base station, which performs the schedul- 
ing of packet transmissions for the cell. Neighboring cells 
are assumed to transmit on different logical channels. All 
transmissions are either uplink (from a mobile host to a base 
station) or downlink (from a base station to a mobile host). 
Every mobile host in a cell can communicate with the base 
station, though it is not required for any two mobile hosts to 
bc within range of each other. Each flow of packets is iden- 
tified by a <host, uplink/downlink flag, id> triple. We say 
that a flow ‘perceives a channel error’ (i.e. sees a ‘bad’ chan- 
nel state) if either the source or the destination of the flow 
cxpcrionces an error burst in its locality. Error patterns are 
assumed to vary depending on location; we do not make any 
explicit assumption about the error model, though our sim- 
ulations typically use a two-state Markov chain model. By 
varying the transition probabilities, we generate a range of 
error patterns in the wireless channels, ranging from highly 
bursty to Bernoulli distributed errors. 

3 Wireless Fluid Fair Queueing 

As described in Section 1, the Fluid Fair Queueing model [5] 
treats each packet flow as a fluid fionr. Each florr i is given 
a weight T{, and for any time interval [tr,tz] during which 
there is no change in the set of backlogged florrs B(tr, tz), the 
channel capacity granted to each flow i, Wi(t~,ta), satisfies 
the following property: 

Kj E Wl,h), I 
Wi(tl,t?) _ Wj(tljt2) 

Ti Tj I =o* (1) 

The above definition of fair queueing is applicable for both 
channels with constant capacity and channels with time 
varying capacity. However, it does not address the issue 
of location-dependent channel error, as shown below: 

Consider three backlogged flows with 9-1 = rz = rs = 
1/3. Flow 1 and flow 2 have error free channels while flow 3 
pcrccivcs a channel error during the time interval [OJ]. By 
applying equation (1) over the time periods [OJ] and [1,2], 
wc arrive at the following channel capacity allocation: 

w1[0, l] = w2[0, l] = 1/2, w1[1,2] = w2[1,2] = w&2] = 1/3, 

Now, over the time window [0,2], the allocation is 

Wl[O, 21 = Wz[O, 21 = 5/6, W3[0,2] = l/3. 

which does not satisfy the fairness property of equation (1). 
This simple example illustrates the difficulty in defining fair- 
ness in a wireless network, even in an idealized model. In 

general, server allocations designed to be fair over one time 
interval may be inconsistent with fairness over a diierent 
time interval. 

In the fluid fair queueing model, when a flow has noth- 
ing to transmit during a time window [t, t + A], it is not 
ahowed reclaim the channel capacity that would have been 
allocated to it during [t, t + A] if it were backlogged at t. 

However, in a wireless channel, it may happen that the flow 
is backlogged, but unable to transmit due to channel error. 
In such circumstances, should the flonr be compensated at a 
later time? In other words, should channel error and empty 
queues be treated the same or differently? In particular, 
consider the scenario when flows fr and A are both back- 
logged, but fr perceives a channel error Nhile fe perceives 
a good channel. In this case, A will additionally receive the 
share of the channel which would have been granted to fr 
in the error-free case. The question is whether the fairness 
model should readjust the service granted to fr and fz in a 
future time window in order to compensate fr. The tradi- 
tional fluid fair queueing model does not need to address this 
issue since in a wireline model, either all flows are permitted 
to transmit or none of them is. 

In the Virtual Clock model [13], when a flow has noth- 
ing to transmit during a time window, it can reclaim its 
missed share of the channel capacity at a later time. Ar- 
guments have been made against allowing for such compen- 
sation, including the fact that were the packet flows really 
fluids flowing through a common pipe, such compensation 
-ivouId not be ahowed. However, we argue that the case of 
empty queues and the case of channel error should be treated 
differently. From a user-centric perspective, me would like 
the well-behaved flops to remain oblivious of short error 
bursts, and react only to prolonged error bursts. In partic- 
ular, we would like to make use of the fact that some chan- 
nels may be error free when other channels experience error, 
and implicitly swap the channel allocation over short time 
windows in order to accommodate short error bursts. How- 
ever, -,ve would still like to provide separation between flows 
by bounding the amount of compensation that can be pro- 
vided to a flop due to its channel error. Essentially, we seek 
to make a trade-off between the full compensation model 
and the full separation model in order to provide bounded 
compensation. Note that our compensation model is fun- 
damentally d&rent from the Virtual Clock approach, since 
we only compensate if the flop has packets to transmit but 
is unable to do so because of channel error. In particular, we 
do not penalize a fiorr for using the entire channel capacity 
if no other flonr had anything to send. 

Given the arrival processes for each of the flows and the 
error patterns perceived by each of the flows, we define an 
error-free service as the fluid fair queueing service for the 
flonts with identical arrival processes and completely error- 
free channels. We define a flonr to be lagging at any time 
instant if its queue length is greater than the’queue length 
of its error-free service at the same time instant. We define 
a flON to be leading at any time instant if its queue length 
is less than the queue length of its error&free service at the 
same time instant. The key feature of our wireless j&id 
fairness model is to allow lagging POWS to naake up their lag 

by causing leading frows to give up their lead. By artificially 
bounding the amount of the lag and lead, we can trade-off 
between long-term fairness and separation between flops. 

We now define the bounds on lag and lead for each flonr. 

1. The aggregate lag of all flonrs which will be compen- 
sated is bounded by a constant B bits. A lagging flow 
i with weight ri is ahowed to compensate a maximum 
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bits, where F is the set of all flows. 

2. A leading flow is allowed to lead by a maximum of 
11 bits, Specifically, even when a flow is ahead of its 
error-free service by more than li bits, it only gives up 
a channel capacity worth li bits to other contending 
flONS. 

We now define the wireless fair queueing model. The granu- 
larity of transmission of a flow is a bit. Each bit has a sesus’ce 
tag, which is the virtual time of its error-free service. The 
service tag of a badklogged flow is the service tag of the first 

bit in its queue; the service tag of a non-backlogged flow is 
co. The virtual time at any instant is the virtual time of the 
error-free service at the same instant. Based on the above 
definitions, the wireless fluid fair queueing server works as 
follows: 

1, The next bit to be transmitted is chosen from the head 
of the queue of the flow with the minimum service 
tag among the backlogged flows which perceive a good 
channel. 

2. Each lagging flow i is allowed to retain (at most) the 
earliest bi bits with a service tag less than the current 
virtual time. 

3. If a flow i leads its error-free service by more than Zi 
bits, its service tag is adjusted to reflect a lead of I< 
bits, 

There are three important points to note regarding the wire- 
less fluid fair queueing model: (a) the flow which has lagged 
the longest has the lowest service tag, and hence has highest 
precedence to ZIXCCSS the channel, (b) a flow which always 
perceives an error-free channel may still lag its error-free 
service by up to B bits because it has to defer for lagging 
flows with lower service tags, and (c) a flow which leads by 
more than Ii bits does not have to Ipay’ for more than Ii 
bits; likewise, a flow which lags by more than bi bits cannot 
reclaim more than bi bits. 

4 The Idealized Wireless Fair Queueing Algorithm 

In this section, we describe an idealized wireless fair queue- 
ing (IWFQ) algorithm that realizes the wireless fluid fair 
qucueing model, This algorithm is idealized because it makes 
two key assumptions: (a) each flow knows whether it can 
transmit correctly in the current slot (i.e. transmitted pack- 
cts are never lost in transit), and (b) packets can be tagged 
as soon as they arrive. For simplicity, we assume that all 
packets arc of the same size Lp, and that each packet is 
transmitted in one slot. 

4.1 Algorithm Description 

The overview of the algorithm is the following: 

We simulate the error-free fluid service for the flows. 
At any instant, the virtual time for the idealized wire- 
less fair queueing algorithm is the virtual time of the 
error-free service at the same instant. 

Each arriving packet is tagged as in the Weighted Fair 
Queueing algorithm: a packet with sequence number 
n of flow i arriving at time A(ti,n) is assigned two tags: 
a start tag si,,, and a finish tag fi,n, defined as follows: 

si,n = maz{v(A(ti,n)), fi.n-1) (2) 

fi.n = S&n + LP/Ti (3) 

v(A(t)) is derived from the error-free service as follows: 

dv(t)/dt = c/ c l-i, 
iEB(t) 

where C is the channel capacity in bits/set and B(t) 
is the set of backlogged flows at time t in the error-free 
service. 

The actions in the scheduling loop are the following: 

(a) readjust tags for each flow. 

(b) for each flow, set its service tag equal to the finish 
tag of the head of line packet of the flow. If there 
is no packet in the queue, set the service tag to 
co. 

(c) among the flows which can transmit (i.e. channel 
is good), pick the flow with least service tag and 
transmit its head of line packet. This algorithm 
adapts the selection process of WFQ. By restrict- 
ing the packets eligible for selection to only those 
which would have started their error-free service 
in the fluid model, we could adapt the selection 
process of WF*Q. 

Readjusting tags for a flow involves the following: 

(a) for each lagging flow i, if the number of pack- 
ets with finish tags lmnf+an the virtual time is 
greater than Bi = 

C-1 
then retain only 

the first (lowest tagged) Bi packets in the queue 
and delete the remaining packets’. 

(b) for each leading flow i, if the start tag of the head 
of line packet (si,aor) is greater than the virtual 
time (v(t)) by more than Ii/r<, then 

Si,hol = v(t) +k/Ti, f&ho2 = Si,hol +LP/Ti (4) 

The service that a flow receives in the IWFQ algorithm is 
never behind the service that it would receive in the wire- 
less fluid fair queueing model by more than Lp (for the same 
reason that the service in WFQ is never behind the service 
in FFQ by more than Lp [5]). For error-free service, IWFQ 
and WFQ are identical. When some flows perceive short 
error-bursts (i.e. neither lags nor leads exceed their bounds), 
IWFQ performs local adjustments in channel allocation in 
order to compensate the flows for their channel errors. The 
goal of IWFQ is thus to approximate WFQ while still ac- 
commodating short-term errors. However, IWFQ and WFQ 
diier in several ways. 

A flow which is denied service because of channel error 
is guaranteed to eventually receive service after its channel 
becomes good since its service tag does not change. Thus, 
backlogged flows receive precedence in channel allocation 
when their channels become error-free. 

The separation property of WFQ (which guarantees that 
the worst case delay for the head-of-line packet of a flow i, 
PwaFzQ 5 Lp/C + (Lp. xiEF r<)/(ri.C), is independent of 
the behavior of other flows) is only valid for IWFQ with the 
following bounds: d;l$& 5 d$‘& + B/C. 

Finally, a critical difference between IWFQ and WFQ 
lies in the way that packets are discarded in each algorithm. 
In WFQ, packets are discarded if the flonr gets backlogged 

‘Note, that an error-free weighted fair queueing service will lag by 
at most one packet. 
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by more than its maximum buffer size. In addition to the 
above, packets may be discarded in IWFQ if a flonr lags by 
mom than B< packets. We provide a mechanism to separate 
the following two questions: ‘how many packets should be 
discarded’, and ‘which packets should be discarded’. Thii 
mechanism is also useful for handling lost/corrupted packets 
when we remove the idealized assumption that the channel 
can always be predicted accurately. 

4.2 Slot Queues and Packet Queues 

Since a flow i is allowed to lag by at most Bi packets, during 
prolonged error bursts, it may be forced to discard packets 
from its queue. If the flow discards packets from the head 
of the queue, its service tag increases; thus we can no longer 
preserve. the guarantee that a lagging %ON eventually has 
the lowest service tag (and hence has highest precedence to 
access the channel). On the other hand, for delay-sensitive 
but loss-tolerent %ows, retaining packets which have already 
waited in the queue for a long time is meaningless. Es- 
sentially, Zagging flows shouZd hawe the ability to discnrcZ any 
packets from a backzogged queue without losing precedence in 
channel access. This points to the need to decouple service 
tags from the packet queues. 

In order to achieve such a decoupling, we maintain two 
queues for each flow: a sZot queue* and a packet queue. When 
a new packet arrives, the following actions are taken: (a) the 
packet joins the packet queue, (b) a new slot is created and 
assigned the start tag and finish tag corresponding to the 
packet, (c) the slot joins the slot queue. At any time, the 
maximum number of lagging slots is bounded by Bi for a 
%ow i, and slots with the lowest finish tags are retained in 
order to preserve the precedence of channel access for the 
lagging flow. The service tag for a %ow is the finish tag of 
the head of line slot in its slot queue. 

A separate mechanism deletes packets from the packet 
queue depending on the requirements of the %ow. For ex- 
ample, a packet may be deleted after a %xed number of re- 
transmissions or after a delay bound has expired. When a 
slot is selected for transmission, the head of line packet in 
the packet queue is transmitted - thus the mapping between 
slots and packets is dynamic, By decoupling slot queues 
from packet queues, we can handle multiple types of delay 
and loss requirements for flows while still maintaining the 
precedence in channel access for lagging flows. 

5 Throughput and delay guarantees for the IWFQ 

The following facts should be obvious from the IWFQ algo- 
rithm described in Section 4: 

Fact 1 At any tivne t, the number of Zagging bits of flow i, 
den&d 6~ 6i(t), satisfies CiEF hi(t) 5 CieF BiLp = B, 
where LP is the packet Zength in bits. 

Fact 2 For any Zagging slot s of flow i at time t, its jZnish 
tag is no greater than that of any non-lagging slot, i.e. it is 
served with higher priority. 

The following results regarding error-free fluid fair queueing 
(FFQ) and error-free WFQ3 have been proved in [12], and 
are included here for quick reference. 

‘In this section, slots refer to logical slots rather than physical 
tlme slots. 

%rror-free PFQ and error-free WFQ refer to FFQ and WFQ, re- 
spcctivoly, when all the channels are error free. 

Lemma 1 [121 Let Si(T, t) and S;(T, t) be the amount of 
flow i trajj% (in bits8 not packets) served under the fZuid 
fair queueing and the error-free WFQ in the interval [r, t], 
for all times r and frows i: 

ih(O,T)-Sz(O,T) 5 LP, St(O,r+ g) 2 Si(O,r) (5) 

For all packets p, let 2’ and I$ be the time at which packet 
p departs under the fluid fair queueing and the WFQ, 

FPI - & 5 b/C, (6) 

where C is the channel capacity (in bits per second) and LP 
is the packet length in bits. Cl 

The delay and throughput results in this section are given 
separately for two types of channels: (a) Error-free Channel: 
an error-free channel is one which is always in the good state 
at all time slots, and (b) Error-prone Channel: an error- 
prone channel is one which is not always in the good state. 

5.1 Error-Free Channels 

Based on Facts 1 and 2, we can show the following result: 

Lemma 2 Any slot s on a error@e channel g4 completes 
its service in IWFQ by time tef + dg, with 

& = B/C. (7) 

where t,f is the finish time of slot s in the error-free WFQ 
algorithm, F denotes the set of all fIows, Lp is the packet 
length (in bits) and C is the channeZ capacity (an bits per 
sewna). 

Proof, Let us consider an arbitrary time t, at which slot 
s is the head-of-line slot for flow g. 

If slot s has received service in IWFQ before or at t,f, 

i.e. %ON g is leading at this time, then the result is trivially 
true. In the following, we only consider the case that slot s 
receives its service later than t,f in the IWFQ. 

Denote the current virtual time as v(t) (i.e. the bit round 
in progress as defined in equation 4. At virtual time v(t), 
in the error-free WFQ, let the slot sequence waiting to be 
servedbem,mfl,..., s-l,s,s+l,..., kwhereslotse- 
quence 0,1,. . . , m - 1 has been transmitted by the time t 

in the error-free WFQ. We also denote the finish tag as- 
sociated with a slot i as Ti. Let s belong to flow g. The 
remaining waiting time (after t) in terms of time slots for s 
under error-free WFQ is s - m. 

Consider the scenario for the IWFQ algorithm at time 
t. Let B(t) denote the set of the lagging slots (ordered by 
their %niih tags) by all flows at time t, i.e. when m becomes 
eligible for service in the slot sequence. Note that the total 
number of slots that have been transmitted in IWFQ, de- 
noted by q, is no greater than m, i.e. q 2 m, due to the 
work-conserving nature of the server. Thus, the slot with 
the lowest tag in IWFQ is either m or the slot with the 
lowest finiih tag in B(t). 

By Fact 2, it follows that any slot in B(t) has no greater 
finish tag than the sequence T,,,,T,,,+l,. . . . Therefore, the 
Zargest possibZe sequence of slots to be served at time t ob- 
serves the order B(t), m,m-tl,..., s-l,s,s+l,..., k. 
Hence, the maximum number of slots (after current time 
t) to be served before s in the IWFQ is IB(t)l + s - m, 
where jB(t)l is the cardinality of set B(t). Based on Fact 
1, it follows that IB(t)l 5 B. for any time t. Hence, slot s 

41n this case, the flow is also denoted as g with slight abuse of 
notation. 
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on error-free channel g completes service in IWFQ no later 
than time tef + B/C as compared to error WFQ by noting 
that the server rate is C. Therefore, the result folloms for 
slot 8. The arbitrary choice of starting time t also implies 
that the arbitrary choice of sIot s; hence, the result holds 
true for any slot s of flovr g, which concludes the proof. 0 

Theorem 1 (delay guarantee) For_any packet i on a error- 
free channel g, its maximum delay Do, ,WFQ in IWFQ sat- i@es: 

bg, IWFQ 2 &, WFQ +&I 

where Do, WFQ is the ma_zimum packet delay of flow g in 
the error-free WFQ, and do is given by equation (7). 

Proof, For lagging slots, the proof follonrs from Lemma 
2. For a leading slot, by definition, its delay is less than 
v~hat it vrould have been under error-free WFQ. Cl 

Though the v,orst-case packet delay of a leading flow does 
not increase, its packets can be vrell ahead of their schedule. 
Thus its ncvr queue delay‘ has a bounded increase, as shone 
in Corollary 1. 

Theorem 2 (long-term throughput guarantee) For a error- 
free channel g, let So(O,t) denote the aggregate service (in 
bits) received by channel g in the interval [0, t] in the IWFQ, 
and 5’; (0, t) denote the aggmgate service (in bits) mceived by 
channel g in the intervht [0, t] in the error-free WFQ service, 
then the following inequality holds: 

Sg(O,t +&J 2 s;co, t) 

where & is given by equation (7). 

(9) 

Proof, Let tN be the finish (real) time of the Nth packet 
under error-free WFQ and tb be the finiih time of the same 
packet under IWFQ. Then, by Lemma 2, t)N 5 tN + do. 
Also, let Si(O, t) 2 NLp, for some integer N. We use the 
v~ell-knovln relationship S,l(O, t) 2 NLp e tN 5 t. From 
above, th - 2s < t, vrhich leads to S,(O, t + &) >_ NLp. 
Hence, for any N > 0, 

S,(O,t) 2 NLP =$ Ss(O,t+&) 2 NLP. 

which leads to the inequality (9). 0 
Based on Lemmas 1 and 2, the following result is easily 

derived for new queue delay. 

Theorem 3 (new queue delay bound) For aflzw g on error- 
free channel, its maximum new queue delay DHOL is given 

bY 
&OL = $ + JWFQ + Fg,, (10) 

gig = tg(zw7 rj) ) 

ccl 

(.jWFQ = Lp LP CCEF Tc , 

c +c--- 9-g 

(11) 

where Jg is given by (7) and Fg = F \ g. 

Proof. - ~WFQ is the time spent in the head-of-the line 
(HOL) if the HOL packet contends for service immediately. 
To is the maximum amount of time that one has to wait 
before contending at the HOL due to the fact that flonr g 
might be leading even if the HOL packet arrived at an empty 
queue, TO derive the expression for T,, note that flonr g can 
lead by I, bits or equivalently, 1,/r, bit rounds. Thus, the 
number of other flovfs’ bits that can take precedence over a 
ncvfly arrived packet is 2 xjEF, rj. Finally, Jg is the wait 

due to lagging flovrs. cl 

GNoa Qucuo Delay is the maximum delay for a packet that arrives 
at an empty queue. 

Theorem 4 (short-term throughput guarantee) Given any 
time t, for a error-free channel g, assume that the service 
which flow g mceives in error-free WFQ is given by S(t,t,) 
during time intemat [t, tl] for some tl > t +-T,(t). Then the 
service that flow g receives under IWFQ satisfies 

W,h) I S’(t+Tg(t),tl), 02) 

(13) 

and t,(t) where bj(t) is the number of tagging bits of flow j 
is the number of leading bits of flow g at time t. 

Proof. At any time t, the amount of time that flom g 
has to tit to begin service is determined by the number of 
lagging bits of other flonrs as rrell as the amount by which it 
is leading. The amount of time due to other lagging sources 
is xjEF, bj(t)/C, from the definition of bj(t). In addition, 

flonr g has to possibly tit for l,(t)/r, bit-by-bit rounds 
and the maximum amount of time due to this is bounded 
by F cjcZF9rji'/ce 

cl 

Note that the above theorem is trivially valid Jvhen all 
channels are error-free because in that case, bj(t) = t,(t) = 
0. In addition, one cannot give short-term guarantees over 
intervals smaller than T,(t). This highlights our observation 
in Sections 1 and 2 that trying to provide very short-term 
guarantees in wireless channels will not allow enough flexi- 
bility to hide short error-bursts from users. 

One can trivially remove the dependence on t in the lolver 
bound of the above theorem as follolvs. 

Corollary 1 Assume that fIow g is backlogged during [t, tl] 

in the error-free WFQ, then the service it receives in the 
IWFQ satisfies 

S(t,t,) 2 S*(t+Tg,tl) (14) 

Theorem 5 (delay bound for an error-prone channel) Given 

5.2 Error-prone channels 

any packet of Jaw e on an error-prone channel, its maximum 
packet delay DIWFQ, e is given by 

DIWFQ, e 5 BWFQ, e + ~,(M+I) (15) 

where &FQ, e is the maximum packet delay of flow e under 
error-free WFQ, and M is the maximum number of lagging 
slots of all flows other than flow e, M = cj,, bj/Lp, and 
T =,(M+~) is the mazimum time it takes for flow e to have its 
(M + l)fh good slot starting from any time t. 

Proof We assume the flonr e is lagging. As in Lemma 
2, if there are no further errors after time t the delay of a 
packet of e is increased by the lagging slots of other flov~s M. 
However, we have to additionally account for possible errors 
in the channels of 3onr e and other lagging 30~s. Suppose 
the (M + l)‘h good state for flonr e after time t, occurs at 
t + Te,(~+r), then we daim that the head-of-the-line packet 
at time t for flont e nrould be transmitted no later than t + 
Te,(~+l). Suppose this were not true, then it mould lead to 
the folloting conclusion: during all the M + 1 good states, 
one of the other flows had a slot tith a lower finish tag. This 
contradicts the upper bound of M on the number of lagged 
slots. 
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Assume a packet arrives when a flow is leading. If the one key conclusion for a practical implementation of wire- 
packet finishes when the flow is still leading, then the state- less fair scheduling is that it must be closely coupled with 
ment of the theorem is trivially true. If it finiihes when the MAC protocol. In this section, we first identify some 
the flow is lagging, then there is a time instant before the MAC-level instruments to address the above issues, and then 
packet’s departure when it is in the queue and the flow starts briefly describe our wireless medium access protocol. In the 
lagging. Then the above proof holds. cl next section, we describe our wireless fair scheduling algo- 

Note that the previous resuIt does not take into account a rithm. 
specific model for channel errors. Any channel error model 
that deterministically or probabilistically bounds Te,~+l, 
could be easily incorporated into the bound. 

Based on the above result on delay bound, the result on 
throughput follows readily along the lines of Theorem 2. 

Theorem 6 (long-term throughput guarantee) For a flow e 
on an error-prone channel, let S,(O, t) denote the aggregate 
service (in bits) received by flow e in the interval [0, t] in the 
IWFQ, and Sz(O, t) denote the aggregate service (in bits) 
ireceived bg channel e in the internal [O, t] in the error-free 
WFQ service, then the following inequality holds: 

6.1 Techniques to address wireless channel issues 

As before, we assume that packets are small and of Exed size; 
these are very reasonable assumptions for wireless networks. 
Tie is slotted, and each data slot accomodates some con- 
trol information, a data packet and au acknowledgement. 

Se(0, t I- Te,~.t1) 1 S,‘(O, t) (16) 

Moreover, we can further show the following result for short- 
term throughput: 

Theorem 7 (short-term throughput guarantee) Given any 
tivne t, for a continuously backlogged flow e on an emor- 
prone channel during time internal [t, tl], the aggregate ser- 
vice (in bits) received by flow e in the interval [t, tl] in the 
IWFQ, denoted by Se(t, tl), satisfies: 

Acknowledgement: In our approach, each packet trans- 
mission is followed by a short acknowledgement from the 
destination to the source. Using acknowledgements serves 
a number of purposes. The most important purpose is to 
detect loss of packets during transit. As a side-effect, ac- 
knowledgements also imply that the base station transmits 
either the data packet or the ack packet in every transmis- 
sion - we use this feature to piggyback important control 
information for future slots on the base station’s transmis- 
sion in the current slot. Acknowledgements have been used 
in several medium access protocols [3, lo] for similar pur- 
poses. 

&(t,tl) 2 (NO -N(t))- c.Te $P - LP, 

1EF 

(17) 

One-Step Prediction: Since errors are bursty and errors 
in successive slots are highly correlated, we perform a one- 
step channel prediction by monitoring the channel condition 
in the previous slot. Since the base station transmits either 
a data packet or an ack packet in every slot, each host in 
the cell monitors the channel during each slot for packets 
from the base station. If a host can sense activity on the 
channel but does not receive a good packet from the base 
station, it detects an error during the current slot. A host 
predicts that its next slot will be in the same state as the 
current slot, due to the high correlation of channel state 
across slots. While the one-step prediction is obviously not 
perfect, our simulation results show that it is very effective 
for typical wire1es.s channel error models. 

where No is the number of time slots in good state for jlow 
e in [t, tl],, hi(t) is the number of tagging bits of frow i and 
t,(t) is the number of leading bits of flow e at time t. 0 

The proof of the above theorem follows along the lines of 
the proof of Theorem 3. 

6 Implementation Issues in Wireless Packet Scheduling 

In previous sections, we developed an idealized wireless fair 
qucucing algorithm in the presence of bursty and location- 
dependent errors, assuming full knowledge of the channel. 
Hov~cver, when implementing a practical wireless fair schedul- 
ing algorithm, we need to address the following important 
constraints: (a) the channel state is not known in advance 
and cannot, be predicted with complete accuracy, (b) due to 
error and incorrect channel prediction, transmitted packets 
may be lost, (c) detection of reception errors is not just a 
matter of sensing the carrier, since errors at the source do 
not imply errors at the destination and vice-versa, (d) the 
base station performs the scheduling, but does not have a 
full knowledge of which uplink flows have packets to transmit 
or how many packets a backlogged flow has, and (e) since 
errors are typically bursty, giving precedence to packets of 
lagging flows (as IWFQ does) will cause error-prone chan- 
nels to be polled more often, which increases the scheduling 
overhead. Due to our channel model, problems of hidden 
and exposed stations across multiple shared channel cells 
are not, addressed. 

Several of the above constraints either pertain to, or can 
be effectively addressed at, the medium access layer. Hence, 
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iEF= 

(18) 

One undesirable consequence of the one-step prediction 
approach is that every host (with a backlogged uplink flow) 
has to monitor every slot, which can increase its power con- 
sumption. In the future, we plan to experiment with peri- 
odic snooping of the channel and dynamically estimate the 
optimal snooping period in order to alleviate the problem of 
having the host be in promiscuous mode all the time. 

Set of known backlogged flows: Since the base station 
must schedule packets for both downlink and uplink flotvs, it 
needs to know at least which uplink flows are backlogged at 
any time. In order to allocate slots only to flows which have 
packets to transmit, the base station keeps a set of ‘known 
backlogged flows’ and only allocates slots among the flows 
in thii set. The set is updated by the following mechanisms: 
(a) for downlink flows, the base station has a precise infor- 
mation about the queue lengths, (b) when an uplink flow 
is allocated a slot,, it piggybacks the queue size information 
on its data packet, (c) vrhen a new uplink flow is created 
or becomes backlogged, if there is an ongoing backlogged 
flow fFom the same mobile host, the information is piggy- 
backed in (b) above, and (d) the base station periodically 
solicits notifications from new (and newly backlogged) up 
link flows by issuing of a control slot. One of the highlights 



of our approach is the way in which control and data slots 
are integrated in the MAC framework. 

6.2 Wireless Medium Access Protocol 

Our wireless medium access protocol has its origins in DQRUMA 
(91. We divide time into frames, and each frame into slots 
(as described in Section 7, the frame size is not fixed, and 
the number of slots in a frame changes over time). A slot 
may be either a data slot or a control slot. Each data slot is 
subdivided into three parts: a control sub-slot which consists 
of four v&i-slots, a data sub-slot and an ack sub-slot. Each 
control slot is divided into a notification sub-slot and an ad- 
vertisement sub-slot. By means of the scheduling algorithm 
described in Section 7, the base station allocates the slots in 
a frame among known backlogged flows before the start of 
the frame, Due to lack of space, thii section provides only a 
brief outline of key actions of the MAC protocol which relate 
to scheduling, i.e. the mechanics of slot allocation, and the 
mechanics of identification of newly backlogged flows. For 
a more detailed general discussion on MAC protocol issues, 
we refer the reader to [3, 91. 

Identification of New and Backlogged Flows: The base 
station has a special downlink ‘broadcast’ flow called the 
control flow, which has a flow id of <0, downlink, O>. From 
the scheduling perspective, a control flow is identical to a 
backlogged data flow of unit weight on an error-free chan- 
nel. However, when the control flow is allocated a slot, the 
MAC layer at the base station issues a control slot as op- 
posed to a data slot. The control slot consists of two phases: 
a notification sub-slot during which mobile hosts contend in 
order to notify the base station of new or newly backlogged 
flows, and an advertisement sub-slot during which the base 
station broadcasts the newly received notifications ss an ac- 
knowledgement to the successfully contending mobile hosts. 

The notification sub-slot has a sequence of mini-slots. 
If a mobile host has a newly backlogged flow but does not 
have an ongoing backlogged flow on which to piggyback thii 
information, it selects a random mini-slot during which it 
transmits the notification. During the advertisement sub- 
slot, the mobile host knows if it’s notification was success- 
fully received, This contention mechanism is novel in the 
way control and data flows are integrated. However, it is 
simplistic in that contending mobile hosts can only trans- 
mit once. in a control slot. Using Slotted Aloha to contend 
in the control slot will improve the probability of success- 
fully sending notifications. Note, that the above contention 
mechanism impacts the delay and throughput bounds of new 
flows in Section 5; the changes are easy to compute using 
results from Slotted Aloha. 

Data Slot Allocation: Since all flows are either uplink or 
downlink, in each data slot the base station must transmit 
either the data packet or the acknowledgement packet. Pig- 
gybacked on the packet, the base station provides the ids 
of the flows which are allocated the next three slots (as a 
special case, a control slot is identified by setting all the 
flow ids to <O, downlink, O>). Since every host in the cell 
is within range of the base station, a source of an identified 
flow will be able to hear the packet if its channel is good. 
In the control phase of the next slot, the source of flow i 
(1 < i 5 3) transmits a channel good flag in mini-slot i if 
it predicts that the channel will be good (based on one-step 
prediction), In the fourth mini-slot, the base station identi- 
fies the flow which has been chosen for transmission during 

the current slot, which is the 6r.s.t among the three flows to 
send the good flag in its mini-slot. If it turns out that all 
the identified flows are in error, then the base station picks 
any one down~mk flow for transmission. 

When an uplink flow transmits a packet, it piggybacks 
the number of packets in its queue. When this number 
reaches zero, the base station removes the flow from its set 
of known backlogged flows. 

7 Wireless Scheduling Protocol 

In thii section, we describe a wireless packet scheduling 
(WPS) algorithm that approximates the idealized algorithm 
while addressing the issues of practical implementation. 

Within the constraints identified in Section 6, the follow- 
ing are the key requirements of the wireless packet schedul- 
ing algorithm: (a) it should provide fair channel access among 
flows which are known to be backlogged, (b) it should utilize 
the location-dependent channel error property in order to lo- 
ca/ly spuap slots (preferably within a frame) between flows in 
order to accommodate short error burst8, (c) across frames, 
it should provide a system of maintaining credits for lagging 
flows and debits for leading flows in case swapping within 
a frame is not possible (as in IWFQ, both credits and deb- 
its should be bounded in order to provide separation), (d) 
since errors are known to be bursty in wireless channels, 
it should spread the slots allocated to each flow as well as 
possible within the frame, (e) since errors are bursty, flows 
which perceive channel error should not be repeatedly polled 
in subsequent slots (the tagging mechanism in IWFQ will 
end up doing this since it gives higher precedence to flows 
that have been lagging the longest), (f) well-behaved flows 
with error-free channels should be affected es less as possible 
while still accommodating flows which perceive errors, and 
(g) the scheduling algorithm should be simple. 

The major departure in WPS from IWFQ is that we have 
moved from the fair queueing to the weighted round robin 
paradigm. Thii was motivated by the fact though weighted 
round robin is much simpler to implement, in our environ- 
ment, weighted round robin and fair queueing will result in 
identical error-free service for the following reasons: (a) the 
base station allocates slots only among known backlogged 
flows, (b) packets are of fixed size, (c) the base station can 
only periodically know when an empty flow has been back- 
logged (for the uplink case); in particular, if a backlogged 
flow drains its queue during a frame, it drops out of con- 
tention for slots until the next new queue phase even if it 
becomes backlogged subsequently, and (d) when all flows 

contending for the channel are backlogged, by spreading slot 
allocation appropriately within each frame, we can exactly 
replicate the WFQ or WF2Q service for error-free service. 

Thus, WPS modifies the basic weighted round robin schedul- 
ing algorithm in order to accommodate location-dependent 
and bursty wireless channel errors. The following are the 
key features of the WPS algorithm: 

l Spreading: generates a slot allocation identical to WFQ 
[ll] or WF Q when all flows are backlogged. 

l Swapping within frame: when a flow cannot transmit 
in its slot because of channel error, it tries to swaps its 
slot with another backlogged flow which has (a) been 
allocated a slot later in the same frame, and (b) per- 
ceives a good channel at the current time; intra-frame 

‘In Section 6, we have used the term ‘slot’ to mean physical time 
slots as well as the logical slots which compose a frame. In this sec- 
tion, we only deal with logical slots when we refer to ‘slots’. 
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swapping is a %rst level mechanism to accommodate 
location-dependent errors. 

l Cr-edit adjustment: when a flow fr cannot transmit 
during its slot and cannot swap slots within a frame, 
but there is at least one backlogged flow fz that can 
transmit at the current time (fz does not have any slots 
during the remainder of the frame), fl’s credit is in- 
cremented and f2's credit is decremented (both within 
bounds); the effective weight of each flow at the start 
of a frame is the aggregate of its default weight and 
its credit, and the spreading algorithm generates a slot 
allocation with respect to the effective weights of the 
flows. Thus, credit adjustment compensates lagging 
flows at the expense of leading flows in future frames. 

l One-step prediction: predicts that the channel state for’ 
the current time slot will be the same as the monitored 
channel state during the previous time slot. 

We show through intuitive arguments and simulation re- 
sults that a combination of the above features will address 
all of the above requirements for fair slot allocation in wire- 
less channels, while also closely approximating IWFQ for 
the average case. 

ochadulo,franoO /* nain procedure to schedule packets in frana l / 
conputo,offoctivc-woightu0; 
aprond,nou,frona() ; /* npraud nccording to WFQ; 

ignore flow with effective credit < 0 */ 
narkor CJ fir&-olot,of,fra.me; 
uhilo(ourkor I= NULL) 

f q got,noxt,flovO; 
Darkor->norkor->noxt; 
If (f I= NULL) trunonit-hcnd-of-line-packet (f 1; 

/1 trunnnit tho ho1 puck& and increment f->uttempts l / 

computo,offoctivo,croditoO /* conputc effective credits for all 
flown at the start of a franc */ 

for onch flow f, 
f-Scrodit = ain(mnx(f-)offoctive,voight - f->attenpto. 

-(f->dobit,linit)), f->credit-linit); 
f-?offoctivogoight s f->uoight + f->crodit; 
f->nttompto = 0; 

got,noxt-olot() /* return flow that can tranonit in current slot; 
porfom swapping and credit/debit allocation */ 

uhilo (nurkor != IIULL) 
if (quouo,ompty(norksr->flov)) /* cuuc 1: flow hao no queue */ 

doloto,flou,nloto,fron-framo(markor->flou); 
doloto,flov,fron~bnckloggcd,net(marker->flov); 
morkor = nurkor->noxt ; 

0100 if (oxcoption,cooo()) /* cuse 2: no flow cau transmit */ 
(nurkar->flov)->nttomptn tt; /t no credit for niosod slot l / 
murkor = nnrkor->noxt; 
roturn UULL; 

0100 if (olot,ntnto(narkcr->flou) == ERROR) 
/* cam 3: channel in in error */ 

for(a = markor->ncxt;o != UULL;o 5 s->next) 
if ((! (qucue~onpty(o->flov)))R~~olot~otata(s->flou)==CWI) 

brouk; /* flov pointed by u can nvup vith marker->flov */ 
if (n I= MULL) 

uuap,flovo(markcr, a); /* ~880 3a: intra frms swap */ 
oloo 

roturn find,ncxt-good,flov(); /* case 3b: no svap; credit/ 
dobit is implicit duo to how f->attcnptn is updated I/ 

oloo /* cauo 4: connection has packet and slot io good l / 
roturn nurkor->flow; 

roturn NULL; 

The above pseudo code describes the essential parts of 
the WPS algorithm. We now comment briefly on some note- 
worthy points in the WPS algorithm. 

A %ovr which is unable to transmit in its slot receives 
credit only if some other flow is able to transmit in its 

place. When a flow transmits more slots in a frame than 
it is initially granted, its credit becomes negative. Hence, 
even when we cannot swap within a &me, the system of 
credit/debit adjustment implicitly preserves the notion of a 
swapping, just ss lag and lead implicitly preserves the notion 
of swapping in IWFQ. 

A flow fi with a negative credit of ci will not receive 
any channel capacity for [l~lJ/ri frames (where the size of 

a frame iS CieB(t) wi dots, and B(t) is the set of knom 

backlogged flows at the start of the frame, and wi is the 
effective weight of flow f;). 

The credit adjustment policy above compensates all the 
credits of a lagging flow in the next frame. For a flow that 
has accumulated a large number of credits, thii could po- 
tentially result in the flow capturing the channel for a long 
time after its channel becomes good (IWFQ also has a sim- 
ilar effect in case a flow has been lagging for a long time). 
In order to compensate lagging flows over a longer period 
of time, we could bound the number of credits that can be 
reclaimed in a single frame by any flow, thus amortizing the 
compensation over several frames. 

In the average case, WPS closely approximates IWFQ 
because is tries to achieve separation and compensation by 
similar instruments (credit/debit similar to lag/lead, and 
bounds as in IWFQ). However, there is a difference in worst- 
case delay since we compensate by swapping rather than by 
giving precedence in channel access to longest lagging flows. 
By swapping, we delay the next attempt of the flow to access 
the channel to a later slot, not necessarily the next slot. 
Thus, swapping loses the precedence history which IWFQ 
maintains. While this is good for a practical implementation 
(otherwise the base station will need to poll the most error- 
prone channel most often), it can starve out a flow under 
some pathological conditions. Consider an example in which 
a flow always perceives an error in precisely the exact slots 
when it is scheduled to transmit, but has some good slots 
in between when other flows are scheduled to transmit. In 
IWFQ, the flow will eventually have the minimum service 
tag and gets highest precedence for transmission in any slot; 
in WPS, the %ow can contend only in designated slots and 
will be starved. Thus, though we expect the average delay 
of packets to be very close for WPS and IWFQ, the worst 
case delay of WPS is co. 

One important question is the following: when a back- 
logged %ON is unable to transmit because of channel error, 
and is unable to swap slots within its current frame, how 
does it choose a %ow in a future frame with which it can 
swap slots? Of course, if we generated slot allocations for 
several future frames in advance, it would be possible to 
simply pick the %rst %ow in a future frame that can trans- 
mit in the current slot. HoNever, we do not maintain future 
frames. Instead, we generate a weighted round robin ring 

1 (with WF’Q spreading) based on the default weights for 
all known backlogged flops after each new queue phase. A 
marker in this ring identifies the last %ON that nras selected 
for swapping across frames. When intra-frame swapping 
fails, we simple advance the marker around the ring until 
we %nd a %ow that can swap with the current slot. 

8 Simulation Results 

This section presents the simulation results for the WPS 
algorithm. As described in Section 7, there are four key 
components of the algorithm: spreading, swapping, credit 
adjustment, and prediction. In order to isolate the effect 
of each of these components, we simulated several different 
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algorithms, with different combinations of the above com- 
ponents. 

The following are the algorithms we simulated and com- 
pare in this section: 

l Ble’ad WRR spreads slots according to WF’Q, but does 
not attempt to predict the channel state. 

l WRR modifies Blind WRR by skipping the slot if the 
channel for the flow is known (in m-1) or predicted 
(in WRRP) to be in error. 

l NoSwap combines spreading and credits (but no deb- 
its), but does not have any intra-frame swapping. If 
the channel for the current flow is known (NoSwap- 
I) or predicted (NoSwap-P) to be in error, it gives a 
credit to the flow and skips to the next slot. 

l Swap W combines spreading, swapping and credits (but 
no debits). If the channel for the current flow is known 
(SwapW-I) or predicted (SwapW-P) to be in error, it 
first tries to swap within the frame. Otherwise, it gives 
a credit to the flow and skips to the next slot. 

l SwapA combines spreading, swapping, and credit/debit 
adjustment. SwapA is identical to the WPS algorithm 
described in Section 7. 

We start by illustrating the key ideas using examples 
with only two sources. This allows us to demonstrate the 
effect of the various parameters clearly. Later we consider 
examples with more sources to illustrate some differences in 
the performance when there are small number of sources as 
opposed to a large number of sources. 
Example 1: We consider an example with two loss-sensitive 
sources with WFQ weights TI = 1, TZ = 1. For the purposes 
of simulation, we assume that the channel for Source 2 has 
no errors and the channel for Source 1 evolves according to a 
two-state discrete Markov Chain. Let ps be the probability 
that the next time slot is good given that the current slot is 
in error, and pe be the probability that the next time slot is 
in error given that the current slot is good. 

Then, the steady-state probabilities PG and PE of being 
in the good and bad states, respectively, are given by 

Pa = - f-k pE=Pe. 
Pn 4Pe’ Pg+Pe 

The arrival processes are assumed to be as follows: 

l Source 1 is a Markov-modulated Poisson process (MMPP) 
where the modulated process is a continuous-time Markov 
chain which is in one of two states ON or OFF. The 
transition rate from ON to OFF is 9 and OFF to 
ON is 1. When the Markov chain is in the ON state, 
arrivals occur according to a Poisson process of rate 2. 

l Source 2 has constant inter-arrival time of 2. 

Note that the channel being Markov is not necessary for our 
algorithm, it is just used for the purposes of simulation. For 
the two-state Markov chain describing the channel process 
for Source 1, if we let the bad state be 0 and the good 
state be 1, it is easy to see that the one-step autocovariance 
function is 
C(1) E E(X(t)X(t f 1)) - E(X(t))E(X(t + 1)) 

= PaPJr(1 - (ps l-p,)). 
If p. fpe 5 1, then C(1) 1 0. Further C(1) is a decreasing 
function of p. + pe, and therefore, as pg + pe t 1, successive 
time slots become less correlated. Thus, it is a natural to 

Table 1: Example 1. Results for p, -l-pe = 0.1 

Table 2: Example 1. Results for ps +pe = 0.5 

test our prediction algorithm for various values of p, + pe 
with PG and PB fIxed. We fix the steady-state probability 
for Channel 1 as PC = 0.7. For each packet, we limit the 
maximum number of retransmissions to 2, i.e., a packet is 
dropped if it is not successfully transmitted after three at- 
tempts. We also limit the number of credits and number of 
debits to four. 

Simulation results are presented in Tables l- 3. The per- 
formance of the various scheduling algorithms are compared 
using the following three performance measures for Source 
i, i = 1,2: 

l & : Average delay of successfully transmitted packets 

l Ii : Loss Probability, i.e., fraction of packets that are 
dropped after four transmission attempts 

. dy= : Maximum delay of successfully transmitted pack- 
ets 

l udi: The standard deviation of the delay 

Our main conclusions from the simulation results are: 

. The scheduling algorithms assuming perfect state in- 
formation, WRR.4, NoSwap-I, SwapW-I and SwapA- 
alnrays perform better than the Blind 1JRR algorithm. 
This means that our basic idea of credits significantly 
improves performance if we have perfect knowledge 
about the state of each channel. Note that me have 
assumed that the sources are loss sensitive, and thus 
our objective is to make the loss probabilities close to 
zero. 

Table 3: Example 1. Results for ps +pe = 1.0 
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l In all the cases where p, $ pe < 1, the one-step pre- 
diction algorithms WRR.-P, NoSwap-P, SwapW-P and 
SwapA-P perform significantly better than the Blind 
WRR. Thus, when consecutive time slots are posi- 
tively correlated, our simple one-step prediction works 
remarkably well. In general, prior studies of wire- 
less channel errors have indicated that errors occur in 
bursts although models for the error can vary. Thus, 
our algorithm works very well if the channel errors are 
indeed bursty. 

0 When pu + pe = 1, our prediction algorithms per- 
form poorly. In fact they perform worse than Blind 
WRR. The fact that p, + pe = 1 implies that the 
channel states are Bernoulli random variables with the 
probability of being good chosen as PG. Thus, channel 
states at successive time slots are uncorrelated and it 
is not surprising that the one-step prediction performs 
poorly. However, this is a very unrealistic model of a 
wireless channel which contradicts all prior claims of 
bursty channel errors. We chose to perform this exper- 
iment to show when our algorithms can break down. 

l NoSwap, SwapW and SwapA perform better than WRR 
in the following sense: They all reduce the delay for 
Source 1 significantly while increasing the delay slightly 
for Source 2. This illustrates the advantage of compen- 
sating a source for time slots during which its chau- 
nel is in error. The difference between the algorithms 
NoSwap, SwapW and SwapA as compared to WRR is 
even more dramatic when one does not have perfect 
knowledge of the channel state. 

9 As is to be expected, swapping will perform better 
when the channel errors are bursty. The idea is that 
when a channel is in a sustained bursty state, it is ad- 
vantageous to let other channels transmit and get com- 
pensation later, Thus, the tables show that SwapA 
is the preferred algorithm especially when the chan- 
nel state is strongly positively correlated. However, 
Source 2’s delay is slightly higher with swapping as 
compared to the case when there is no swapping. HON- 

cvcr this can be adjusted by changing the debit param- 
eter as illustrated in a later example with five sources. 

Example 2: We consider an example with the same pa- 
rameters as in Example 1 , except that instead of setting an 
upper limit on the number of retransmission attempts per 
packet, we set an upper limit on the maximum delay of a 
packet to be 100. If a packet is in the system for more than 
100 time slots, then it is dropped; this could possibly hap- 
pen even before it reaches the head-of-the-queue. Thus, we 
now assume that the sources are also delay-sensitive. We let 
Pu +Pe = 0.1 and the results are shown in Table 4. From 
the results, it should be clear that this example complements 
Example 1 by leading to the same conclusions regarding the 
relative performances of the various algorithms when the 
sources arc both delay and loss sensitive. 
Example 3 We consider a three-source example with the 
channel and source parameters as in Table 5. Source l’s ar- 
rivals occur according to an MMPP process with the modu- 
lating Markov chain as in Example 1, Source 2’s arrivals are 
Poisson and Source 3’s arrivals have a constant inter-arrival 
time. The arrival rate for Source i is denoted by Xi. The 
maximum number of credits, debits and retransmissions are 
chosen as in Example 1. 

The delay and loss performance of Blind WRR, WRR-P 
and SwapA-P are shown in Table 6. Again this exam- 

Table 4: Results for Example 2 

Source Xi 1 
1 0.2 \ 0% 0:;3 
2 0.25 1 0.095 0.005 
3 0.25 1 0.09 0.01 

Table 5: Example 3. Source and Channel Parameters 

ple illustrates that SwapA-P trades off the performance of a 
severely errored channel (in this case Channel 1) against the 
less error-prone channels in a better fashion than WRR-P. 
For instance compare to WRR-P, dr is decreased by 26% 
while the delay for dz increase 6% and the de increases by 
15%. The increases in the delays of Sources 2 and 3 can be 
further controlled by suitable choice of upper limits on cred- 
its and debits as will be shown in a later example. The main 
conclusion from the examples so far is that SwapA-P alloys 
greater flexibility in hiding errors from a source. However, 
when the number of sources is larger, the differences between 
WRR and SwapA depend on how heavily loaded the system 
is as shown in the following examples. 
Example 4: We consider an example with five sources. The 
channels for all five sources are assumed to evolve accord- 
ing to independent d&ret&me two-state Markov chains. 
Sources 2 and 4 are assumed to generate arrivals according 
to independent Poisson processes, and Sources 1, 3 and 5 
are MMPP sources with the underlying Markov chain hav- 
ing the same parameters as that of the MMPP source in 
Example 1. The arrival rate of source a’ is denoted by Xi 
and the parameters of the sources and channels are given 
in Table 7. The WFQ weights T;, i = 1,2,3,4,5, are all 
assumed to be 1, the maximum number of retransmissions 
for Sources 1,2,3 and 5 is set to 2, and is set equal to zero 
for Source 4. Note that the arrival rates for Sources 2 and 
4 are so high that their delays would be unbounded. In 
other words, Sources 2 and 4 have packets to send almost 
all the time, and the only measure of performance that is 
relevant to these sources is the throughput, or equivalently, 
packet loss probability. The maximum number of debits and 
credits for all sources is set equal to 4. The performance re- 
sults are presented in Table 8. In order of avoid excessive 
use of space, we only present average delay and loss prob- 
ability in the table. The main conclusion from Table 8 is 
that SwapW-P is clearly superior to the other algorithms 
that use one-step prediction. Both Examples 1 and 4 show 
that there is not a significant advantage to swapping slots 
within a frame, but swapping slots across multiple frames, 
and using credits and debits is clearly superior to WRR.. 

dl 11 dz 12 ds 1 1s 
Blind WFlFL 41.6 0.134 1.1 0.021 10.9 I 0.038 

WRR-P 59.2 0 1.7 0 8.0 1 0 
SwapA-P 44.0 0 1.8 0 9.2 1 0 

Table 6: Example 3. Average Delay and Loss Performance 
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Table 7: Example 4. Source and Channel Parameters 

Table 8: Example 4. Delay and Loss Performance 

Example 5: We now present a situation where WM.-P 
performs as well as SwapA-P. Consider the same parameters 
as in Example 4, except that the arrival rates for Sources 2 
and 4 are now assumed to be equal to 0.07. This system is 
stable since 

6 

Cl Xi PGt C 1, 

and 

i=l 

Ai < PO; 9 Vi 

Average delay and loss probabilities are shown in Table 9. 
The performance of WRR-P and SNapA-P are virtually 
identical. The reasons for this are two-fold: 

l Since the number of sources is 5, the frame size for 
WRB is 5 and thus the chance of the same channel 
being in error in multiple frames is small. Thus, credits 
are not accumulated very often in SwapA-P. 

l WRR-P naturally allocates “credits” because of the 
stability of the system. In other NOrd.5, if a source is 
skipped over during a frame due to error in its chan- 
nel, it will automatically be compensated later because 
other sources will eventually “run out” of packets due 
to the system stability condition. 

However, as the following example shows, it would be erro- 
neous to conclude from the previous example that WRR and 
SwapA are virtually identical when the number of sources 
is large and the stability condition is satisfied. 
Example 6: Consider a five source example with the chan- 
nel and source parameters given in Table 10. Note that 
Sources 1 through 4 are identical and Source 5’s channel has 
a higher steady-state error probability than the rest. We 
limit the maximum delay to 200, and the number of credits 
and debits to 4 each. The average delay and loss proba- 
bilities for Source 1 (recall that Sources 1 through 4 are 
identical) and Source 6 are shown in Table 11 as a function 
of the maximum number of debits D for Sources 1-4, and the 
maximum number of credits c for Source 5. Swap&P per- 
forms much better than WRR-P in the sense that Source 5’s 
performance can be traded off more effectively against the 

(a 
wrtTc.P 1 4,: 1 0 1.3 0” 7.3 0 

ds 1s 
6.7 0.03 19.7 0 

YwnpkP 1 4.6 1 0 1.6 0 7.3 0 6.0 0.03 19.1 0 

Table 9: Example 5. Delay and Loss Performance 

Table 10: Example 6. Source and Channel Parameters 

Table 11: Example 6. Delay and loss performance 

performance of the other sources. Further, it alloys one to 
control thii trade-off by using upper bounds on credits and 
debits. For example, Sources 1-4 could be ION priority video 
sources which are loss tolerant. Thus, Source 5’s quality 
has been dramatically improved by Swap&P without sig- 
nificantly degrading the performance of Sources 1 through 4 
as compared with WRR-P. The reason for this is as follows: 

l Under WRR-P, even though the system is stable, it 
takes a long tie for Source 5 to be compensated for 
errors in its channel since the other sources load the 
system rather heavily. 

l In contrast, SwapA-P “hides” short error bursts from 
Source 5 by providing compensation over shorter time- 
scales by using credits. It further avoid penalizing the 
less error-prone sources (Sources 1 thorough 4) by up- 
per bounding the number of credits and debits. 

9 Related Work 

Fair packet scheduling algorithms have been the subject of 
intensive study in networking literature, particularly since 
the weighted fair queueing (WFQ) algorithm ~a.s proposed 
in [5]. The properties of WFQ were analyzed in [5,12]. Sev- 
eral modifications to WFQ have been proposed to address 
its computational complexity or improve the performance of 
WFQ, two notable ones being the self-clocked fair queueing 
(SCFQ) [7] algorithm and WF2Q(1]. Recent modifications 
to accommodate time-varying server capacity include STFQ 
[S]. While most of the above algorithms can handle time- 
varying server capacity with minor or no modifications, none 
of them handle the case when the variation in the capacity is 
location-dependent. In particular, we are not aware of any 
scheduling approach that reasons carefully about what to do 
when the shared channel is available to only a subset of the 
backlogged flops at any time. In addition to the fair queue- 
ing paradigm, there are several other paradigms for fair al- 
location of a shared channel (surveyed comprehensively in 
[14]). One such approach, which proposes to achieve long- 
term fairness at the expense of penalizing flonrs that use oth- 
erwise idle capacity, is Virtual Clock [13]. Section 3 points 
out the fundamental differences in the compensation model 
for IWFQ and Virtual Clock. 

While wireline fair scheduling has been extensively re- 
searched, wireless fair scheduling is relatively unchartered 
territory. Typically, most related -ivork on fairness in wire- 
less channels approach it from a network-centric view (e.g. 
probability of channel access is inversely proportional to the 
contention perceived at the location of the host [3]), or pro- 
vide fairly simplistic definitions of fairness [6]. In particular, 
most of the work in this area has been performed from the 
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perspective of wireless medium access, where the empha- 
sis has been on the mechanisms of channel access once the 
scheduling algorithm has been worked out [6, 9,101, rather 
than the other way around. 

In recent related work, some solutions to providing per- 
formance guarantees in the presence of the channel con- 
tention and dynamic reservation problems have been ex- 
plorcd [4, 10). The underlying idea is to combine the best 
features of some contention-based schemes like CSMA and 
contention-free schemes like TDMA. Performance analysis 
in terms of throughput and delay has been obtained [4, lo]. 
However, there are three major limitations of this approach. 
Firstly, channel errors and packet loss during transmission 
are ignored; second, the issue of location-dependent channel 
capacity is addressed only partially (as a function of con- 
tention); lastly, the scheduling issues in the higher level are 
typically unaddressed. As we argue in Section 1, they have 
to be studied together for an effective solution in the wireless 
domain. 

Finally, a recent work on channel state dependent packet 
(CSDP) scheduling does address the issues of wireless medium 
access with a view to handling not only contention but also 
location-dependent error bursts [2]. However, it does not 
address the issues of fairness, throughput and delay guaran- 
tees, 

10 Conclusions 

Emerging indoor and outdoor packet cellular networks will 
seek to support communication-intensive applications which 
require sustained quality of service over scarce, dynamic and 
shared wireless channels. One of the critical requirements 
for providing such support is fair scheduling over wireless 
channels. Fair scheduling of delay and rate-sensitive packet 
flows over a wireless channel is not addressed effectively by 
most contemporary wireline fair scheduling algorithms be- 
cause of two unique characteristics of wireless media: (a) 
bursty channel errors, and (b) location-dependent channel 
capacity and errors. Besides, in packet cellular networks, the 
base station typically performs the task of packet schedul- 
ing for both downlink and uplink flows in a cell; however a 
base station has only a limited knowledge of the arrival pro- 
cesses of uplink flows. In thii work, we first propose a new 
model for fairness in wireless scheduling. This model adapts 
fluid fair queueing to wireless channels. We then describe an 
idealized wireless packetized fair queueing algorithm which 
approximates the wireless fluid fairness model under the as- 
sumption that the channel error is fully predictable at any 
time, For our idealized algorithm, we derive throughput 
and delay bounds for both error-free and error-prone chan- 
nels. Finally, we describe a practical wireless scheduling 
algorithm which closely emulates the idealized algorithm, 
addresses several implementation-related wireless medium 
access issues, and uses simple one-step channel prediction. 
We observe that though the worst-case performance of the 
scheduling algorithm is much worse than the idealized algo- 
rithm, the average-case performance is remarkably close. 
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