Fair Scheduling in Wireless Packet Networks

Songwu Lu

Vaduvur Bharghavan

Rayadurgam Srikant

Coordinated Sciences Laboratory
University of Illinois at Urbana-Champaign
slu@crhc.uiuc.edu; bharghav@crhc.uiuc.edu; rsrikant@uiuc.edu

Abstract

Fair scheduling of delay and rate-sensitive packet flows over
a wireless channel is not addressed effectively by most con-
temporary wireline fair scheduling algorithms because of two
unique characteristics of wireless media: (a) bursty channel
errors, and (b) location-dependent channel capacity and er-
rors, Besides, in packet cellular networks, the base station
typically performs the task of packet scheduling for both
downlink and uplink flows in a cell; however a base station
has only a limited knowledge of the arrival processes of up-
link flows.

In this paper, we propose a new model for wireless fair
scheduling based on an adaptation of fluid fair queueing to
handle location-dependent error bursts. We describe an
ideal wircless fair scheduling algorithm which provides a
packetized implementation of the fluid model while assum-
ing full knowledge of the current channel conditions. For this
algorithm, we derive the worst-case throughput and delay
bounds, Finally, we describe a practical wireless scheduling
algorithm which approximates the ideal algorithm. Through
simulations, we show that the algorithm achieves the desir-
able properties identified in the wireless fluid fair queueing
model,

1 Introduction

Future indoor and outdoor packet cellular environments will
seck to support communication-intensive applications such
as multimedia teleconferencing, WWW browsing, etc. Sup-
porting such applications requires the network to provide
sustained quality of service to packet flows over scarce and
shared wireless networking resources. In wireline networks,
quality of service requirements are typically satisfied by a
combination of resource reservation (at the flow level) and
fair resource allocation/packet scheduling (at the packet level).
However, in packet cellular environments, user mobility and
wireless channel error make it very difficult to perform either
resource reservation or fair packet scheduling. While there
have been some recent efforts to provide resource reservation
for mobile flows in packet cellular networks, the problem
of fair packet scheduling in wireless networks has remained
largely unaddressed. In fact, even the notion of fairness in
shared channel wireless networks has not been precisely de-
fined, In this work, we first propose a precisely quantifiable
definition of fairness and then describe algorithms for packet
scheduling in wireless networks to achieve such fairness.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
coples are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ’97 Cannes, France

© 1997 ACM 0-89791-805-X/97/0009...$3.50

63

In wireline networks, a popular madel for packet schedul-
ing over a link is the fluid fair queueing model [5, 11}. In
this model, packet flows are modeled as fluid flows through
a channel of capacity C, and every flow f is assigned a
weight r¢; over any infinitesimally small window of time
At, a backlogged flow f is allocated a channel capacity of
C.At.(rs/ EieB(t) i), where B(t) is the set of flows that

are backlogged at time t. There are several packet-level al-
gorithmic implementations of this model, such as WFQ [5],
WEF?Q [1], SCFQ [7], STFQ [8), etc. Essentially, the goal
of each of these algorithms is to serve packets in an order
that approximates fluid fair queueing as closely as possible.
At first glance, it would seem that the fluid fair queueing
model is applicable to scheduling over a wireless channel,
and any of the above algorithms will work just as well for
wireless channels. However, there are two key characteris-
tics of shared wireless channels which render the fluid fair
queueing model inapplicable: (a) bursty channel errors, and
(b) location-dependent channel capacity and ervors. Since
wireless transmissions are locally broadcast, contention and
effective channel capacity are location-dependent. Besides,
due to interference, fades and multipath effects, channel er-
rors are also location-dependent. This implies that at any
time, only a subset of flows can be scheduled on the chan-
nel. All the algorithms cited above for wireline scheduling
assume that the channel is error-free, or at least that either
all flows can be scheduled or none of them can be scheduled.
In fact, the fluid fair queueing model itself does not address
the issue of fairness when a subset of backlogged flows are
unable to transmit due to channel errors. This points to
a clear need to develop a new fairness model for wireless
channels.

Another unique concern in packet cellular networks is the
following: within a cell, every host is only guaranteed to be
within the range of the base station, and all transmissions
are either uplink or downlink. Thus, the base station is
the only logical choice for the scheduling entity in a cell.
However, the base station has only limited knowledge about
the arrival of packets in uplink flows. In particular, the
base station may know if an uplink flow has any outstanding
packets, but it does not know when packets arrive, or how
many packets there are in the queue at any instant. Thus we
cannot assume convenient tagging mechanisms at the source
when packets arrive, as in most fair queueing algorithms.
Besides, due to the shared nature of the wireless medium,
we must take into account hidden/exposed stations [3]. This
points to a close coordination of the scheduling algorithm
with the medium access protocol for wireless channels.

In this paper, we seek to address the issues unique to
wireless fair queueing, while drawing extensively from the
basic fluid fair queueing model for wireline networks. The
key contributions of this paper are the following: (a) a fair-
ness model] for wireless fair queueing, (b) the design of an
ideal wireless fair queueing algorithm with analytically prov-

able delay and throughput bounds, and (c) the design of
a wireless scheduling algorithm which closely approximates
the characteristics of the ideal algorithm, while addressing
several practical issues in wireless medium access.

The rest of the paper is otganized as follows. Section 2
ULSCI’)DCS tne VJII'BICSS DLE‘VOI'K moael DeCElO!l 0 proposes a
model for wireless fluid fair queueing. Section 4 describes
a wireless scheduling algorithm which realizes the fairness
model for an idealized scenario, while Section 5 derives its
analytical throughput and delay bounds. Section 6 discusses
some implementation issues, while Section 7 describes the
practical wireless packet scheduling algorithm. Section 8
provides a simulation based performance evaluation of this
algorithm, Section 9 compares our work with related work,
and Section 10 concludes the paper.

Z Modeli

For the purposes of this paper, we consider a packet cellu-
lar network with a high-speed wired backbone and small,
partially overlapping, shared channel wireless cells. Each
cell is served by a base station, which performs the schedul-
ing of packet transmissions for the cell. Neighboring cells
are assumed to transmit on different logical channels. All
transmissions are either uplink (from a mobile host to a base
station) or downlink (from a base station to a mobile host).
Every mobile host in a cell can communicate with the base
station, though it is not required for any two mobile hosts to
be within range of each other. Each flow of packets is iden-

tified by a <hest, uplink/downlink flag, id> triple. We say

that a flow ‘perceives a channel error’ (i.e. sees a ‘bad’ chan-
nel state) if either the source or the destination of the flow
experiences an error burst in its locality. Error patterns are
assumed to vary depending on location; we do not make any
explicit assumption about the error model, though our sim-
ulations typically use a two-state Markov chain model. By
varying the transition ptobabilities, we generate a range of
error patterns in the wireless channels, ranging from highly
bursty to Bernoulli distributed errors.

N ARSL -1 r-
2 VVI"-I!‘-'bb l'lul

uueuelng

As described in Section 1, the Fluid Fair Queueing model [5]
treats each packet flow as a fluid flow. Each flow ¢ is given
a weight 7;, and for any time interval [t1,¢] during which
there is no change in the set of backlogged flows B(t1, t2), the
channel capacity granted to each flow i, Wi(t1,12), satisfies

the following property: Wilty, t2) Wilts, t2)
ill1, 12 AN

Vi, i € B(t,tz - — =0 1)
yJ {1, }:| oy Py | (1)

or queneing is applicable for both
channels thh constant capacity and channels with time
varying capacity. However, it does not address the issue
of location-dependent channel error, as shown below:
Consider three backlogged flows with r; = r2 = r3 =
1/3. Flow 1 and flow 2 have error free channels while flow 3
perceives a channel error during the time interval [0,1}. By

applying equation (1) over the time periods [0,1] and [1,2],

wea arrive at the fn"c“nng channal nnr\an'l-y allocation:
I

Wi[0,1] = Wa(0,1] = 1/2, Wi(1, 2] = Wa{1,2]
Now, over the time window [0,2], the allocation is

W10, 2] = W2(0, 2] = 5/6, Wa[0,2] = 1/3.
which does not satisfy the fairness property of equation (1).
This simple example illustrates the difficulty in defining fair-
ness in a wireless network, even in an idealized model. In

=Wal1,2] = 1/3,

(@3}
B~

general, server allocations designed to be fair over one time
interval may be inconsistent with fairness over a different
time interval.

In the fluid fair queneing model, when a flow has noth-
ing to transmit during a time window [t,f 4+ A), it is not
allowed reclaim the channel capacity that would have been
allocated to it during [¢,¢ + A] if it were backlogged at &.
However, in a wireless channel, it may happen that the flow
is backlogged, but unable to transmit due to channel error.
In such circumstances, should the flow be compensated at a

later #-mn? In ntlvu:n- words sl‘ould channe! error a.ud empty

queues be treated the same or differently? In particular,
consider the scenario when flows f, and f» are both back-
logged, but f; perceives a chapnel error while f; perceives
a good channel. In this case, f2 will additionally receive the
share of the channel which would have been granted to f;
in the error-free case. The question is whether the fairness
model should readjust the service granted to f) and f2 ina
future time window in order to compensate fi. The tradi-
tional fluid fair queueing model does not need to address this
issue since in a wireline model, either all flows are permitted
to transmit or none of them is.

In the Virtual Clock model [13], when a flow has noth-

. N . .
ing to transmit durine a time window. it can reclaim its
ing ¢ transmit urnng a time wincow, iU can rec.amm its

missed share of the channel capacity at a later time. Ar-
guments have been made against allowing for such compen-
sation, inciuding the fact that were the packet flows really
fluids flowing through a common pipe, such compensation
would not be allowed. However, we argue that the case of
empty queues and the case of channel error should be treated
differently. From a user-centric perspective, we would like
the well-behaved flows to remain oblivious of short error
bursts, and react only to prolonged error bursts. In partic-
ular, we would like to make use of the fact that some chan-
nels may be error free when other channels experience error,
and implicitly swap the channel allocation over short time
windows in order to accommodate short error bursts. How-
ever, we would still like to provide separation between flows
by bounding the amount of compensation that can be pro-
vided to a flow due to its channel error. Essentially, we seek
to make a trade-off between the full compensation model
and the full separation model in order to provide bounded
compensation. Note that our compensation model is fun-
damentally different from the Virtual Clock approach, since

we oanlvy comnencate if the flaw hao nanl.rn}c +0 francemit hut
we oniy cempensate i the oW nas G Ir ous

is unable to do so because of channel error. In particular, we
do not penalize a flow for using the entire channel capacity
if no other flow had anything to send.

Given the arrival processes for each of the flows and the
error patterns perceived by each of the flows, we define an
error-free service as the fluid fair queueing service for the
flows with identical arrival processes and comp]etely error-
free chaannels. We define a flow to be |Gggiﬂg at any time
instant if its queue length is greater than the queue length
of its error-free service at the same time instant. We define
a flow to be leading at any time instant if its queue length
is less than the queue length of its error-free service at the
same time instant. The key fecture of our wireless fluid
fairness model is to allow laggmy flows to make up their lag
by causing leading flows to give up their lead. By artificially
bounding the amount of the lag and lead, we can trade-off
between long-term fairness and separation between flows.
‘We now define the bounds on lag and lead for each flow.

Avnesdesr

1. The aggregate lag of all flows which will be compen-
sated is bounded by a constant B bits. A lagging flow
i with weight r; is allowed to compensate a maximum

of by = B+ 2—"—” bits, where F is the set of all flows.
jer

2. A leading flow is allowed to lead by a maximum of
l; bits, Specifically, even when a flow is ahead of its
error-free service by more than I; bits, it only gives up
a channel capacity worth {; bits to other contending
flows.

We now define the wireless fair queueing model. The granu-
larity of transmission of a flow is a bit. Each bit has a service
tag, which is the virtual time of its error-free service. The
service tag of a backlogged flow is the service tag of the first
bit in its queue; the service tag of a non-backlogged flow is
co. The virtual time at any instant is the virtual time of the
error-free service at the same instant. Based on the above
definitions, the wireless fluid fair queueing server works as
follows:

1. The next bit to be transmitted is chosen from the head
of the queue of the flow with the minimum service
tag among the backlogged flows which perceive a good
channel,

¥

Each lagging flow 7 is allowed to retain (at most) the
carliest b; bits with a service tag less than the current
virtual time.

3. If a flow 7 leads its error-free service by more than [;
bits, its service tag is adjusted to reflect a lead of I;
bits,

There are three important points to note regarding the wire-
less fluid fair queueing model: (2) the flow which has lagged
the longest has the lowest service tag, and hence has highest
precedence to access the channel, (b) a flow which always
perceives an error-free channel may still lag its error-free
gervice by up to B bits because it has to defer for lagging
flows with lower service tags, and (c) a flow which leads by
more than [; bits does not have to ‘pay’ for more than [;
bits; likewise, a flow which lags by more than b; bits cannot
reclaim more than b; bits.

4 The ldealized Wireless Fair Queueing Algorithm

In this section, we describe an idealized wireless fair queue-
ing (IWFQ) algorithm that realizes the wireless fluid fair
queueing model, This algorithm is idealized because it makes
two key assumptions: (a) each flow knows whether it can
transmit correctly in the current slot (i.e. transmitted pack-
ets are never lost in transit), and (b) packets can be tagged
as soon as they arrive., For simplicity, we assume that all
packets are of the same size Lp, and that each packet is
transmitted in one slot.

4,1 Algorithm Description
The overview of the algorithm is the following:

1, We simulate the error-free fluid service for the flows.
At any instant, the virtual time for the idealized wire-
less fair queueing algorithm is the virtual time of the
crror-free service at the same instant.

2. Bach arriving packet is tagged as in the Weighted Fair
Queucing algorithm: a packet with sequence number
n of flow 7 arriving at time A(%;,») is assigned two tags:
a start tag sy,, and a finish tag fi n, defined as follows:

Sin = maz{v(A(ti.ﬂ))) fi.n—l} (2)

65

fi.n = Si;n + LP/Ti (3)
v(A(t)) is derived from the error-free service as follows:

do(®)/dt=C[Y m,

i€B(t)

where C is the channel capacity in bits/sec and B(t)
is the set of backlogged flows at time ¢ in the error-free
service.

3. The actions in the scheduling loop are the following:

(a) readjust tags for each flow.

(b) for each flow, set its service tag equal to the finish
tag of the head of line packet of the flow. If there
is no packet in the queue, set the service tag to
co.

(c) among the flows which can transmit (i.e. channel
is good), pick the flow with least service tag and
transmit its head of line packet. This algorithm
adapts the selection process of WFQ. By restrict-
ing the packets eligible for selection to only those
which would have started their error-free service
in the fluid model, we could adapt the selection
process of WF2Q.

4. Readjusting tags for a flow involves the following:

(a) for each lagging flow ¢, if the number of pack-
ets with finish tags less than the virtual time is

greater than B; EL.T:‘—I:, then retain only
.EF k 2

the first (lowest taggetli) B; packets in the queue
and delete the remaining packets’.

(b) for each leading flow 4, if the start tag of the head
of line packet (s;not) is greater than the virtual
time (v(#)) by more than I;/r;, then

sihot =v(E)+lifri, finot = Sipa+Lpfri (4)

The service that a flow receives in the IWFQ algorithm is
never behind the service that it would receive in the wire-
less fluid fair queueing model by more than Lp (for the same
reason that the service in WFQ is never behind the service
in FFQ by more than Lp [5]). For error-free service, IWFQ
and WFQ are identical. When some flows perceive short
error-bursts (i.e. neither lags nor leads exceed their bounds),
IWFQ performs local adjustments in channel allocation in
order to compensate the flows for their channel errors. The
goal of IWFQ is thus to approximate WFQ while still ac-
commodating short-term errors. However, IWFQ and WFQ
differ in several ways.

A flow which is denied service because of channel error
is guaranteed to eventually receive service after its channel
becomes good since its service tag does not change. Thus,
backlogged flows receive precedence in channel allocation
when their channels become error-free.

The separation property of WFQ (which guarantees that
the worst case delay for the head-of-line packet of a flow ¢,
d%¥q < Lp/C + (Lp. Y ;e pri)/(r:-C), is independent of
the behavior of other flows) is only valid for IWFQ with the
following bounds: dfifFo < diw¥Fo + B/C.

Finally, a critical difference between IWFQ and WFQ
lies in the way that packets are discarded in each algorithm.
In WFQ, packets are discarded if the flow gets backlogged

1Note, that an error-free weighted fair queueing service will lag by
at most one packet.

by more than its maximum buffer size. In addition to the
above, packets may be discarded in IWFQ if a flow lags by
more than B; packets, We provide a mechanism to separate
the following two questions: ‘how many packets should be
discarded’, and ‘which packets should be discarded’. This
mechanism is also useful for handling lost/corrupted packets
when we remove the idealized assumption that the channel
can always be predicted accurately.

4.2 Slot Queues and Packet Queues

Since a flow 7 is allowed to lag by at most B; packets, during
prolonged error bursts, it may be forced to discard packets
from its queue. If the flow discards packets from the head
of the queue, its service tag increases; thus we can no longer
preserve the guarantee that a lagging flow eventually has
the lowest service tag (and hence has highest precedence to
access the channel). On the other hand, for delay-sensitive
but loss-tolerent flows, retaining packets which have already
waited in the queue for a long time is meaningless. Es-
sentially, lagging flows should have the ability to discard any
packets from a backlogged queue without losing precedence in
channel access. This points to the need to decouple service
tags from the packet queues.

In order to achieve such a decoupling, we maintain two
queucs for each flow: a slot queue® and a packet queue. When
a new packet arrives, the following actions are taken: (a) the
packet joins the packet queue, (b) a new slot is created and
assigned the start tag and finish tag corresponding to the
packet, (c) the slot joins the slot queue. At any time, the
maximum number of lagging slots is bounded by B; for a
flow i, and slots with the lowest finish tags are retained in
order to preserve the precedence of channel access for the
lagging flow. The service tag for a flow is the finish tag of
the head of line slot in its slot queue.

A separate mechanism deletes packets from the packet
queue depending on the requirements of the flow. For ex-
ample, a packet may be deleted after a fixed number of re-
transmissions or after a delay bound has expired. When a
slot is selected for transmission, the head of line packet in
the packet queue is transmitted ~ thus the mapping between
slots and packets is dynamic. By decoupling slot queues
from packet queues, we can handle multiple types of delay
and loss requirements for flows while still maintaining the
precedence in channel access for lagging flows.

5 Throughput and delay guarantees for the IWFQ

The following facts should be obvious from the IWFQ algo-
rithm described in Section 4:

Fact 1 At any time t, the number of lagging bits of flow <,
denoted by bi(t), satisfies) ;. pbi(t) £ 30.p Bilp = B,
where Lp i3 the packet length in bits.

Fact 2 For any lagging slot s of flow i at time t, its finish
tag is no greoter than that of eny non-lagging slot, i.e. it is
served with higher priority.

The following results regarding error-free fluid fair queueing
(FFQ) and error-free WFQ® have been proved in [12], and
are included here for quick reference.

2In this section, slots refer to logical slots rather than physical
time slots,

3%rror-free FFQ and error-free WFQ refer to FFQ and WFQ, re-
spectively, when all the channels are error free.

66

Lemma 1 [12] Let Si(t,t) and Si(r,t) be the amount of
flow i iraffic (in bits, not packets) served under the fluid
Jair queueing and the error-free WFQ in the interval [r,1],
for all times T and flows i:

5:(0,7) - S;(0,7) < Lp, S7(0,7+ %"L) > 5(0,7) ()

For all packets p, let F, and F, be the time at which packet
p departs under the fluid foir queueing and the WFQ,

F; ~ F, < Lp/C, ®)
where C is the channel capacity (in bils per second) and Lp
is the packet length in bits, a

The delay and throughput results in this section are given
separately for two types of channels: (a) Error-free Channel:
an error-free channel is one which is always in the good state
at all time slots, and (b) Error-prone Channel: an error-
proue channel is one which is not always in the good state.

5.1 Error-Free Channels
Based on Facts 1 and 2, we can show the following result:

Lemma 2 Any slot s on a error-free channel g* completes
its service in IWFQ by time tey + dg, with
Q)

Jg = B/C-

where t.5 is the finish time of slot s in the ervor-free WFQ
algorithm, F denotes the set of all flows, Lp is the packet
length (in bits) and C is the channel capacity (in bils per
second).

Proof. Let us consider an arbitrary time £, at which slot
s is the head-of-line slot for flow g.

If slot s has received service in IWFQ before or at .y,
i.e. flow g is leading at this time, then the result is trivially
true. In the following, we only consider the case that slot s
receives its service later than fey in the TWFQ.

Denote the current virtual time as v(¢) (i.e. the bit round
in progress as defined in equation 4. At virtual time v(z),
in the error-free WFQ, let the slot sequence waiting to be
served be m,m+1,...,s —1,s,s +1,...,k where slot se-
quence 0,1,...,m — 1 has been transmitted by the time ¢
in the error-free WFQ. We also denote the finish tag as-
sociated with a slot ¢ as T;. Let s belong to flow g. The
remaining waiting time (after t) in terms of time slots for s
under error-free WFQ is s — m.

Consider the scenario for the IWFQ algorithm at time
t. Let B(t) denote the set of the lagging slots (ordered by
their finish tags) by all flows at time ¢, i.e. when m becomes
eligible for service in the slot sequence. Note that the total
number of slots that have been transmitted in TWFQ, de-
noted by g, is no greater than m, i.e. ¢ < m, due to the
work-conserving nature of the server. Thus, the slot with
the lowest tag in IWFQ is either m or the slot with the
lowest finish tag in B(t).

By Fact 2, it follows that any slot in B(%) has no greater
finish tag than the sequence Tyn,Tim+41,.... Therefore, the
largest possible sequence of slots to be served at time ¢ ob-
serves the order B(t), mym +1,...,s —1,5,s +1,...,k.
Hence, the maximum pumber of slots (after current time
t) to be served before s in the IWFQ is |B(t)| + s = m,
where |B(¢}| is the cardinality of set B(t). Based on Fact
1, it follows that |B(t)] < B. for any time t. Hence, slot s

4In this case, the flow is also denoted as g with slight abuse of
notation.

on error-free channel g completes service in IWFQ no later
than time ¢,y + B/C as compared to error WFQ by noting
that the server rate is C. Therefore, the result follows for
slot 5, The arbitrary choice of starting time ¢ also implies
that the arbitrary choice of slot s; hence, the result holds
true for any slot s of flow g, which concludes the proof. O

Theorem 1 (delay guarantee) For any packet i on a error-
free channel g, its mazimum delay Dg, twrq in IWFQ sat-

isfies: @®

where Dy, wro is the mazimum packet delay of flow g in
the error-free WFQ, and dg is given by equation (7).

Proof, For lagging slots, the proof follows from Lemma
2. For a leading slot, by definition, its delay is less than
what it would have been under error-free WFQ. n|

Though the worst-case packet delay of a leading flow does
not increase, its packets can be well ahead of their schedule.
Thus its new queue delay® has a bounded increase, as shown
in Corollary 1,

Dy, iwrq £ Dg, wrq +dg

Theorem 2 (long-term throughput guarantee) For a error-
free channel g, let Sg(0,t) denote the aggregate service (in
bits) received by channel g in the interval [0,1] in the IWFQ,
and S;(0,t) denote the aggregate service (in bits) received by
channel g in the interval [0,1] in the ervor-free WFQ service,
then the following inequality holds:

9)

S5(0,¢ + dy) 2 5;(0,t)
where dy is given by equation (7).

Proof, Letty be the finish (real) time of the Nth packet
under error-free WFQ and £}y be the finish time of the same
packet under IWFQ, Then, by Lemma 2, tiy < tx +dy.
Also, let S;(0,t) > NLp, for some integer N. We use the
well-known relationship 57(0,£) > NLp < ty < ¢. From
above, tiy — d; < t, which leads to S4(0,¢ +dy) > NLp.
Hence, for any N > 0,

83(0,£) > NLp = S,(0,¢ +d,) > NLp.

which leads to the inequality (9). m}
Based on Lemmas 1 and 2, the following result is easily
derived for new queue delay.

Theorem 3 (new queue delay bound) For a flow g on error-
free channel, its mazimum new queue delay Droy is given

b _ - _
v Dyor =dg +dwrq + Ty, (10)
_ lﬂ(z_fei‘n) B Lp Lp Y cepTe
Th=—0, W=t gT,— @)

where dy is given by (7) and Fy = F\ g.

Proof. dwrq is the time spent in the head-of-the line
(HOL) if the HOL packet contends for service immediately.
T, is the maximum amount of time that one has to wait
before contending at the HOL due to the fact that flow g
might be leading even if the HOL packet arrived at an empty
queue. To derive the expression for Ty, note that flow g can
lead by I, bits or equivalently, [/ry bit rounds. Thus, the
number of other flows’ bits that can take precedence over a
newly arrived packet is % Yie F, 73+ Finally, d is the wait
due to lagging flows. u]

5New Queue Delay is the maximum delay for a packet that arrives
at an empty queue,

67

Theorem 4 (short-term throughput guaerantee) Given any
time t, for a error-free channel g, assume that the service
which flow g receives in error-free WFQ is given by S*(¢,11)
during time intervel [t, 1] for some ¢y > t+Ty(t). Then the
service that flow g receives under IWFQ satisfies

St t1) 2 S*(E+ To(t), 1),

- () 4 L) L
)= > b))+ . Sow =

jEFg JEF,

(12)
(13)

where b;(t) is the number of lagging bits of flow § and ly(t)
is the number of leading bits of flow g at time &.

Proof. At any time ¢, the amount of time that flow g
has to wait to begin service is determined by the number of
lagging bits of other flows as well as the amount by which it
is leading. The amount of time due to other lagging sources
i) e F, bi(t)/C, from the definition of b;(t). In addition,
flow g has to possibly wait for l4(t)/rs bit-by-bit rounds
a.nd‘ t(ltl)e maximum amount of time due to this is bounded
by —E,Q—ijepgr,-/a u|

Note that the above theorem is trivially valid when all
channels are error-free because in that case, b;(t) = [,(t) =
0. In addition, one cannot give short-term guarantees over
intervals smaller than Ty (¢t). This highlights our observation
in Sections 1 and 2 that trying to provide very short-term
guarantees in wireless channels will not allow enough flexi-
bility to hide short error-bursts from users.

One can trivially remove the dependence on ¢ in the lower
bound of the above theorem as follows.

Corollary 1 Assume that flow g is backlogged during [t,t1]
in the error-free WFQ, then the service it receives in the
IWFQ satisfies

(14)

Z‘jepg r,-) &Hifti—=t>T,. 0

S@t,t1) > S*(t+ Ty, t1)
where Ty = (ZjEF, b; + %

5.2 Error-prone channels

Theorem 5 (deloy bound for an error-prone channel) Given
any packet of flow e on an error-prone channel, its mazimum
packet delay Drwrq, « is given by

(15)

where Dwro, e is the mazimum packet delay of flow e under
error-free WFQ, and M is the mazimum number of lagging
slots of all flows other than flowe, M = ZJ'EFc bj/Lp, and
Te,(m+1) 18 the mazimum time it takes for flow e to have its
(M +1)* good slot starting from any time t.

Diwra, e £ Dwra, e + Te,a41)

Proof We assume the flow e is lagging. As in Lemma
2, if there are no further errors after time ¢ the delay of a
packet of e is increased by the lagging slots of other flows M.
However, we have to additionally account for possible errors
in the channels of flow e and other lagging flows. Suppose
the (M + 1)®* good state for flow e after time ¢, occurs at
t + T, (M+1), then we claim that the head-of-the-line packet
at time ¢ for flow e would be transmitted no later than ¢ 4
T, (r+1)- Suppose this were not true, then it would lead to
the following conclusion: during all the M <+ 1 good states,
one of the other flows had a slot with a lower finish tag. This
contradicts the upper bound of M on the number of lagged
slots.

Assume a packet arrives when a flow is leading. If the
packet finishes when the flow is still leading, then the state-
ment of the theorem is trivially true. If it finishes when
the flow is lagging, then there is a time instant before the
packet’s departure when it is in the queue and the flow starts
lagging, Then the above proof holds. u]

Note that the previous result does not take into account a
specific model for channel errors. Any channel error model
that deterministically or probabilistically bounds T,ar41,
could be easily incorporated into the bound.

Based on the above result on delay bound, the result on
throughput follows readily along the lines of Theorem 2.

Theorem 6 (long-term throughput guarantee) For a flow e
on an error-prone channel, let Se(() t) denote the aggregate
serviee (in bits) received by flow e in the interval [0,1] in the
IWFQ, and S;(0,t) denote the aggregate service (in bits)
received by channel e in the interval [0,t] in the error-free
WFQ service, then the following inequality holds:

Sc(oyt + Tz,M-H) 2 S; (0) t) (16)

Morcover, we can further show the following result for short-
term throughput:

Theorem 7 (short-term throughput guarantee) Given any
time t, for a continuously backlogged flow e on an error-
prone channel during time interval [¢,t1), the aggregate ser-
vice (in bits) received by flow e in the intervel [t,t1] in the
TWFQ, denoted by Se(t,t1), satisﬁes'

Se(t,t1) 2 (Ne — N(t))——Lp — Lp, 17
ztEF i
Nt) = (Z bt + () 2R >/_r,,,, (18)
iEFe

where Ng is the number of time slots in good state for flow
e in [t ta),, bi(t) is the number of lagging bits of flow i and
le(t) is the number of leading bits of flow e at time . o

The proof of the above theorem follows along the lines of
the proof of Theorem 3.

6 Implementation Issues in Wireless Packet Scheduling

In previous sections, we developed an idealized wireless fair
queueing algorithm in the presence of bursty and location-
dependent errors, assuming full knowledge of the channel.
However, when implementing a practical wireless fair schedul-
ing algorithm, we need to address the following important
constraints; (a) the channel state is not known in advance
and cannot be predicted with complete accuracy, (b) due to
error and incorrect channel prediction, transmitted packets
may be lost, (c) detection of reception errors is not just a
matter of sensing the carrier, since errors at the source do
not imply errors at the destination and vice-versa, (d) the
base station performs the scheduling, but does not have a
full knowledge of which uplink flows have packets to transmit
or how many packets a backlogged flow has, and (e) since
errors are typically bursty, giving precedence to packets of
lagging flows (as IWFQ does) will cause error-prone chan-
nels to be polled more often, which increases the scheduling
averhead. Due to our channel model, problems of hidden
and exposed stations across multiple shared channel cells
are not addressed.

Several of the above constraints either pertain to, or can
be effectively addressed at, the medium access layer. Hence,

68

one key conclusion for a practical implementation of wire-
less fair scheduling is that it must be closely coupled with
the MAC protocol. In this section, we first identify some
MAC-level instruments to address the above issues, and then
briefly describe our wireless medium access protocol. In the
next section, we describe our wireless fair scheduling algo-
rithm,

6.1 Techniques to address wireless channel issues

As before, we assume that packets are small and of fixed size;
these are very reasonable assumptions for wireless networks.
Time is slotted, and each data slot accomodates some con-
trol information, a data packet and an acknowledgement.

Acknowledgement: In our approach, each packet trans-
mission is followed by a short acknowledgement from the
destination to the source. Using acknowledgements serves
a number of purposes. The most important purpose is to
detect loss of packets during transit. As a side-effect, ac-
knowledgements also imply that the base station transmits
either the data packet or the ack packet in every transmis-
sion ~ we use this feature to piggyback important control
information for future slots on the base station’s transmis-
sion in the current slot. Acknowledgements have been used
in several medium access protocols (3, 10] for similar pur-
poses.

One-Step Prediction: Since errors are bursty and errors
in successive slots are highly correlated, we perform a one-
step channel prediction by monitoring the channel condition
in the previous slot. Since the base station transmits either
a data packet or an ack packet in every slot, each host in
the cell monitors the channel during each slot for packets
from the base station. If a host can sense activity on the
channel but does not receive a good packet from the base
station, it detects an error during the current slot. A host
predicts that its next slot will be in the same state as the
current slot, due to the high correlation of channel state
across slots. While the one-step prediction is obviously not
perfect, our simulation results show that it is very effective
for typical wireless channel error models.

One undesirable consequence of the one-step prediction
approach is that every host (with a backlogged uplink flow)
has to monitor every slot, which can increase its power con-
sumption. In the future, we plan to experiment with peri-
odic snooping of the channel and dynamically estimate the
optimal snooping period in order to alleviate the problem of
having the host be in promiscuous mode all the time.

Set of known backlogged flows: Since the base station
must schedule packets for both downlink and uplink flows, it
needs to know at least which uplink flows are backlogged at
any time. In order to allocate slots only to flows which have
packets to transmit, the base station keeps a set of ‘known
backlogged flows’ and only allocates slots among the flows
in this set. The set is updated by the following mechanisms:
(2) for downlink flows, the base station has a precise infor-
mation about the queue lengths, (b) when an uplink flow
is allocated a slot, it piggybacks the queue size information
on its data packet, (c) when a new uplink flow is created
or becomes backlogged, if there is an ongoing backlogged
flow from the same mobile host, the information is piggy-
backed in (b) above, and (d) the base station periodically
solicits notifications from new (and newly backlogged) up-
link flows by issuing of a control slot. One of the highlights

of our approach is the way in which control and data slots
are integrated in the MAC framework.

6.2 Wireless Medium Access Protocol

Our wireless medium access protocol has its origins in DQRUMA

[9]. We divide time into frames, and each frame into slots
(as described in Section 7, the frame size is not fixed, and
the number of slots in a frame changes over time). A slot
may be either a data slot or a control slot. Each data slot is
subdivided into three parts: a control sub-slot which consists
of four mini-slots, a data sub-slot and an ack sub-slot. Each
control slot is divided into a notification sub-slot and an ad-
vertisement sub-slot. By means of the scheduling algorithm
described in Section 7, the base station allocates the slots in
a frame among known backlogged flows before the start of
the frame, Due to lack of space, this section provides only a
brief outline of key actions of the MAC protocol which relate
to scheduling, i.e. the mechanics of slot allocation, and the
mechanics of identification of newly backlogged flows. For
a more detailed general discussion on MAC protocol issues,
we refer the reader to 3, 9].

ldentification of New and Backlogged Flows: The base
station has a special downlink ‘broadcast’ flow called the
control flow, which has a flow id of <0, downlink, 0>. From
the scheduling perspective, a control flow is ideatical to a
backlogged data flow of unit weight on an error-free chan-
nel, However, when the control flow is allocated a slot, the
MAQ layer at the base station issues a control slot as op-
posed to a data slot. The control slot consists of two phases:
a notification sub-slot during which mobile hosts contend in
order to notify the base station of new or newly backlogged
flows, and an advertisement sub-slot during which the base
station broadcasts the newly received notifications as an ac-
knowledgement to the successfully contending mobile hosts.
The notification sub-slot has a sequence of mini-slots.
If a mobile host has a newly backlogged flow but does not
have an ongoing backlogged flow on which to piggyback this
information, it selects a random mini-slot during which it
transmits the notification. During the advertisement sub-
slot, the mobile host knows if it’s notification was success-
fully received. This contention mechanism is novel in the
way control and data flows are integrated. However, it is
simplistic in that contending mobile hosts can only trans-
mit once in a control slot. Using Slotted Aloha to contend
in the control slot will improve the probability of success-
fully sending notifications. Note, that the above contention
mechanism impacts the delay and throughput bounds of new
flows in Section 5; the changes are easy to compute using
results from Slotted Aloha.

Data Slot Allocation: Since all flows are either uplink or
downlink, in each data slot the base station must transmit
either the data packet or the acknowledgement packet. Pig-
gybacked on the packet, the base station provides the ids
of the flows which are allocated the next three slots (as a
special case, a control slot is identified by setting all the
flow ids to <0, downlink, 0>). Since every host in the cell
is within range of the base station, a source of an identified
flow will be able to hear the packet if its channel is good.
In the control phase of the next slot, the source of flow %
(1 < ¢ £ 3) transmits a channel good flag in mini-slot # if
it predicts that the channel will be good (based on one-step
prediction), In the fourth mini-slot, the base station identi-
fies the flow which has been chosen for transmission during

69

the current slot, which is the first among the three flows to
send the good flag in its mini-slot. If it turns out that all
the identified flows are in error, then the base station picks
any one downlink flow for transmission.

‘When an uplink flow transmits a packet, it piggybacks
the number of packets in its quene. When this number
reaches zero, the base station removes the flow from its set
of known backlogged flows.

7 Wireless Scheduling Protocol

In this section, we describe a wireless packet scheduling
(WPS) algorithm that approximates the idealized algorithm
while addressing the issues of practical implementation.

‘Within the constraints identified in Section 6, the follow-
ing are the key requirements of the wireless packet schedul-
ing algorithm: (a) it should provide fair channel access among
flows which are known to be backlogged, (b) it should utilize
the location-dependent channel error property in order to lo-
cally swap slots (preferably within a frame) between flows in
order to accommodate short error bursts®, (c) across frames,
it should provide a system of maintaining credits for lagging
flows and debits for leading flows in case swapping within
a frame is not possible (as in IWFQ, both credits and deb-
its should be bounded in order to provide separation), (d)
since errors are known to be bursty in wireless channels,
it should spread the slots allocated to each flow as well as
possible within the frame, (e) since errors are bursty, flows
which perceive channel error should not be repeatedly polled
in subsequent slots (the tagging mechanism in IWFQ will
end up doing this since it gives higher precedence to flows
that have been lagging the longest), (f) well-behaved flows
with error-free channels should be affected as less as possible
while still accommodating flows which perceive errors, and
(g) the scheduling algorithm should be simple.

The major departure in WPS from IWFQ is that we have
moved from the fair queueing to the weighted round robin
paradigm. This was motivated by the fact though weighted
round robin is much simpler to implement, in our environ-
ment, weighted round robin and fair queueing will result in
identical error-free service for the following reasons: (a) the
base station allocates slots only among known backlogged
flows, (b) packets are of fixed size, (c) the base station can
only periodically know when an empty flow has been back-
logged (for the uplink case); in particular, if a backlogged
flow drains its queue during a frame, it drops out of con-
tention for slots until the next new queue phase even if it
becomes backlogged subsequently, and (d) when all flows
contending for the channel are backlogged, by spreading slot
allocation appropriately within each frame, we can exactly
replicate the WFQ or WF2Q service for error-free service.

Thus, WPS modifies the basic weighted round robin schedul-
ing algorithm in order to accommodate location-dependent
and bursty wireless channel errors. The following are the
key features of the WPS algorithm:

e Spreading: §enerates aslot allocation identical to WFQ
[11] or WF*Q when all flows are backlogged.

o Swapping within frame: when a flow cannot transmit
in its slot because of channel error, it tries to swaps its
slot with another backlogged flow which has (a) been
allocated a slot later in the same frame, and (b) per-
ceives a good channel at the current time; intra-frame

6In Section 6, we have used the term ‘slot’ to mean physical time
slots as well as the logical slots which compose a frame. In this sec-
tion, we only deal with logical slots when we refer to ‘slots’.

swapping is a first level mechanism to accommodate
location-dependent errors.

e Credit adjustment; when a flow fi cannot transmit
during its slot and cannot swap slots within a frame,
but there is at least one backlogged flow f, that can
transmit at the current time (f2 does not have any slots
during the remainder of the frame), fi’s credit is in-
cremented and f’s credit is decremented {both within
bounds); the effective weight of each flow at the start
of a frame is the aggregate of its default weight and
its credit, and the spreading algorithm generates a slot
allocation with respect to the effective weights of the
flows, Thus, credit adjustment compensates lagging
flows at the expense of leading flows in future frames.

o One-step prediction: predicts that the channel state for
the current time slot will be the same as the monitored
channel state during the previous time slot.

We show through intuitive arguments and simulation re-
sults that a combination of the above features will address
all of the above requirements for fair slot allocation in wire-
less channels, while also closely approximating IWFQ for
the average case.

schedule framo() /% main procedure to schedule packets in frame */
compute,_.aoffective_voights();
apraad nav_frame(); /* spread according to WFQ;
ignore flows with effective credit < 0 %/
narkor = first_slot_of _frame;
whilo(marker = NULL)
£ = got, noxt_flou();
nmarker~>marker~>naoxt;
if (£ != NULL) tronomit_head_of_line_packet(f);
/# tranomit the hol packet and increment f->attempts #/

compute_ affoctive.credits() /+ compute effective credits for all
flows at the start of a frame #/
for each flov £,
f~>crodit = min(mox(f->effective_weight - f->attempts,
=(f->dobit_linit)), f->credit_limit);
f£-yaffective_woight = f->uoight + f->credit;
f~>attonpts = 0;

got.next_slot() /# return flow that can transmit in current slot;
perforn swapping and credit/debit allocation */
vhilo(marker {= NULL)

if (quouc_empty(marker~>flow)) /% case i: flow has no queuec */
doleta_flow_slots_from_frame(marker->flow);
doleto, flov,.from_backlogged_set (marker->flow);
marker = marker->noxt;

oloo if (oxcoption_coso()) /* case 2: no flow can transmit */
(markor->flou)~>attonpts ++; /# no crecdit for nissed slot »/
marker = marker->noxt;
roturn NULL;

olsa if (slot.state(marker->flow) == ERROR)

/% case 3: channel is in error s/
for(s = marker-pnextis {= NULL;p = s~dnext)

if ((!(queue_ompty(s->flow)))&k(slot_state(s->flow)==CLEAN))

brook; /+ flouw pointed by o con swap with marker->flow %/
if (s = NULL)
swap,.flows{marker, c);
also
roturn find_next_good_flow(); /¥ case 3b: no swap; credit/
debit is implicit due to how f~dattempts is updated */
olso /# case 4: connaction has packet and slot is good »/
roturn marker->flow;
roturn JULL;

/* case 3a: intra frame swap */

The above pseudo code describes the essential parts of
the WPS algorithm. We now comment briefly on some note-
worthy points in the WPS algorithm.

A flow which is unable to transmit in its slot receives
credit only if some other flow is able to transmit in its

70

place. When a flow transmits more slots in a frame than
it is initially granted, its credit becomes negative. Hence,
even when we cannot swap within a frame, the system of
credit/debit adjustment implicitly preserves the notion of a
swapping, just as lag and lead implicitly preserves the notion
of swapping in TWFQ.

A flow f; with a negative credit of ¢; will not receive
any channel capacity for ||c;|]/r; frames (where the size of
a frame is) ;. p,y wi slots, and B(t) is the set of known
backlogged flows at the start of the frame, and w; is the
effective weight of flow f;).

The credit adjustment policy above compensates all the
credits of a lagging flow in the next frame. For a flow that
has accumulated a large number of credits, this could po-
tentially result in the flow capturing the channel for a long
time after its channel becomes good (IWFQ also has a sim-
ilar effect in case a flow has been lagging for a long time).
In order to compensate lagging flows over a longer period
of time, we could bound the number of credits that can be
reclaimed in a single frame by any flow, thus amortizing the
compensation over several frames.

In the average case, WPS closely approximates IWFQ
because is tries to achieve separation and compensation by
similar instruments (credit/debit similar to lag/lead, and
bounds as in IWFQ). However, there is a difference in worst-
case delay since we compensate by swapping rather than by
giving precedence in channel access to longest lagging flows.
By swapping, we delay the next attempt of the flow to access
the channel] to a later slot, not necessarily the next slot.
Thus, swapping loses the precedence history which IWFQ
maintains. While this is good for a practical implementation
(otherwise the base station will need to poll the most error-
prone channel most often), it can starve out a flow under
some pathological conditions. Consider an example in which
a flow always perceives an error in precisely the exact slots
when it is scheduled to transmit, but has some good slots
in between when other flows are scheduled to transmit, In
IWFQ, the flow will eventually have the minimum service
tag and gets highest precedence for transmission in any slot;
in WPS, the flow can contend only in designated slots and
will be starved. Thus, though we expect the average delay
of packets to be very close for WPS and IWFQ), the worst
case delay of WPS is co.

One important question is the following: when a back-
logged flow is unable to transmit because of channel error,
and is unable to swap slots within its current frame, how
does it choose a flow in a future frame with which it can
swap slots? Of course, if we generated slot allocations for
several future frames in advance, it would be possible to
simply pick the first flow in a future frame that can trans-
mit in the current slot. However, we do not maintain future
frames. Instead, we generate a weighted round robin ring
(with WF2Q spreading) based on the default weights for
all known backlogged flows after each new queue phase. A
marker in this ring identifies the last flow that was selected
for swapping across frames. When intra-frame swapping
fails, we simple advance the marker around the ring until
we find a flow that can swap with the current slot.

8 Simulation Results

This section presents the simulation results for the WPS
algorithm. As described in Section 7, there are four key
components of the algorithm: spreading, swapping, credit
adjustment, and prediction. In order to isolate the effect
of each of these components, we simulated several different

algorithms, with different combinations of the above com-
ponents,

The following are the algorithms we simulated and com-
pare in this section:

e Blind WRR spreads slots according to WF2Q, but does
not attempt to predict the channel state.

» WARR modifies Blind WRR by skipping the slot if the
channel for the flow is known (in WRR-I) or predicted
(in WRR-P) to be in error.

o NoSwap combines spreading and credits (but no deb-
its), but does not have any intra-frame swapping. If
the channel for the current flow is known (NoSwap-
I) or predicted (NoSwap-P) to be in error, it gives a
credit to the flow and skips to the next slot.

o SwapW combines spreading, swapping and credits (but
no debits). If the channel for the current flow is known
(SwapW-1) or predicted (SwapW-P) to be in error, it
first tries to swap within the frame. Otherwise, it gives
a credit to the flow and skips to the next slot.

o SwapA combines spreading, swapping, and credit/debit
adjustment. SwapA is identical to the WPS algorithm
described in Section 7.

We start by illustrating the key ideas using examples

with only two sources. This allows us to demonstrate the
effect of the various parameters clearly. Later we consider
examples with more sources to illustrate some differences in
the performance when there are small number of sources as
opposed to a large number of sources.
Example 1: We consider an example with two loss-sensitive
sources with WFQ weights 71 = 1,72 = 1. For the purposes
of simulation, we assume that the channel for Source 2 has
no errors and the channel for Source 1 evolves according to a
two-state discrete Markov Chain. Let p, be the probability
that the next time slot is good given that the current slot is
in error, and p. be the probability that the next time slot is
in error given that the current slot is good.

Then, the steady-state probabilities Pg and Pg of being
in the good and bad states, respectively, are given by

Pg
Pg =
Pg + Pe ’

E= Pe
Pg + Pe

The arrival processes are assumed to be as follows:

» Source 1 is a Markov-modulated Poisson process (MMPP)

where the modulated process is a continuous-time Mark
chain which is in one of two states ON or OFF. The
transition rate from ON to OFF is 9 and OFF to
ON is 1. When the Markov chain is in the ON state,
arrivals occur according to a Poisson process of rate 2.

o Source 2 has constant inter-arrival time of 2.

Note that the channel being Markov is not necessary for our
algorithm, it is just used for the purposes of simulation. For
the two-state Markov chain describing the channel process
for Source 1, if we let the bad state be 0 and the good
state be 1, it is easy to see that the one-step autocovariance
function is

CL=sBEX®XE+1) - BXE)EX(E+1))

= PgPgr(1 —~ (pg + pe))-

If p; + pe < 1, then C(1) > 0. Further C(1) is a decreasing
function of p, + p., and therefore, as pg + pe 1 1, successive
time slots become less correlated. Thus, it is a natural to

ov

71

dy [N d;mw oay | d2 12 d;m‘ Od,y
Blind WRR. | 19,5 | 0.15 127 19.4 0 0 0 0
WRR-I 43.6 0 266 41.3 0 0 0 0
NoSwap-1 25.3 0 185 266 | 171 0 6 2,3
SwapW-1 25.1 0 185 265 |17 0 6 2.3
SwapA-1 21.6 0 166 228 | 2311 0 10 3.4
WRR-P 54.7 0 297 52.0 [1] 0 0 0
NoSwap-P 28.2 0 225 291 [18] O 6 24
SwapW-P 28.1 0 225 291 | 18] 0 6 2.4
SwapA-P 24,1 0 190 263 |25} 0 10 3.5
Table 1: Example 1. Results for p; + p. = 0.1
dy [dy*°% | o4, dz2 | Iz | d5*“° | o4,
Blind WRR | 21.3 0.058 152 20.6 0 0 0 0
WRR-1 28.4 0 176 263] O 0 0 0
NoSwap-I 11.4 [i] 92 107 |20 (O 6 1.5
SwapW-1 11.2 0 92 106 101 O 6 1.6
SwapA-I 11.0 0 92 102 111] 0 10 1.8
WRR-P 115.5 | 0.003 369 79.4 0 0 0 0
NoSwap-P 18.1 0.003 138 168 | 1.5 | 0 6 1.9
SwapW-P 17.7 0.003 136 165 | 16] 0 6 1.9
SwapA-P 16.8 | 0.003 123 15.3 | 1.8] 0 10 2.4

Table 2: Example 1. Results for pg + p. = 0.5

test our prediction algorithm for various values of p, + pe
with Pg and Pg fixed. We fix the steady-state probability
for Channel 1 as Pz = 0.7. For each packet, we limit the
maximum number of retransmissions to 2, i.e., a packet is
dropped if it is not successfully transmitted after three at-
tempts. We also limit the number of credits and number of
debits to four.

Simulation results are presented in Tables 1~ 3. The per-
formance of the various scheduling algorithms are compared
using the following three performance measures for Source
1,i=1,2:

o d; : Average delay of successfully transmitted packets

e [; : Loss Probability, i.e., fraction of packets that are
dropped after four transmission attempts

e d7"°%* : Maximum delay of successfully transmitted pack-
ets

® 0g4;: The standard deviation of the delay
Our main conclusions from the simulation results are:

o The scheduling algorithms assuming perfect state in-
formation, WRR-I, NoSwap-I, SwapW-I and SwapA-I
always perform better than the Blind WRR algorithm.
This means that our basic idea of credits significantly
improves performance if we have perfect knowledge
about the state of each channel. Note that we have
assumed that the sources are loss sensitive, and thus
our objective is to make the loss probabilities close to

Zero.
a7 T =T og; dz [1z | 95" | oap |

Blind WHR |_24.3_ | 0.029 158 22.6 [0 [0 [

WRR-1 28.8 [170 26.5 0 0 (i [
NoSwap-1 10.2) 91 9.3 | 063 | O [0
SwapWal 9.5 i 91 5.1 | 0.66 | 0 8 0
SwopA-l 3.9 [} 51 5.1 | 0.65 | O () K0

WRR-P 63015 | 0.029 | 11930 | 3430 0 0 [[0
NoSwap-P 26.8__| 0.028 179 22.6 | 1.7 | 0 & 1.6
SwapW-P 26.4 | 0.027 182 225 | 1.4] 0 6 1.6
SwapA-D 26.4 | 0.027 182 22.6 | 1.7 | 0 B 1.6

Table 3: Example 1. Results for pg + p. = 1.0

¢ In all the cases where py; + pe < 1, the one-step pre-
diction algorithms WRR-P, NoSwap-P, SwapW-P and
SwapA-P perform significantly better than the Blind
WRR. Thus, when consecutive time slots are posi-
tively correlated, our simple one-step prediction works
remarkably well. In general, prior studies of wire-
less channel errors have indicated that errors occur in
bursts although models for the error can vary. Thus,
our algorithm works very well if the channel errors are
indeed bursty.

When p; + p. = 1, our prediction algorithms per-
form poorly. In fact they perform worse than Blind
WRR. The fact that p; + p = 1 implies that the
channel states are Bernoulli random variables with the
probability of being good chosen as Pg. Thus, channel
states at successive time slots are uncorrelated and it
is not surprising that the one-step prediction performs
poorly, However, this is a very unrealistic model of a
wireless channel which contradicts all prior claims of
bursty channel errors. We chose to perform this exper-
jment to show when our algorithms can break down.

NoSwap, SwapW and SwapA perform better than WRR
in the following sense: They all reduce the delay for
Source 1 significantly while increasing the delay slightly
for Source 2. This illustrates the advantage of compen-
sating a source for time slots during which its chan-
nel is in error. The difference between the algorithms
NoSwap, SwapW and SwapA as compared to WRR is
even more dramatic when one does not have perfect
knowledge of the channel state.

As is to be expected, swapping will perform better
when the channel errors are bursty. The idea is that
when a channel is in a sustained bursty state, it is ad-
vantageous to let other channels transmit and get com-
pensation later. Thus, the tables show that SwapA
is the preferred algorithm especially when the chan-
nel state is strongly positively correlated. However,
Source 2's delay is slightly higher with swapping as
compared to the case when there is no swapping. How-
ever this can be adjusted by changing the debit param-
cter as illustrated in a later example with five sources.

Example 2: We consider an example with the same pa-
rameters as in Example 1, except that instead of setting an
upper limit on the number of retransmission attempts per
packet, we set an upper limit on the maximum delay of a
packet to be 100. If a packet is in the system for more than
100 time slots, then it is dropped; this could possibly hap-
pen even before it reaches the head-of-the-queue. Thus, we
now assume that the sources are also delay-sensitive. We let
Py + pe = 0.1 and the results are shown in Table 4. From
the results, it should be clear that this example complements
Example 1 by leading to the same conclusions regarding the
relative performances of the various algorithms when the
gources are both delay and loss sensitive.
Example 3 We consider a three-source example with the
channel and source parameters as in Table 5. Source 1’s ar-
rivals occur according to an MMPP process with the modu-
lating Markov chain as in Example 1, Source 2’s arrivals are
Poisson and Source 3’s arrivals have a constant inter-arrival
time, The arrival rate for Source 7 is denoted by A;. The
maximum number of credits, debits and retransmissions are
chosen as in Example 1.

The delay and loss performance of Blind WRR, WRR-P
and SwapA-P are shown in Table 6. Again this exam-

72

dy I dy*** | g4y d2 | 1o | d5*e* O'dy

Blind WRR | 32.4 | 0.025 100 | 269] 0 0 0 0

WRR-1 32.4 | 0.025 100 26.9 0 0 0 0
NoSwap-1 23.2 | 0.007 100 226 | 1.6 O 6 2.3
SwapW-1 23.1 | 0.007 100 226 | 171 0 6 2.3
SwapA-1 20.7 | 0.003 100 208|231 0 10 3.4

WRR-P 34.9 | 0.035 100 27.7 0 0 0 [
NoSwap-P | 25.3 | 0.009 100 2371181 0 6 2.3
SwapW-P 25.2 | 0.009 100 236 18] 0 [2.4
SwapA-P 22.5 | 0.006 100 {21925 0 10 3.5

Table 4: Results for Example 2

Source | A; Dg Pe
1 0.2 0.07 0.03
2 0.25 | 0.095 | 0.005
3 0.25 | 0.09 0.01

Table 5: Example 3. Source and Channel Parameters

ple illustrates that SwapA-P trades off the performance of a
severely errored channel (in this case Channel 1) against the
less error-prone channels in a better fashion than WRR-P.
For instance compare to WRR-P, d; is decreased by 26%
while the delay for dy increase 6% and the ds increases by
15%. The increases in the delays of Sources 2 and 3 can be
further controlled by suitable choice of upper limits on cred-
its and debits as will be shown in a later example. The main
conclusion from the examples so far is that SwapA-P allows
greater flexibility in hiding errors from a source. However,
when the number of sources is larger, the differences between
WRR and SwapA depend on how heavily loaded the system
is as shown in the following examples.

Example 4: We consider an example with five sources. The
channels for all five sources are assumed to evolve accord-
ing to independent discrete-time two-state Markov chains.
Sources 2 and 4 are assumed to generate arrivals according
to independent Poisson processes, and Sources 1, 3 and 5
are MMPP sources with the underlying Markov chain hav-
ing the same parameters as that of the MMPP source in
Example 1. The arrival rate of source 7 is denoted by A;
and the parameters of the sources and channels are given
in Table 7. The WFQ weights i, ¢ = 1,2,3,4,5, are all
assumed to be 1, the maximum number of retransmissions
for Sources 1,2,3 and 5 is set to 2, and is set equal to zero
for Source 4. Note that the arrival rates for Sources 2 and
4 are so high that their delays would be unbounded. In
other words, Sources 2 and 4 have packets to send almost
all the time, and the only measure of performance that is
relevant to these sources is the throughput, or equivalently,
packet loss probability. The maximum number of debits and
credits for all sources is set equal to 4. The performance re-
sults are presented in Table 8. In order of avoid excessive
use of space, we only present average delay and loss prob-
ability in the table. The main conclusion from Table 8 is
that SwapW-P is clearly superior to the other algorithms
that use one-step prediction. Both Examples 1 and 4 show
that there is not a significant advantage to swapping slots
within a frame, but swapping slots across multiple frames,
and using credits and debits is clearly superior to WRR.

dy [N do [ds i3

Blind WRR || 41.6 | 0.134 | 1.1 | 0.021 | 10.9 | 0.038
WRR-P 59.2 0 1.7 0 8.0 1]
SwapA-P 44.0 0 1.8 0 9.2 0

Table 6: Example 3. Average Delay and Loss Performance

Source | A¢ Do Pe Source(s) Ai Py Pe
1 0.08 | 0.0 | 0.01 14 0.095 | 0.005 | 0.19
2 8.0_| 0.095 | 0.005 5 0.07 | 0.03 | 0.1
3 G.08 | 0.08 [0.02
1 8.0 | 0.07 | 0.03 .
z 5050035 0018 Table 10: Example 6. Source and Channel Parameters
Dy C dy N od ds [Jd,
Table 7: Example 4, Source and Channel Parameters WREPF T -1~ 11675 1030 1985 T 51 T 03 T 5o
SwapA-P | 4 | 4 | 171.8 | 0.36 | 29.0 | 94.7 | 0.04 | 68.1
] 5 [45 T Iy I 4y T 1g SwapA-P | 2 | 4 | 171.8 | 0.36 | 28.9 | 100.4 | 0.05 | 68.7
“Blind WRR T 40.4 | 0.025 | 0.011 | 75.4 | 0.057 | 0.43 | 263.6 | 0.12 SwapA-P | 0 | 4 | 1706 | 0.3 | 30.0 | 136.6 | 0.13 | 5L.1
VL1 14.6 0 [7] 28, 0 0 85.4 [1] hd hd - b h M
Tetteod |4 5 N T 0 O S W) SwapA-P | 0 | 1 | 169.5 | 0.31 | 31.2 | 145.3 | 0.17 | 47.7
SvinpV/el 14, [{] 0 10.4 [[] ['] 64.6 0
HwapA-l 14.4 0 [1] 17.4 [i] 0 46.0 0
T 5.8 |0 o [20.6 | 0.0 | 6.05 | 86.6_| 0 Table 11: Example 6. Delay and loss performance
NoSwapel b.8 7] 0 22.0] 0.04 73.3 [
SwapWer 5.7 0 [¢ 21.8 0 0.03 73.7 1]
BviapA-P 5.6 0 [¢ 16.9 [] 0.03 52.5 [7]

Table 8: Example 4. Delay and Loss Performance

Example 6: We now present a situation where WRR-P
performs as well as SwapA-P. Consider the same parameters
as in Example 4, except that the arrival rates for Sources 2
and 4 are now assumed to be equal to 0.07. This system is
stable since

b
i=1

and
A < Pg;, Vi

Average delay and loss probabilities are shown in Table 9.
The performance of WRR-P and SwapA-P are virtually
identical, The reasons for this are two-fold:

e Since the number of sources is 5, the frame size for
WRR is 5 and thus the chance of the same channel
being in error in multiple frames is small. Thus, credits
are not accumulated very often in SwapA-P.

o WRR-P naturally allocates “credits” because of the
stability of the system. In other words, if a source is
skipped over during a frame due to error in its chan-
nel, it will automatically be compensated later because
other sources will eventually “run out” of packets due
to the system stability condition.

However, as the following example shows, it would be erro-
neous to conclude from the previous example that WRR and
SwapA. are virtually identical when the number of sources
is large and the stability condition is satisfied.

Example 6: Consider a five source example with the chan-
nel and source parameters given in Table 10. Note that
Sources 1 through 4 are identical and Source 5’s channe] has
a higher steady-state error probability than the rest. We
limit the maximum delay to 200, and the number of credits
and debits to 4 each. The average delay and loss proba-
bilities for Source 1 (recall that Sources 1 through 4 are
identical) and Source 5 are shown in Table 11 as a function
of the maximum number of debits D for Sources 1-4, and the
maximum number of credits C for Source 5. SwapA-P per-
forms much better than WRR-P in the sense that Source 5’s
performance can be traded off more effectively against the

dy [[do [la]| ds i3] dg [ds ls
WRR-P 4,1 0 1.3 07370]67]003]19.7] 0
SwapA-P | 4.6 | 0 1.6 | 01730 |60j003]19.1]0

Table 9: Example 5. Delay and Loss Performance

73

performance of the other sources. Further, it allows one to
control this trade-off by using upper bounds on credits and
debits. For example, Sources 1-4 could be low priority video
sources which are loss tolerant. Thus, Source 5’s quality
has been dramatically improved by SwapA-P without sig-
nificantly degrading the performance of Sources 1 through 4
as compared with WRR-P. The reason for this is as follows:

e Under WRR-P, even though the system is stable, it
takes a long time for Source 5 to be compensated for
errors in its channel since the other sources load the
system rather heavily.

e In contrast, SwapA-P “hides” short error bursts from
Source 5 by providing compensation over shorter time-
scales by using credits. It further avoid penalizing the
less error-prone sources (Sources 1 thorough 4) by up-
per bounding the number of credits and debits.

9 Related Work

Fair packet scheduling algorithms have been the subject of
intensive study in networking literature, particularly since
the weighted fair queueing (WFQ) algorithm was proposed
in [5]. The properties of WFQ were analyzed in [5, 12]. Sev-
eral modifications to WFQ have been proposed to address
its computational complexity or improve the performance of
WFQ, two notable ones being the self-clocked fair queueing
(SCFQ) [7] algorithm and WF2Q[1]. Recent modifications
to accommodate time-varying server capacity include STFQ
[8]. While most of the above algorithms can handle time-
varying server capacity with minor or no modifications, none
of them handle the case when the variation in the capacity is
location-dependent. In particular, we are not aware of any
scheduling approach that reasons carefully about what to do
when the shared channel is available to only a subset of the
backlogged flows at any time. In addition to the fair queue-
ing paradigm, there are several other paradigms for fair al-
location of a shared channel (surveyed comprehensively in
[14}). One such approach, which proposes to achieve long-
term fairness at the expense of penalizing flows that use oth-
erwise idle capacity, is Virtual Clock [13]. Section 3 points
out the fundamental differences in the compensation model
for IWFQ and Virtual Clock.

‘While wireline fair scheduling has been extensively re-
searched, wireless fair scheduling is relatively unchartered
territory. Typically, most related work on fairness in wire-
less channels approach it from a network-centric view (e.g.
probability of channel access is inversely proportional to the
contention perceived at the location of the host [3]), or pro-
vide fairly simplistic definitions of fairness [6]. In particular,
most of the work in this area has been performed from the

perspective of wireless medium access, where the empha-
sis has been on the mechanisms of channel access once the
scheduling algorithm has been worked out [6, 9, 10], rather
than the other way around.

In recent related work, some solutions to providing per-
formance guarantees in the presence of the channel con-
tention and dynamic reservation problems have been ex-
plored [4, 10). The underlying idea is to combine the best
features of some contention-based schemes like CSMA and
contention-free schemes like TDMA, Performance analysis
in terms of throughput and delay has been obtained [4, 10].
However, there are three major limitations of this approach.
Firstly, channel errors and packet loss during transmission
are ignored; second, the issue of location-dependent channel
capacity is addressed only partially (as a function of con-
tention); lastly, the scheduling issues in the higher level are
typically unaddressed. As we argue in Section 1, they have
to be studied together for an effective solution in the wireless
domain,

Finally, a recent work on channel state dependent packet
(CSDP) scheduling does address the issues of wireless medium
access with a view to handling not only contention but also
location-dependent error bursts [2]. However, it does not
address the issues of fairness, throughput and delay guaran-
tees,

10 Conclusions

Emerging indoor and outdoor packet cellular networks will
seek to support communication-intensive applications which
require sustained quality of service over scarce, dynamic and
shared wireless channels, One of the critical requirements
for providing such support is fair scheduling over wireless
channels, Fair scheduling of delay and rate-sensitive packet
flows over a wireless channel is not addressed effectively by
most contemporary wireline fair scheduling algorithms be-
cause of two unique characteristics of wireless media: (a)
bursty channel errors, and (b) location-dependent channel
capacity and errors. Besides, in packet cellular networks, the
base station typically performs the task of packet schedul-
ing for both downlink and uplink flows in a cell; however a
base station has only a limited knowledge of the arrival pro-
cesses of uplink flows. In this work, we first propose a new
model for fairness in wireless scheduling. This model adapts
fluid fair queueing to wireless channels. We then describe an
idealized wireless packetized fair queueing algorithm which
approximates the wireless fluid fairness model under the as-
sumption that the channel error is fully predictable at any
time, For our idealized algorithm, we derive throughput
and delay bounds for both error-free and error-prone chan-
nels. Finally, we describe a practical wireless scheduling
algorithm which closely emulates the idealized algorithm,
addresses several implementation-related wireless medium
access jssues, and uses simple one-step channel prediction.
We observe that though the worst-case performance of the
scheduling algorithm is much worse than the idealized algo-
rithm, the average-case performance is remarkably close.

References

[1] J.C.R. Bennett and H. Zhang, “WF?Q: Worst-case fair
weighted fair queueing,” Proc. IEEE INFOCOM’96,
March 1996.

[2] P. Bhagwat, P. Bhattacharya, A. Krishma and S. Tri-
pathi, “Enhancing throughput over wireless LANs us-

74

ing channel state dependent packet scheduling,” to ap-
pear on Proc. of IEEE INFOCOM?’97.

[3] V. Bharghavan, A. Demers, S. Shenker and L. Zhang,
“MACAW: A Medium Access Protacol for Indoor Wire-
less LANSs,” Proc. ACM SIGCOMM?’9.

(4] C. Chang, J. Chang, K. Chen and M. You, “Guaranteed
quality-of-service wireless access to ATM,” preprint,
1996.

[5] A. Demers, S. Keshav and S. Shenker, “Analysis and
simulation of a fair queveing algorithm,” Proc. ACM
SIGCOMM’89.

[6] M. Gerla and J. T. Tsai. “Multicluster Mobile Mul-
timedia Network,” ACM Baltzer Journal of Wireless
Networks, August 1995.

[7] S. Golestani, “A self-clocked fair queueing scheme for
broadband applications,” Proc. IEEE INFOCOM’94,
June 1994.

(8] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queu-
ing: a scheduling algorithm for integrated services
packet switching networks,” Proc. of SIGCOMM’96,
August 1996.

[9] M.J. Karol, Z. Liu, and K.Y. Eng. “An efficient
demand-assignment multiple access protocol for wire-
less packet (ATM) networks,” ACM Journal on Wire-
less Networking, December 1995.

[10} A. Muir and J. J. Garcia-Luna-Aceves, “Supporting
real-time multimedia traffic in a wireless LAN,” Proc.
SPIE Multimedia Computing and Networking 1997,
February 1997.

[11] A.Parekh. “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks,” PhD
Thesis, MIT LAboratory for Information and Decision
Systems, Technical Report LIDS-TR-2089 1992,

[12] A. K. Parekh and R. G. Gallager, “A generalized pro-
cessor sharing approach to flow control in integrated
services networks: the single-node case,” IEEE/ACM
Transactions on Networking, 1(3), pp. 344-357, June
1993.

{13} L. Zhang, “Virtual Clock: a mnew traffic control al-
gorithm for packet switching networks,” ACM Trans.
Comput. Syst., vol. 9, pp. 101-124, May 1991.

[14] H. Zhang, “Service disciplines for guaranteed perfor-
mance service in packet-switching networks,” Proc. of
IEEE, 83(10), October 1995.

