
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Functional Dependencies

Prof. Chris Clifton

28 September 2016

Relational Design

• Instructor(ID number(10) primary key,
Name varchar(40),
Salary number(6))

• Dept(dept_name varchar(20) primary key,
building varchar(30),
budget number(8))

• Works_in(ID references Instructor(ID),
dept_name references Dept(dept_name))

Fall 2016 Chris Clifton - CS34800 2

Instructor

ID

Name

Salary

Dept

dept_name

building

budget

Works

In

Key for Works_in?

A. ID

B. dept_name

C. both

D. neither

©Jan-16 Christopher W. Clifton 220

Fall 2016 Chris Clifton - CS34800 3

Keys of Relations

K is a key for relation R if:

1. K  all attributes of R. (Uniqueness)

2. For no proper subset of K is (1) true. (Minimality)

• If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation

schema.

• X, etc., represent sets of attributes; A etc., represent
single attributes.

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 6th Edition

Combine Schemas?

 Suppose we combine instructor and department into inst_dept

 This will

A. Duplicate columns

B. Duplicate data

C. Save space

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 6th Edition

A Combined Schema Without Repetition

 Consider combining relations

 sec_class(sec_id, building, room_number) and

 section(course_id, sec_id, semester, year)

into one relation

 section(course_id, sec_id, semester, year,

building, room_number)

 No repetition in this case

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 6th Edition

What About Smaller Schemas?

 Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?

 Write a rule “if there were a schema (dept_name, building, budget), then

dept_name would be a candidate key”

 Denote as a functional dependency:

dept_name building, budget

 In inst_dept, because dept_name is not a candidate key, the building

and budget of a department may have to be repeated.

 This indicates the need to decompose inst_dept

 Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

 The next slide shows how we lose information -- we cannot reconstruct

the original employee relation -- and so, this is a lossy decomposition.

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 6th Edition

A Lossy Decomposition

Lossless Join

• Goal: All legal values can be stored in

relations

– Recover originals through join

• Formally: X, Y is a lossless join

decomposition of R w.r.t. F if rR

satisfying dependencies in F,

πX(r) πY(r) = r

Chris Clifton - CS34800Fall 2016 8

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 6th Edition

Example of Lossless-Join Decomposition

 Lossless join decomposition

 Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)

A B




1

2

A




B

1

2

r B,C(r)

A (r) B (r)
A B




1

2

C

A

B

B

1

2

C

A

B

C

A

B

A,B(r)

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 6th Edition

Goal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 6th Edition

Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a key.

Fall 2016 Chris Clifton - CS34800 12

Functional Dependencies

X  A = assertion about a relation R that
whenever two tuples agree on all the
attributes of X, then they must also agree
on attribute A

Why do we care?

Knowing functional dependencies provides a
formal mechanism to divide up relations
(normalization)

Saves space

Prevents storing data that violates dependencies

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 Let R be a relation schema

  R and   R

 The functional dependency

  
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 []  t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

 On this instance, A  B does NOT hold, but B  A does hold.

1 4

1 5

3 7

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K  R

 K is a candidate key for R if and only if

 K  R, and

 for no   K,   R

 Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name building

and ID  building

but would not expect the following to hold:

dept_name  salary

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 6th Edition

Use of Functional Dependencies

 We use functional dependencies to:

 test relations to see if they are legal under a given set of functional

dependencies.

 If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.

 specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set

of functional dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on all legal

instances.

 For example, a specific instance of instructor may, by chance, satisfy

name  ID.

Normalization

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key  everything.”
• Formally, R is in BCNF if for every nontrivial FD for

R, say X  A, then X is a superkey.
– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence
of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost
when tuple is deleted.

Fall 2016 Chris Clifton - CS34800 16

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 6th Edition

Boyce-Codd Normal Form

    is trivial (i.e.,   )

  is a superkey for R

A relation schema R is in BCNF with respect to a set F of

functional dependencies if for all functional dependencies in F+ of

the form

  

where   R and   R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name building, budget
holds on instr_dept, but dept_name is not a superkey

Fall 2016 Chris Clifton - CS34800 18

• Shorthand: combine FD's with common

left side by concatenating their right sides.

• Sometimes, several attributes jointly

determine another attribute, although

neither does by itself. Example:
Department course_number  course_title

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan8.19Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 A functional dependency is trivial if it is satisfied by all instances of a

relation

 Example:

 ID, name  ID

 name  name

 In general,    is trivial if   

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

 For example: If A  B and B  C, then we can infer that A 

C

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

 F+ is a superset of F.

©Jan-16 Christopher W. Clifton 1120

Fall 2016 Chris Clifton - CS34800 23

Example 2

• Keys are {Lastname, Firstname} and

{StudentID}

Lastname Firstname Student ID Major

Key Key

(2 attributes)

Superkey

Note: There are alternate keys

Fall 2016 Chris Clifton - CS34800 24

Who Determines Keys/FD’s?

• We could assert a key K.

– Then the only FD’s asserted are that K A for every attribute A.

– No surprise: K is then the only key for those FD’s, according to
the formal definition of “key.”

• Or, we could assert some FD’s and deduce one or more
keys by the formal definition.
– E/R diagram implies FD’s by key declarations and many-one

relationship declarations.

• Rule of thumb: FD’s either come from keyness, many-1
relationship, or from physics.
– E.g., “no two courses can meet in the same room at the same

time” yields room time  course.

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 6th Edition

Functional-Dependency Theory

 We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional

dependencies.

 We then develop algorithms to generate lossless decompositions into

BCNF and 3NF

 We then develop algorithms to test if a decomposition is dependency-

preserving

Fall 2016 Chris Clifton - CS34800 27

Functional Dependencies (FD’s)

and Many-One Relationships

• Consider R(A1,…, An) and X is a key

then X  Y for any attributes Y in A1,…, An

even if they overlap with X. Why?

• Suppose R is used to represent a many  one

relationship:

E1 entity set  E2 entity set

where X key for E1, Y key for E2,

Then, X  Y holds,

And Y  X does not hold unless the relationship is one-

one.

• What about many-many relationships?

©Jan-16 Christopher W. Clifton 1320

CS34800

Information Systems

Functional Dependencies: Closure

Prof. Chris Clifton

30 September 2016

Fall 2016 Chris Clifton - CS34800 29

Inferring FD’s

And this is important because …

• When we talk about improving relational designs, we

often need to ask “does this FD hold in this relation?”

Given FD’s X1 A1, X2  A2,…, Xn  An, does FD Y 

B necessarily hold in the same relation?

• Start by assuming two tuples agree in Y. Use given FD’s

to infer other attributes on which they must agree. If B is

among them, then yes, else no.

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 Given a set F set of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

 For e.g.: If A B and B  C, then we can infer that A  C

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan8.31Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 We can find F+, the closure of F, by repeatedly applying

Armstrong’s Axioms:

 if   , then    (reflexivity)

 if   , then      (augmentation)

 if   , and   , then    (transitivity)

 These rules are

 sound (generate only functional dependencies that actually hold),

and

 complete (generate all functional dependencies that hold).

©Jan-16 Christopher W. Clifton 1520

Fall 2016 Chris Clifton - CS34800 32

FDs: Armstrong’s Axioms

• Reflexivity:

– If {B1, B2, …, Bm}  {A1, A2, …, An}  A1A2∙∙∙An 

B1B2∙∙∙Bm

– Also called “trivial FDs”

• Augmentation:

– A1A2∙∙∙An  B1B2∙∙∙Bm 

A1A2∙∙∙AnC1C2∙∙∙Ck  B1B2∙∙∙BmC1C2∙∙∙Ck

• Transitivity:

– A1A2∙∙∙An  B1B2∙∙∙Bm and B1B2∙∙∙Bm  C1C2∙∙∙Ck 

A1A2∙∙∙An  C1C2∙∙∙Ck

Armstrong’s Axioms

• Armstrong’s Axioms:
– if   , then    (reflexivity)

– if   , then      (augmentation)

– if   , and   , then    (transitivity)

• Owner pet_name age  species
species  vaccination

• What rule allows us to combine these two FDs?
A. Reflexivity

B. Augmentation

C. Transitivity

D. Multiple

E. None

©Jan-16 Christopher W. Clifton 1620

Armstrong’s Axioms

• Armstrong’s Axioms:
– if   , then    (reflexivity)

– if   , then      (augmentation)

– if   , and   , then    (transitivity)

• Owner pet_name age  species
species  vaccination

• Applying transitivity gives:
A. pet_name age  species

B. Owner  vaccination

C. Vaccination  species

D. Owner pet_name age  vaccination

E. Transitivity can’t be applied to these rules

©Silberschatz, Korth and Sudarshan8.35Database System Concepts - 6th Edition

Example

 R = (A, B, C, G, H, I)

F = { A  B

A  C

CG  H

CG  I

B  H}

 some members of F+

 A  H

 by transitivity from A  B and B  H

 AG  I

 by augmenting A  C with G, to get AG  CG

and then transitivity with CG  I

 CG  HI

 by augmenting CG  I to infer CG  CGI,

and augmenting of CG  H to infer CGI  HI,

and then transitivity

©Jan-16 Christopher W. Clifton 1720

Algorithm

Define Y+ = closure of Y = set of attributes
functionally determined by Y:

• Basis: Y+:=Y.

• Induction: If X  Y+, and X  A is a given FD,
then add A to Y+.

• End when Y+ cannot be changed.

X
A

Y new Y+ +

Fall 2016 Chris Clifton - CS34800 36

Fall 2016 Chris Clifton - CS34800 37

Example

A  B, BC  D.

• A+ = AB.

• C+=C.

• (AC)+ = ABCD.

A

C

B

D

©Jan-16 Christopher W. Clifton 1820

Algorithm

• For each set of attributes X compute X+.
– But skip X = , X = all attributes.

– Add X  A for each A in X+–X.

• Drop XY  A if X  A holds.
– Consequence: If X+ is all attributes, then there is no point

in computing closure of supersets of X.

• Finally, project the FD’s by selecting only those
FD’s that involve only the attributes of the
projection.

– Notice that after we project the discovered FD’s onto
some relation, the eliminated FD’s can be inferred in the
projected relation.

Fall 2016 Chris Clifton - CS34800 42

Example

F = AB  C, C  D, D  A. What FD’s follow?

• A+ = A; B+=B (nothing).

• C+=ACD (add C  A).

• D+=AD (nothing new).

• (AB)+=ABCD (add AB  D; skip all supersets of AB).

• (BC)+=ABCD (nothing new; skip all supersets of BC).

• (BD)+=ABCD (add BD  C; skip all supersets of BD).

• (AC)+=ACD; (AD)+=AD; (CD)+=ACD (nothing new).

• (ACD)+=ACD (nothing new).

• All other sets contain AB, BC, or BD, so skip.
• Thus, the only interesting FD’s that follow from F are:

C  A, AB  D, BD  C.

Fall 2016 Chris Clifton - CS34800 43

©Jan-16 Christopher W. Clifton 1920

Fall 2016 Chris Clifton - CS34800 44

Example 2

• Set of FD’s in ABCGHI:

A  B
A  C
CG  H
CG  I
B  H

• Compute (CG)+, (BG)+, (AG)+

Fall 2016 Chris Clifton - CS34800 45

Example 3

In ABC with FD’s A  B, B  C, project onto AC.

1. A+ = ABC; yields A  B, A  C.

2. B+ = BC; yields B  C.

3. AB+ = ABC; yields AB  C;
• drop in favor of A  C

4. AC+ = ABC yields AC  B;
• drop in favor of A  B

5. C+ = C and BC+ = BC; adds nothing.

• Resulting FD’s: A  B, A  C, B  C.

• Projection onto AC: A  C.

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan8.48Database System Concepts - 6th Edition

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing for superkey:

 To test if  is a superkey, we compute +, and check if + contains

all attributes of R.

 Testing functional dependencies

 To check if a functional dependency    holds (or, in other

words, is in F+), just check if   +.

 That is, we compute + by using attribute closure, and then check

if it contains .

 Is a simple and cheap test, and very useful

 Computing closure of F

 For each   R, we find the closure +, and for each S  +, we

output a functional dependency   S.

©Silberschatz, Korth and Sudarshan8.49Database System Concepts - 6th Edition

Canonical Cover

 Sets of functional dependencies may have redundant dependencies

that can be inferred from the others

 For example: A  C is redundant in: {A  B, B  C, A C}

 Parts of a functional dependency may be redundant

 E.g.: on RHS: {A  B, B  C, A  CD} can be simplified

to

{A  B, B  C, A  D}

 E.g.: on LHS: {A  B, B  C, AC  D} can be simplified
to

{A  B, B  C, A  D}

 Intuitively, a canonical cover of F is a “minimal” set of functional

dependencies equivalent to F, having no redundant dependencies or

redundant parts of dependencies

©Jan-16 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan8.50Database System Concepts - 6th Edition

Extraneous Attributes

 Consider a set F of functional dependencies and the functional

dependency    in F.

 Attribute A is extraneous in  if A  

and F logically implies (F – {  })  {( – A)  }.

 Attribute A is extraneous in  if A  

and the set of functional dependencies

(F – {  })  {( – A)} logically implies F.

 Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always

implies a weaker one

 Example: Given F = {A  C, AB  C }

 B is extraneous in AB  C because {A  C, AB  C} logically

implies A  C (I.e. the result of dropping B from AB  C).

 Example: Given F = {A  C, AB  CD}

 C is extraneous in AB  CD since AB  C can be inferred even

after deleting C

©Silberschatz, Korth and Sudarshan8.51Database System Concepts - 6th Edition

Testing if an Attribute is Extraneous

 Consider a set F of functional dependencies and the functional

dependency    in F.

 To test if attribute A   is extraneous in 

1. compute ({} – A)+ using the dependencies in F

2. check that ({} – A)+ contains ; if it does, A is extraneous in 

 To test if attribute A   is extraneous in 

1. compute + using only the dependencies in

F’ = (F – { })  { ( – A)},

2. check that + contains A; if it does, A is extraneous in 

©Jan-16 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan8.52Database System Concepts - 6th Edition

Canonical Cover

 A canonical cover for F is a set of dependencies Fc such that

 F logically implies all dependencies in Fc, and

 Fc logically implies all dependencies in F, and

 No functional dependency in Fc contains an extraneous attribute, and

 Each left side of functional dependency in Fc is unique.

 To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
1  1 and 1  2 with 1  1 2

Find a functional dependency    with an
extraneous attribute either in  or in 
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from   
until F does not change

 Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan8.53Database System Concepts - 6th Edition

Computing a Canonical Cover

 R = (A, B, C)

F = {A  BC

B  C

A  B

AB  C}

 Combine A  BC and A  B into A  BC

 Set is now {A  BC, B  C, AB  C}

 A is extraneous in AB  C

 Check if the result of deleting A from AB  C is implied by the other

dependencies

 Yes: in fact, B  C is already present!

 Set is now {A  BC, B  C}

 C is extraneous in A  BC

 Check if A  C is logically implied by A  B and the other dependencies

 Yes: using transitivity on A  B and B  C.

– Can use attribute closure of A in more complex cases

 The canonical cover is: A  B

B  C

