
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Functional Dependencies

Prof. Chris Clifton

28 September 2016

Relational Design

• Instructor(ID number(10) primary key,
Name varchar(40),
Salary number(6))

• Dept(dept_name varchar(20) primary key,
building varchar(30),
budget number(8))

• Works_in(ID references Instructor(ID),
dept_name references Dept(dept_name))

Fall 2016 Chris Clifton - CS34800 2

Instructor

ID

Name

Salary

Dept

dept_name

building

budget

Works

In

Key for Works_in?

A. ID

B. dept_name

C. both

D. neither

©Jan-16 Christopher W. Clifton 220

Fall 2016 Chris Clifton - CS34800 3

Keys of Relations

K is a key for relation R if:

1. K all attributes of R. (Uniqueness)

2. For no proper subset of K is (1) true. (Minimality)

• If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation

schema.

• X, etc., represent sets of attributes; A etc., represent
single attributes.

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 6th Edition

Combine Schemas?

 Suppose we combine instructor and department into inst_dept

 This will

A. Duplicate columns

B. Duplicate data

C. Save space

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 6th Edition

A Combined Schema Without Repetition

 Consider combining relations

 sec_class(sec_id, building, room_number) and

 section(course_id, sec_id, semester, year)

into one relation

 section(course_id, sec_id, semester, year,

building, room_number)

 No repetition in this case

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 6th Edition

What About Smaller Schemas?

 Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?

 Write a rule “if there were a schema (dept_name, building, budget), then

dept_name would be a candidate key”

 Denote as a functional dependency:

dept_name building, budget

 In inst_dept, because dept_name is not a candidate key, the building

and budget of a department may have to be repeated.

 This indicates the need to decompose inst_dept

 Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

 The next slide shows how we lose information -- we cannot reconstruct

the original employee relation -- and so, this is a lossy decomposition.

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 6th Edition

A Lossy Decomposition

Lossless Join

• Goal: All legal values can be stored in

relations

– Recover originals through join

• Formally: X, Y is a lossless join

decomposition of R w.r.t. F if rR

satisfying dependencies in F,

πX(r) πY(r) = r

Chris Clifton - CS34800Fall 2016 8

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 6th Edition

Example of Lossless-Join Decomposition

 Lossless join decomposition

 Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)

A B

1

2

A

B

1

2

r B,C(r)

A (r) B (r)
A B

1

2

C

A

B

B

1

2

C

A

B

C

A

B

A,B(r)

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 6th Edition

Goal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 6th Edition

Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a key.

Fall 2016 Chris Clifton - CS34800 12

Functional Dependencies

X A = assertion about a relation R that
whenever two tuples agree on all the
attributes of X, then they must also agree
on attribute A

Why do we care?

Knowing functional dependencies provides a
formal mechanism to divide up relations
(normalization)

Saves space

Prevents storing data that violates dependencies

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 Let R be a relation schema

 R and R

 The functional dependency

holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 [] t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

 On this instance, A B does NOT hold, but B A does hold.

1 4

1 5

3 7

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K R

 K is a candidate key for R if and only if

 K R, and

 for no K, R

 Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name building

and ID building

but would not expect the following to hold:

dept_name salary

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 6th Edition

Use of Functional Dependencies

 We use functional dependencies to:

 test relations to see if they are legal under a given set of functional

dependencies.

 If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.

 specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set

of functional dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on all legal

instances.

 For example, a specific instance of instructor may, by chance, satisfy

name ID.

Normalization

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key everything.”
• Formally, R is in BCNF if for every nontrivial FD for

R, say X A, then X is a superkey.
– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence
of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost
when tuple is deleted.

Fall 2016 Chris Clifton - CS34800 16

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 6th Edition

Boyce-Codd Normal Form

 is trivial (i.e.,)

 is a superkey for R

A relation schema R is in BCNF with respect to a set F of

functional dependencies if for all functional dependencies in F+ of

the form

where R and R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name building, budget
holds on instr_dept, but dept_name is not a superkey

Fall 2016 Chris Clifton - CS34800 18

• Shorthand: combine FD's with common

left side by concatenating their right sides.

• Sometimes, several attributes jointly

determine another attribute, although

neither does by itself. Example:
Department course_number course_title

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan8.19Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

 A functional dependency is trivial if it is satisfied by all instances of a

relation

 Example:

 ID, name ID

 name name

 In general, is trivial if

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

 For example: If A B and B C, then we can infer that A

C

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

 F+ is a superset of F.

©Jan-16 Christopher W. Clifton 1120

Fall 2016 Chris Clifton - CS34800 23

Example 2

• Keys are {Lastname, Firstname} and

{StudentID}

Lastname Firstname Student ID Major

Key Key

(2 attributes)

Superkey

Note: There are alternate keys

Fall 2016 Chris Clifton - CS34800 24

Who Determines Keys/FD’s?

• We could assert a key K.

– Then the only FD’s asserted are that K A for every attribute A.

– No surprise: K is then the only key for those FD’s, according to
the formal definition of “key.”

• Or, we could assert some FD’s and deduce one or more
keys by the formal definition.
– E/R diagram implies FD’s by key declarations and many-one

relationship declarations.

• Rule of thumb: FD’s either come from keyness, many-1
relationship, or from physics.
– E.g., “no two courses can meet in the same room at the same

time” yields room time course.

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 6th Edition

Functional-Dependency Theory

 We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional

dependencies.

 We then develop algorithms to generate lossless decompositions into

BCNF and 3NF

 We then develop algorithms to test if a decomposition is dependency-

preserving

Fall 2016 Chris Clifton - CS34800 27

Functional Dependencies (FD’s)

and Many-One Relationships

• Consider R(A1,…, An) and X is a key

then X Y for any attributes Y in A1,…, An

even if they overlap with X. Why?

• Suppose R is used to represent a many one

relationship:

E1 entity set E2 entity set

where X key for E1, Y key for E2,

Then, X Y holds,

And Y X does not hold unless the relationship is one-

one.

• What about many-many relationships?

©Jan-16 Christopher W. Clifton 1320

CS34800

Information Systems

Functional Dependencies: Closure

Prof. Chris Clifton

30 September 2016

Fall 2016 Chris Clifton - CS34800 29

Inferring FD’s

And this is important because …

• When we talk about improving relational designs, we

often need to ask “does this FD hold in this relation?”

Given FD’s X1 A1, X2 A2,…, Xn An, does FD Y

B necessarily hold in the same relation?

• Start by assuming two tuples agree in Y. Use given FD’s

to infer other attributes on which they must agree. If B is

among them, then yes, else no.

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 Given a set F set of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

 For e.g.: If A B and B C, then we can infer that A C

 The set of all functional dependencies logically implied by F is the

closure of F.

 We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan8.31Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

 We can find F+, the closure of F, by repeatedly applying

Armstrong’s Axioms:

 if , then (reflexivity)

 if , then (augmentation)

 if , and , then (transitivity)

 These rules are

 sound (generate only functional dependencies that actually hold),

and

 complete (generate all functional dependencies that hold).

©Jan-16 Christopher W. Clifton 1520

Fall 2016 Chris Clifton - CS34800 32

FDs: Armstrong’s Axioms

• Reflexivity:

– If {B1, B2, …, Bm} {A1, A2, …, An} A1A2∙∙∙An

B1B2∙∙∙Bm

– Also called “trivial FDs”

• Augmentation:

– A1A2∙∙∙An B1B2∙∙∙Bm

A1A2∙∙∙AnC1C2∙∙∙Ck B1B2∙∙∙BmC1C2∙∙∙Ck

• Transitivity:

– A1A2∙∙∙An B1B2∙∙∙Bm and B1B2∙∙∙Bm C1C2∙∙∙Ck

A1A2∙∙∙An C1C2∙∙∙Ck

Armstrong’s Axioms

• Armstrong’s Axioms:
– if , then (reflexivity)

– if , then (augmentation)

– if , and , then (transitivity)

• Owner pet_name age species
species vaccination

• What rule allows us to combine these two FDs?
A. Reflexivity

B. Augmentation

C. Transitivity

D. Multiple

E. None

©Jan-16 Christopher W. Clifton 1620

Armstrong’s Axioms

• Armstrong’s Axioms:
– if , then (reflexivity)

– if , then (augmentation)

– if , and , then (transitivity)

• Owner pet_name age species
species vaccination

• Applying transitivity gives:
A. pet_name age species

B. Owner vaccination

C. Vaccination species

D. Owner pet_name age vaccination

E. Transitivity can’t be applied to these rules

©Silberschatz, Korth and Sudarshan8.35Database System Concepts - 6th Edition

Example

 R = (A, B, C, G, H, I)

F = { A B

A C

CG H

CG I

B H}

 some members of F+

 A H

 by transitivity from A B and B H

 AG I

 by augmenting A C with G, to get AG CG

and then transitivity with CG I

 CG HI

 by augmenting CG I to infer CG CGI,

and augmenting of CG H to infer CGI HI,

and then transitivity

©Jan-16 Christopher W. Clifton 1720

Algorithm

Define Y+ = closure of Y = set of attributes
functionally determined by Y:

• Basis: Y+:=Y.

• Induction: If X Y+, and X A is a given FD,
then add A to Y+.

• End when Y+ cannot be changed.

X
A

Y new Y+ +

Fall 2016 Chris Clifton - CS34800 36

Fall 2016 Chris Clifton - CS34800 37

Example

A B, BC D.

• A+ = AB.

• C+=C.

• (AC)+ = ABCD.

A

C

B

D

©Jan-16 Christopher W. Clifton 1820

Algorithm

• For each set of attributes X compute X+.
– But skip X = , X = all attributes.

– Add X A for each A in X+–X.

• Drop XY A if X A holds.
– Consequence: If X+ is all attributes, then there is no point

in computing closure of supersets of X.

• Finally, project the FD’s by selecting only those
FD’s that involve only the attributes of the
projection.

– Notice that after we project the discovered FD’s onto
some relation, the eliminated FD’s can be inferred in the
projected relation.

Fall 2016 Chris Clifton - CS34800 42

Example

F = AB C, C D, D A. What FD’s follow?

• A+ = A; B+=B (nothing).

• C+=ACD (add C A).

• D+=AD (nothing new).

• (AB)+=ABCD (add AB D; skip all supersets of AB).

• (BC)+=ABCD (nothing new; skip all supersets of BC).

• (BD)+=ABCD (add BD C; skip all supersets of BD).

• (AC)+=ACD; (AD)+=AD; (CD)+=ACD (nothing new).

• (ACD)+=ACD (nothing new).

• All other sets contain AB, BC, or BD, so skip.
• Thus, the only interesting FD’s that follow from F are:

C A, AB D, BD C.

Fall 2016 Chris Clifton - CS34800 43

©Jan-16 Christopher W. Clifton 1920

Fall 2016 Chris Clifton - CS34800 44

Example 2

• Set of FD’s in ABCGHI:

A B
A C
CG H
CG I
B H

• Compute (CG)+, (BG)+, (AG)+

Fall 2016 Chris Clifton - CS34800 45

Example 3

In ABC with FD’s A B, B C, project onto AC.

1. A+ = ABC; yields A B, A C.

2. B+ = BC; yields B C.

3. AB+ = ABC; yields AB C;
• drop in favor of A C

4. AC+ = ABC yields AC B;
• drop in favor of A B

5. C+ = C and BC+ = BC; adds nothing.

• Resulting FD’s: A B, A C, B C.

• Projection onto AC: A C.

©Jan-16 Christopher W. Clifton 2020

©Silberschatz, Korth and Sudarshan8.48Database System Concepts - 6th Edition

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing for superkey:

 To test if is a superkey, we compute +, and check if + contains

all attributes of R.

 Testing functional dependencies

 To check if a functional dependency holds (or, in other

words, is in F+), just check if +.

 That is, we compute + by using attribute closure, and then check

if it contains .

 Is a simple and cheap test, and very useful

 Computing closure of F

 For each R, we find the closure +, and for each S +, we

output a functional dependency S.

©Silberschatz, Korth and Sudarshan8.49Database System Concepts - 6th Edition

Canonical Cover

 Sets of functional dependencies may have redundant dependencies

that can be inferred from the others

 For example: A C is redundant in: {A B, B C, A C}

 Parts of a functional dependency may be redundant

 E.g.: on RHS: {A B, B C, A CD} can be simplified

to

{A B, B C, A D}

 E.g.: on LHS: {A B, B C, AC D} can be simplified
to

{A B, B C, A D}

 Intuitively, a canonical cover of F is a “minimal” set of functional

dependencies equivalent to F, having no redundant dependencies or

redundant parts of dependencies

©Jan-16 Christopher W. Clifton 2120

©Silberschatz, Korth and Sudarshan8.50Database System Concepts - 6th Edition

Extraneous Attributes

 Consider a set F of functional dependencies and the functional

dependency in F.

 Attribute A is extraneous in if A

and F logically implies (F – { }) {(– A) }.

 Attribute A is extraneous in if A

and the set of functional dependencies

(F – { }) {(– A)} logically implies F.

 Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always

implies a weaker one

 Example: Given F = {A C, AB C }

 B is extraneous in AB C because {A C, AB C} logically

implies A C (I.e. the result of dropping B from AB C).

 Example: Given F = {A C, AB CD}

 C is extraneous in AB CD since AB C can be inferred even

after deleting C

©Silberschatz, Korth and Sudarshan8.51Database System Concepts - 6th Edition

Testing if an Attribute is Extraneous

 Consider a set F of functional dependencies and the functional

dependency in F.

 To test if attribute A is extraneous in

1. compute ({} – A)+ using the dependencies in F

2. check that ({} – A)+ contains ; if it does, A is extraneous in

 To test if attribute A is extraneous in

1. compute + using only the dependencies in

F’ = (F – { }) { (– A)},

2. check that + contains A; if it does, A is extraneous in

©Jan-16 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan8.52Database System Concepts - 6th Edition

Canonical Cover

 A canonical cover for F is a set of dependencies Fc such that

 F logically implies all dependencies in Fc, and

 Fc logically implies all dependencies in F, and

 No functional dependency in Fc contains an extraneous attribute, and

 Each left side of functional dependency in Fc is unique.

 To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
1 1 and 1 2 with 1 1 2

Find a functional dependency with an
extraneous attribute either in or in
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from
until F does not change

 Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan8.53Database System Concepts - 6th Edition

Computing a Canonical Cover

 R = (A, B, C)

F = {A BC

B C

A B

AB C}

 Combine A BC and A B into A BC

 Set is now {A BC, B C, AB C}

 A is extraneous in AB C

 Check if the result of deleting A from AB C is implied by the other

dependencies

 Yes: in fact, B C is already present!

 Set is now {A BC, B C}

 C is extraneous in A BC

 Check if A C is logically implied by A B and the other dependencies

 Yes: using transitivity on A B and B C.

– Can use attribute closure of A in more complex cases

 The canonical cover is: A B

B C

