
CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000:  Problem Solving 

And Object-Oriented 

Programming

Types as Data Abstraction

7 February 2011

Prof. Chris Clifton

Abstraction:

How Programming Scales

• Functional Abstraction

– Clear specification of what a function does

– Don‟t sweat the details of How something is 

done

• Data Abstraction

– Clear specification of what something is

– Don‟t worry about how it is represented

2/9/2011 CS18000 3



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Know who this is?

• Barbara Liskov

– 2008 ACM Turing Award 

winner

– “For contributions to 

practical and theoretical 

foundations of 

programming language 

and system design, 

especially related to data 

abstraction, fault 

tolerance, and 

distributed computing.”

2/9/2011 CS18000 4

Data Abstraction:

Types

• char ch = „a‟

• How is ch really stored in the computer?

1. a

2. 97

3. 01100001

4. None of the above

• The char data type is a data abstraction

2/9/2011 CS18000 5



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

What makes a data type?

• Semantics:  What is being represented
– not how

• What we can do with it
– Functional abstractions

• Constraints
– Can all operations be applied to any object of the 

type?

– Can an object be modified?

• Special values
– constants

2/9/2011 CS18000 6

Primitive Type

• Integers

– byte, short, int, long

• Rationals

– float, double

• Boolean

– boolean

• Character

– char

Class

• Number

– Byte, Short, Integer, Long

– BigInteger

• Number

– Float, Double

• Boolean

• Character

2/9/2011 CS18000 7

Primitive Types as

Data Abstractions



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Primitive Type vs. Class

• Primitive types are “special”
– literals (constant values)

– infix operators (+, -)

– …

• Classes used to generate objects
– double 3. vs. object of type Double containing the 

value 3.

• For now, big issue is equality test
– a.equals(b) vs. a == b

– == : variables a and b refer to the same object

– Two different objects can have same value!

2/9/2011 CS18000 8

Type:  (semi)Formal Definition

• Domain:  Set of possible values

– Infinite?

• Operations

– Constructor

– Field Access

– Methods – Accessor, Mutator

• Invariants

– Must be true at completion of every operation

2/9/2011 CS18000 9



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Type:

Implementation as Class

• Representation

– Must represent all possible domain values

• Operations

– Define Constructor(s)

– Define methods

• Invariants

– Ensure invariants hold after execution of 

Constructor(s), methods

2/9/2011 CS18000 10

Field Access vs. Accessor

Methods

• Point p = new point(3.0,4.0);

• We want the horizontal axis:

– x = p.x;

– x = p.getx();

• Which is better?  Why?

• What if we wanted:

– r = p.radial;

– theta = p.angle;

2/9/2011 CS18000 11



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Class example:  Point

public class Point {
private double x; \\ Horizontal 

axis

private double y; \\ Vertical axis

public Point ( double px; double 
py ) {

x = px;

y = py;

}

public double getX() {
return x;

}

public void setX(double x) {

this.x = x;

}

public double getR() {
return Math.sqrt(x*x+y*y);

}

public void setTheta(Angle 
theta) {

x = getR()*theta.cos();

y = getR()*theta.sin();

}

public Point (double r, Angle 
theta) {

this(r *theta.cos(), r*theta.sin());

}

…

}

2/9/2011 CS18000 12

public void setTheta(Angle

theta) {
double r = getR();

x = r*theta.cos();

y = r*theta.sin();

}

Class example:  Point

public class Point {
private double x; \\ Horizontal 

axis

private double y; \\ Vertical axis

public Point ( double px; double 
py ) {

x = px;

y = py;

}

public double getX() {
return x;

}

public void setX(double x) {

this.x = x;

}

public double getR() {
return Math.sqrt(x*x+y*y);

}

public void setTheta(Angle 
theta) {

x = getR()*theta.cos();

y = getR()*theta.sin();

}

public Point (double r, Angle 
theta) {

this(r *theta.cos(), r*theta.sin());

}

…

}

2/9/2011 CS18000 15

public void setTheta(Angle

theta) {
double r = getR();

x = r*theta.cos();

y = r*theta.sin();

}



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

(name) Overloading

• Two methods named “Point”

– Which is which?

• Signature:  Method identified by

– type (class),

– name, and

– type/number of arguments

• Can do for any method

– Use sparingly, can be confusing

2/9/2011 CS18000 16

Referring to Self:  this

• this – object of class method is in

– Specifically, the instance that was invoked

– In getX(), return x;

• x is shorthand for this.x;

• Allows parameters, instance variables to 

have same name

– Makes interface (abstraction) cleaner

2/9/2011 CS18000 17



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

Calling methods in methods

• Methods in a class can be called from other 
methods
– But be careful

– Don‟t call from constructor
• Except other constructor

• Or static method

– static methods can be called anytime
• But can‟t access instance variables

• Suggestion:  Think Invariants
– Method (may) assume valid instance when called

– If you are modifying instance, does this hold?
• If not, may not be safe

2/9/2011 CS18000 18

Access

• public
– Part of “abstraction”

• private
– Only accessible inside the 

class

• (default)
– The same package

• protected
– package as well as 

inheriting classes (we‟ll 
cover this later)

Modifiers

• static
– Method:  can be invoked without 

a valid instance

– Variable:  Class variable
• Same variable shared among 

class instances

• final
– Must be initialized

– Typically doesn’t change

• transient
– Not saved if instance “stored”

• volatile
– Used with threads to enforce 

consistency

2/9/2011 CS18000 19

Classes:  Some Confusing 

Keywords



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 9

Goal:  Separate Abstraction 

and Implementation

• Using an Abstract Data Type

– Know what it is / what it does

– How isn‟t important

• Once defined, can use

– Doesn‟t need to be implemented

– (okay, we can’t run the program – but we can 

write a program using it)

2/9/2011 CS18000 21

Abstract Data Type:  

(semi)Formal Definition

• Domain:  Set of possible values

• Operations

– Constructor

– Field Access

– Methods – Accessor, Mutator

• Invariants

– Must be true at completion of every operation

2/9/2011 CS18000 22



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 10

Abstract Data Type:

Definition

• Challenge:  How do we know we are using 

the type correctly?

– May not even be written yet

– Can we compile our program?

– Or do we get obscure run-time errors?

• Solution:  Define “unimplemented” class

– interface for class

2/9/2011 CS18000 23

Java interface

• Defines an (abstract) data type

– Javaspeak:  reference type

• Declares

– Constants (static final variables)

– Method type, name, and parameters

– Assumed to be public

• No constructor(s)

– Cannot construct an instance of an interface

2/9/2011 CS18000 24



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 11

Interface Example

interface Queue {
// Constants

Student EMPTYRESULT = 
null;

// Methods

void enqueue ( Person s );

Person dequeue();

boolean isEmpty();

}

• Constants implicitly 
public static final
– Could say “public static 

final Person 
EMPTYRESULT”, but 
considered poor style

• Methods implicitly 
public abstract
– Again, poor style to say 

it

– Cannot be static
• Why?

2/9/2011 CS18000 25

Using an interface

• Can define variables of type

– Queue q;

– Cannot create an instance, though

– In the above, q has the value null

• Use as parameters

void bankTeller(Queue q) {

while ( ! q.isEmpty() ) {

manageCustomer(q.dequeue)

}

2/9/2011 CS18000 26



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 12

Implementing an interface

• Implement all methods defined in the 
interface

– May use constants, methods, and even the 
interface itself

• Gives a normal class

– Can create instances

• Instance of implementation can be given 
where interface used

– variables, parameters

2/9/2011 CS18000 27

Implementation Example

class StupidQueue implements 
Queue {

// Instance variables

Person q[ ];

int head, tail;

// Constructor

public StupidQueue() {

head = 0;

tail = 0;

q = new Person[50];

q[head] = EMPTYRESULT;

}

// Methods

public void enqueue ( Person item ) {

q[tail] = item;

tail += 1;

q[tail] = EMPTYRESULT;

}

• Define representation 

of data

– instance variables

• Declare and 

implement all 

methods in interface

– Must be public

2/9/2011 CS18000 28



CS18000:  Problem Solving And Object-

Oriented Programming

2/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 13

Implementation Example:

Complete
class StupidQueue implements 

Queue {
// Instance variables

Person q[ ];

int head = 0, tail = 0;

// Constructor

public StupidQueue() {

q = new Person[50];

q[head] = EMPTYRESULT;

}

// Methods

public void enqueue ( Person item 
) {

q[tail] = item;

q[++tail] = EMPTYRESULT;

}

Person dequeue() {

return q[head++];

}

boolean isEmpty() {

return q[head] == 

EMPTYRESULT;

}

}

2/9/2011 CS18000 29

Implementation Example:

Additional Methods
class StupidQueue implements 

Queue {
// Additional constants

static final int MAXSIZE = 50;

// Instance variables

String q[] = new Person[MAXSIZE];

int head = 0, tail = 0;

// Constructor

public StupidQueue() {

q[head] = EMPTYRESULT;

}

// Methods

public void enqueue ( Person item ) {

if (! isFull()) {

q[tail] = item;

q[++tail] = EMPTYRESULT;

}

}

public Person dequeue() {

if ( isEmpty() )

return EMPTYRESULT;

else

return q[head++];

}

public boolean isEmpty() {

return head >= tail;

}

public boolean isFull() {

return tail >= MAXSIZE;

}

}

2/9/2011 CS18000 30


