
CS18000: Problem Solving And Object-

Oriented Programming

3/2/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

Debugging

2 March 2011

Prof. Chris Clifton

Finding Errors in Your Code

(and that of others)

• Don’t make mistakes!

– Seriously

– Clean program design

– Well-separated abstractions

– Small components

• But what if this isn’t enough?

3/2/2011 CS18000 3

CS18000: Problem Solving And Object-

Oriented Programming

3/2/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Common Errors

• Loops
– Off-by-one

– Infinite

– Zero

• Arrays
– Out-of-bounds

– Uninitialized objects

• Scope
int i=0;

void func() {
for (int i=0; i<5; i++) i+=1;

// What is i?

}

• Equivalence Testing
– == tests if same object

– .equals() tests if objects
same

• Failure to initialize
– Null pointer exception

• Numeric Errors
– Precision

– Overflow/Underflow

– Casting

3/2/2011 CS18000 4

So your code isn’t working

right. What now?

• Print statements

– Watch program flow

• Assertions

– Ensure what you expect is true

• Step through execution

– One statement at a time

• Breakpoints

– Inspect at specific statement

3/2/2011 CS18000 6

CS18000: Problem Solving And Object-

Oriented Programming

3/2/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

Print Statements

• Gather data at various stages of program
execution

– Variable values

– Was this code reached?

• Can give too much data

– Particularly in loops

• How to remove?

– if (debuglevel > 1) System.err.println(“test”);

• What about embedded devices?

3/2/2011 CS18000 7

Assertions

• Test if things are as they should be
– You know something is true

– But is it?

• assert <condition> [: <value>];

• Use to test things that should always hold
– Internal consistency

– Proper parameters for private/protected methods

• Do not use to check public method input
– Test input and throw exception

3/2/2011 CS18000 8

CS18000: Problem Solving And Object-

Oriented Programming

3/2/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Breakpoints

• Interrupt program when it reaches a point

• Stop and take a look

– Variable values

– Possibly modify

• Continue

• DrJava:

– Debugger / Toggle Breakpoint

– Debugger / Debug Mode

– Run

3/2/2011 CS18000 9

Step through program

• Programs execute too fast to follow

– Slow it down

• First, set a breakpoint

– Please you want to start stepping

• When it stops, can

– Step Into (execute next basic statement)

– Step Over (Treat method calls as statements)

– Step Out (Finish this method then stop)

– Resume (to next breakpoint)

3/2/2011 CS18000 10

CS18000: Problem Solving And Object-

Oriented Programming

3/2/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Best method:

Use your Brain!

• Think about what your program is

supposed to do

– Compare with what it does

• Have someone else look at your code

– Explain to them how your code works

– You’ll figure out why it doesn’t

– Don’t expect them to solve the problem…

3/2/2011 CS18000 11

